P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Membrane Preparation
2.3. Sample Characterizations
2.4. Pure Gas Measurement
3. Results
3.1. Filler Preparation
3.2. Mixed-Matrix Membrane Preparation
3.3. Single Gas Permeation Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saleman, T.L.; Li, G.K.; Rufford, T.E.; Stanwix, P.L.; Chan, K.I.; Huang, S.H.; May, E.F. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption. Chem. Eng. J. 2015, 281, 739–748. [Google Scholar] [CrossRef]
- Ismail, N.H.; Salleh, W.N.W.; Sazali, N.; Ismail, A.F. Development and characterization of disk supported carbon membrane prepared by one-step coating-carbonization cycle. J. Ind. Eng. Chem. 2018, 57, 313–321. [Google Scholar] [CrossRef]
- Salinas, O.; Ma, X.; Litwiller, E.; Pinnau, I. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide. J. Memb. Sci. 2016, 500, 115–123. [Google Scholar] [CrossRef]
- Fu, S.; Sanders, E.S.; Kulkarni, S.S.; Wenz, G.B.; Koros, W.J. Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: Entropic selectivity evaluation. Carbon N. Y. 2015, 95, 995–1006. [Google Scholar] [CrossRef]
- Liu, J.; Han, C.; McAdon, M.; Goss, J.; Andrews, K. High throughput development of one carbon molecular sieve for many gas separations. Microporous Mesoporous Mater. 2015, 206, 207–216. [Google Scholar] [CrossRef]
- Swaidan, R.J.; Ma, X.; Pinnau, I. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation. J. Memb. Sci. 2016, 520, 983–989. [Google Scholar] [CrossRef]
- Ning, X.; Koros, W.J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon N. Y. 2014, 66, 511–522. [Google Scholar] [CrossRef]
- Favvas, E.P.; Heliopoulos, N.S.; Papageorgiou, S.K.; Mitropoulos, A.C.; Kapantaidakis, G.C.; Kanellopoulos, N.K. Helium and hydrogen selective carbon hollow fiber membranes: The effect of pyrolysis isothermal time. Sep. Purif. Technol. 2015, 142, 176–181. [Google Scholar] [CrossRef]
- Favvas, E.P.; Romanos, G.E.; Katsaros, F.K.; Stefanopoulos, K.L.; Papageorgiou, S.K.; Mitropoulos, A.C.; Kanellopoulos, N.K. Gas permeance properties of asymmetric carbon hollow fiber membranes at high feed pressures. J. Nat. Gas Sci. Eng. 2016, 31, 842–851. [Google Scholar] [CrossRef]
- Salleh, W.N.W.; Ismail, A.F. Carbon membranes for gas separation processes: Recent progress and future perspective. J. Membr. Sci. Res. 2015, 1, 2–15. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Memb. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Memb. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, Y.; Wu, Y.; Wang, T.; Qiu, J. Towards the Preparation of Ordered Mesoporous Carbon/Carbon Composite Membranes for Gas Separation. Sep. Sci. Technol. 2014, 49, 171–178. [Google Scholar] [CrossRef]
- Ansaloni, L.; Deng, L. Advances in Polymer-Inorganic Hybrids as Membrane Materials; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9780081004272. [Google Scholar]
- Mohamad, M.B.; Fong, Y.Y.; Shariff, A. Gas Separation of Carbon Dioxide from Methane Using Polysulfone Membrane Incorporated with Zeolite-T. Procedia Eng. 2016, 148, 621–629. [Google Scholar] [CrossRef]
- Ismail, N.M.; Ismail, A.F.; Mustafa, A.; Zulhairun, A.K.; Nordin, N.A.H.M. Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay. J. Polym. Eng. 2016, 36, 65–78. [Google Scholar] [CrossRef]
- Ehsani, A.; Pakizeh, M. Synthesis, characterization and gas permeation study of ZIF-11/Pebax®2533 mixed matrix membranes. J. Taiwan Inst. Chem. Eng. 2016, 66, 414–423. [Google Scholar] [CrossRef]
- Rafizah, W.A.W.; Ismail, A.F. Effect of carbon molecular sieve sizing with poly(vinyl pyrrolidone) K-15 on carbon molecular sieve-polysulfone mixed matrix membrane. J. Memb. Sci. 2008, 307, 53–61. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F.; Sanip, S.M.; Ng, B.C.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243–264. [Google Scholar] [CrossRef]
- Süer, M.G.; Baç, N.; Yilmaz, L. Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Memb. Sci. 1994, 91, 77–86. [Google Scholar] [CrossRef]
- Taheri Afarani, H.; Sadeghi, M.; Moheb, A.; Esfahani, E.N. Optimization of the gas separation performance of polyurethane–zeolite 3A and ZSM-5 mixed matrix membranes using response surface methodology. Chin. J. Chem. Eng. 2019, 27, 110–129. [Google Scholar] [CrossRef]
- Ismail, A.F.; Rahim, R.A.; Rahman, W.A.W.A. Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation. Sep. Purif. Technol. 2008, 63, 200–206. [Google Scholar] [CrossRef]
- Bastani, D.; Esmaeili, N.; Asadollahi, M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. J. Ind. Eng. Chem. 2013, 19, 375–393. [Google Scholar] [CrossRef]
- Brugmans, M.J.P.; Kleyn, A.W.; Lagendijk, A.; Jacobs, W.P.J.H.; van Santen, R.A. Hydrogen bonding in acidic zeolites observed by time-resolved vibrational spectroscopy. Chem. Phys. Lett. 1994, 217, 117–122. [Google Scholar] [CrossRef]
- Ahsan, S.A.M.S.; Durani, S.; Reddy, G.; Subramanian, Y. Shared hydrogen bonds: Water in aluminated faujasite. Phys. Chem. Chem. Phys. 2020, 22, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Calero, S.; Gómez-Álvarez, P. Hydrogen bonding of water confined in zeolites and their zeolitic imidazolate framework counterparts. RSC Adv. 2014, 4, 29571–29580. [Google Scholar] [CrossRef]
- Yin, X.; Chu, N.; Yang, J.; Wang, J.; Li, Z. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation. Int. J. Greenh. Gas Control 2013, 15, 55–64. [Google Scholar] [CrossRef]
- Gunawan, T.; Wijiyanti, R.; Widiastuti, N. Adsorption–desorption of CO 2 on zeolite-Y-templated carbon at various temperatures. RSC Adv. 2018, 8, 41594–41602. [Google Scholar] [CrossRef]
- Guan, C.; Su, F.; Zhao, X.S.; Wang, K. Methane storage in a template-synthesized carbon. Sep. Purif. Technol. 2008, 64, 124–126. [Google Scholar] [CrossRef]
- Guan, C.; Zhang, X.; Wang, K.; Yang, C. Investigation of H2 storage in a templated carbon derived from zeolite Y and PFA. Sep. Purif. Technol. 2009, 66, 565–569. [Google Scholar] [CrossRef]
- Guan, C.; Wang, K.; Yang, C.; Zhao, X.S. Characterization of a zeolite-templated carbon for H2 storage application. Microporous Mesoporous Mater. 2009, 118, 503–507. [Google Scholar] [CrossRef]
- Zulhairun, A.K.; Fachrurrazi, Z.G.; Nur Izwanne, M.; Ismail, A.F. Asymmetric hollow fiber membrane coated with polydimethylsiloxane-metal organic framework hybrid layer for gas separation. Sep. Purif. Technol. 2015, 146, 85–93. [Google Scholar] [CrossRef]
- Favvas, E.P.; Kouvelos, E.P.; Romanos, G.E.; Pilatos, G.I.; Mitropoulos, A.C.; Kanellopoulos, N.K. Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J. Porous Mater. 2008, 15, 625–633. [Google Scholar] [CrossRef]
- Choi, S.-H.; Jansen, J.C.; Tasselli, F.; Barbieri, G.; Drioli, E. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation. Sep. Purif. Technol. 2010, 76, 132–139. [Google Scholar] [CrossRef]
- Sari, P.; Gunawan, T.; Wan Salleh, W.N.; Ismail, A.F.; Widiastuti, N. Simple Method to Enhance O2/N2 Separation on P84 co-polyimide Hollow Fiber Membrane. IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 042042. [Google Scholar] [CrossRef]
- Nezamzadeh-Ejhieh, A.; Shahriari, E. Heterogeneous photodecolorization of methyl green catalyzed by Fe(II)-o-phenanthroline/zeolite y nanocluster. Int. J. Photoenergy 2011, 2011. [Google Scholar] [CrossRef][Green Version]
- Ebadi, A.; Omidkhah, M.; Kargari, A. The effects of aminosilane grafting on NaY zeolite–Matrimid s 5218 mixed matrix membranes for CO2/CH4 separation. J. Memb. Sci. 2015, 490, 364–379. [Google Scholar] [CrossRef]
- Zulhairun, A.K.; Subramaniam, M.N.; Samavati, A.; Ramli, M.K.N.; Krishparao, M.; Goh, P.S.; Ismail, A.F. High-flux polysulfone mixed matrix hollow fiber membrane incorporating mesoporous titania nanotubes for gas separation. Sep. Purif. Technol. 2017, 180, 13–22. [Google Scholar] [CrossRef]
- Dai, Y.; Johnson, J.R.; Karvan, O.; Sholl, D.S.; Koros, W.J. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. J. Memb. Sci. 2012, 401–402, 76–82. [Google Scholar] [CrossRef]
- Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017, 188, 431–450. [Google Scholar] [CrossRef]
- Lin, R.; Ge, L.; Liu, S.; Rudolph, V.; Zhu, Z. Mixed-Matrix Membranes with Metal–Organic Framework-Decorated CNT Fillers for Efficient CO2 Separation. ACS Appl. Mater. Interfaces 2015, 7, 14750–14757. [Google Scholar] [CrossRef]
- Tin, P.S.; Chung, T.S.; Liu, Y.; Wang, R. Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon N. Y. 2004, 42, 3123–3131. [Google Scholar] [CrossRef]
- Escorihuela, S.; Valero, L.; Tena, A.; Shishatskiy, S.; Escolástico, S.; Brinkmann, T.; Serra, J. Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation. Membranes 2018, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Sabetghadam, A.; Seoane, B.; Keskin, D.; Duim, N.; Rodenas, T.; Shahid, S.; Sorribas, S.; Le Guillouzer, C.; Clet, G.; Tellez, C.; et al. Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Adv. Funct. Mater. 2016, 26, 3154–3163. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-H.; Brunetti, A.; Drioli, E.; Barbieri, G. H2 Separation From H2/N2 and H2/CO Mixtures with Co-Polyimide Hollow Fiber Module. Sep. Sci. Technol. 2010, 46, 1–13. [Google Scholar] [CrossRef]
- Lua, A.C.; Shen, Y. Preparation and characterization of asymmetric membranes based on nonsolvent/NMP/P84 for gas separation. J. Memb. Sci. 2013, 429, 155–167. [Google Scholar] [CrossRef]
- Ogbole, E.O.; Lou, J.; Ilias, S.; Desmane, V. Influence of surface-treated SiO2 on the transport behavior of O2 and N2 through polydimethylsiloxane nanocomposite membrane. Sep. Purif. Technol. 2017, 175, 358–364. [Google Scholar] [CrossRef]
- Favvas, E.P.; Nitodas, S.F.; Stefopoulos, A.A.; Papageorgiou, S.K.; Stefanopoulos, K.L.; Mitropoulos, A.C. High purity multi-walled carbon nanotubes: Preparation, characterization and performance as filler materials in co-polyimide hollow fiber membranes. Sep. Purif. Technol. 2014, 122, 262–269. [Google Scholar] [CrossRef]
- Yong, H.H.; Park, H.C.; Kang, Y.S.; Won, J.; Kim, W.N. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. J. Memb. Sci. 2001, 188, 151–163. [Google Scholar] [CrossRef]
- Salleh, W.N.W.; Ismail, A.F.; Matsuura, T.; Abdullah, M.S. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review. Sep. Purif. Rev. 2011, 40, 261–311. [Google Scholar] [CrossRef]
- Haider, S.; Lindbråthen, A.; Lie, J.A.; Hägg, M.-B. Carbon membranes for oxygen enriched air–Part II: Techno-economic analysis. Sep. Purif. Technol. 2018, 205, 251–262. [Google Scholar] [CrossRef]
- Samarasinghe, S.A.S.C.; Chuah, C.Y.; Karahan, H.E.; Sethunga, G.S.M.D.P.; Bae, T.-H. Enhanced O2/N2 Separation of Mixed-Matrix Membrane Filled with Pluronic-Compatibilized Cobalt Phthalocyanine Particles. Membranes 2020, 10, 75. [Google Scholar] [CrossRef]
- Han, J.; Bai, L.; Yang, B.; Bai, Y.; Luo, S.; Zeng, S.; Gao, H.; Nie, Y.; Ji, X.; Zhang, S.; et al. Highly selective oxygen/nitrogen separation membrane engineered using a porphyrin-based oxygen carrier. Membranes 2019, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Dehghani Kiadehi, A.; Rahimpour, A.; Jahanshahi, M.; Ghoreyshi, A.A. Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation. J. Ind. Eng. Chem. 2015, 22, 199–207. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; de Ribeiro, J.S.; de Costa, E.S.; de Miranda, J.L.; Ferraz, H.C. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Sep. Purif. Technol. 2018, 192, 491–500. [Google Scholar] [CrossRef]
- Samarasinghe, S.A.S.C.; Chuah, C.Y.; Li, W.; Sethunga, G.S.M.D.P.; Wang, R.; Bae, T.H. Incorporation of CoIII acetylacetonate and SNW-1 nanoparticles to tailor O2/N2 separation performance of mixed-matrix membrane. Sep. Purif. Technol. 2019, 223, 133–141. [Google Scholar] [CrossRef]
Sample | Loading (wt%) | Permeability (Barrer) | Ideal Selectivity | |
---|---|---|---|---|
N2 3.64 Å a | O2 3.46 Å a | O2/N2 | ||
Uncoated PDMS | ||||
Neat | 0 | 1.73 ± 0.03 | 7.12 ± 0.20 | 4.11 ± 0.06 |
P84/ZCC1 | 1 | 3.84 ± 0.04 | 18.90 ± 0.51 | 4.92 ± 0.30 |
Coated PDMS 3 wt% | ||||
Neat | 0 | 0.22 ± 0.00 (−87.30%) b | 1.64 ± 0.03 (−76.96%) b | 7.32 ± 0.19 (+78.10%) b |
P84/ZCC1 | 1 | 0.45 ± 0.00 (−88.30%) b | 3.55 ± 0.00 (−81.20%) b | 7.88 ± 0.03 (+60.16%) b |
Membrane | Filler Loading (wt%) | pO2 (Barrer) | αO2/N2 | Ref. |
---|---|---|---|---|
P84 | 0 | 1.64 | 7.32 | This work |
P84/ZCC | 1 | 3.55 | 7.88 | |
P84 | 0 | 2.8 | 0.9 | [34] |
Matrimid | 0 | 1.72 | 5.79 | [52] |
Matrimid/CoPCMP | 5 | 1.32 | 7.62 | |
Matrimid/Pluronic | 5 | 0.93 | 7.09 | |
Pebax/T(p-OCH3)PPCoCl | 0.6 | 12.2 | 7.6 | [53] |
PES | 0 | 0.52 | 3.71 | [21] |
PES/Zeolite 13X | 42 | 0.51 | 4.29 | |
PES/Zeolite 4A | 42 | 0.74 | 4.40 | |
PU/Zeolite 3A | 18 | 23.93 | 2.18 | [22] |
PU/ZSM-5 | 18 | 25.21 | 2.45 | |
PSF/CNF | 1 | 2.24 | 3.86 | [54] |
PU | 0 | 2.8 | 4 | [55] |
PU/UiO-66 (Zr) | 28 | 6.1 | 5.5 | |
PU/MIL-101 (Cr) | 28 | 9.7 | 4.2 | |
PES-Matrimid/Zeolite 4A | 30 | 12.8 | 0.85 | [23] |
ODPA-TMPDA | 0 | 17.5 | 4.62 | [56] |
ODPA-TMPDA/SNW | 10 | 23.6 | 5.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widiastuti, N.; Gunawan, T.; Fansuri, H.; Salleh, W.N.W.; Ismail, A.F.; Sazali, N. P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance. Membranes 2020, 10, 267. https://doi.org/10.3390/membranes10100267
Widiastuti N, Gunawan T, Fansuri H, Salleh WNW, Ismail AF, Sazali N. P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance. Membranes. 2020; 10(10):267. https://doi.org/10.3390/membranes10100267
Chicago/Turabian StyleWidiastuti, Nurul, Triyanda Gunawan, Hamzah Fansuri, Wan Norharyati Wan Salleh, Ahmad Fauzi Ismail, and Norazlianie Sazali. 2020. "P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance" Membranes 10, no. 10: 267. https://doi.org/10.3390/membranes10100267
APA StyleWidiastuti, N., Gunawan, T., Fansuri, H., Salleh, W. N. W., Ismail, A. F., & Sazali, N. (2020). P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance. Membranes, 10(10), 267. https://doi.org/10.3390/membranes10100267