Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = P, Zn, Cu, Pb, K, Na, S

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2544 KiB  
Article
From Invasive Species to Sustainable Nutrition: Safety, Nutritional, and Consumer Perception Study on Faxonius limosus in Serbia
by Milica Vidosavljević, Branislav Šojić, Tatjana Peulić, Predrag Ikonić, Jasmina Lazarević, Slađana Rakita, Milica Vidak Vasić, Zorica Tomičić and Ivana Čabarkapa
Foods 2025, 14(14), 2523; https://doi.org/10.3390/foods14142523 - 18 Jul 2025
Viewed by 347
Abstract
Faxonius limosus is an invasive alien crayfish species that has a negative effect on aquatic biodiversity. Using its meat as food could help reduce its ecological impact while providing a protein source. In order to do that, the initial step was to determine [...] Read more.
Faxonius limosus is an invasive alien crayfish species that has a negative effect on aquatic biodiversity. Using its meat as food could help reduce its ecological impact while providing a protein source. In order to do that, the initial step was to determine safety and nutritional parameters of crayfish meat. Samples from two localities were analyzed for energy value, moisture, ash, protein, fat, carbohydrates, fatty acid and amino acid composition, and macro- and micro-mineral content. Moreover, an online survey was conducted in order to evaluate the public’s current knowledge about invasive alien species and willingness to consume crayfish meat as a food product. Heavy metal concentrations (Hg, Pb, Cd) were below European Commission limits, confirming safety. The meat had a high protein content (16.68%), low fat (0.22%), and a favorable fatty acid profile with notable levels of omega-3 polyunsaturated fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Predominant macro-minerals were K, Na, Ca, Mg, and P, while Zn, Cu, Fe, and Mn were the most abundant micro-minerals. Even though most participants (79.7%) were not informed about Faxonius limosus, the majority expressed willingness to participate in the assessment of new products made from invasive crayfish. These findings suggest that F. limosus meat is a nutritionally valuable and safe alternative protein source, with potential for sustainable food production and ecological management. Full article
Show Figures

Figure 1

25 pages, 6926 KiB  
Article
Spatial Distribution of Cadmium in Avocado-Cultivated Soils of Peru: Influence of Parent Material, Exchangeable Cations, and Trace Elements
by Richard Solórzano, Rigel Llerena, Sharon Mejía, Juancarlos Cruz and Kenyi Quispe
Agriculture 2025, 15(13), 1413; https://doi.org/10.3390/agriculture15131413 - 30 Jun 2025
Viewed by 1187
Abstract
Potentially toxic elements such as cadmium (Cd) in agricultural soils represent a global concern due to their toxicity and potential accumulation in the food chain. However, our understanding of cadmium’s complex sources and the mechanisms controlling its spatial distribution across diverse edaphic and [...] Read more.
Potentially toxic elements such as cadmium (Cd) in agricultural soils represent a global concern due to their toxicity and potential accumulation in the food chain. However, our understanding of cadmium’s complex sources and the mechanisms controlling its spatial distribution across diverse edaphic and geological contexts remains limited, particularly in underexplored agricultural regions. Our study aimed to assess the total accumulated Cd content in soils under avocado cultivation and its association with edaphic, geochemical, and geomorphological variables. To this end, we considered the total concentrations of other metals and explored their associations to gain a better understanding of Cd’s spatial distribution. We analyzed 26 physicochemical properties, the total concentrations of 22 elements (including heavy and trace metals such as As, Ba, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sr, Tl, V, and Zn and major elements such as Al, Ca, Fe, K, Mg, and Na), and six geospatial variables in 410 soil samples collected from various avocado-growing regions in Peru in order to identity potential associations that could help explain the spatial patterns of Cd. For data analysis, we applied (1) univariate statistics (skewness, kurtosis); (2) multivariate methods such as Spearman correlations and principal component analysis (PCA); (3) spatial modeling using the Geodetector tool; and (4) non-parametric testing (Kruskal–Wallis test with Dunn’s post hoc test). Our results indicated (1) the presence of hotspots with Cd concentrations exceeding 3 mg·kg−1, displaying a leptokurtic distribution (skewness = 7.3); (2) dominant accumulation mechanisms involving co-adsorption and cation competition (Na+, Ca2+), as well as geogenic co-accumulation with Zn and Pb; and (3) significantly higher Cd concentrations in Leptosols derived from Cretaceous intermediate igneous rocks (diorites/tonalites), averaging 1.33 mg kg−1 compared to 0.20 mg·kg−1 in alluvial soils (p < 0.0001). The factors with the greatest explanatory power (q > 15%, Geodetector) were the Zn content, parent material, geological age, and soil taxonomic classification. These findings provide edaphogenetic insights that can inform soil cadmium (Cd) management strategies, including recommendations to avoid establishing new plantations in areas with a high risk of Cd accumulation. Such approaches can enhance the efficiency of mitigation programs and reduce the risks to export markets. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 1351 KiB  
Article
Comparative Nutritional and Healthy Values of Macro- and Microelements in Edible and Non-Edible Tissues of Raw and Processed Common Octopus (Octopus vulgaris)
by Ricardo Prego, Antonio Cobelo-García, Susana Calvo and Santiago P. Aubourg
Foods 2025, 14(13), 2210; https://doi.org/10.3390/foods14132210 - 23 Jun 2025
Viewed by 394
Abstract
The macroelement (Na, Mg, P, S, K, and Ca) and microelement (Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Ba, and Pb) composition of edible (arm and mantle) and non-edible (viscera) tissues of octopus (Octopus vulgaris) was studied. Three different size [...] Read more.
The macroelement (Na, Mg, P, S, K, and Ca) and microelement (Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Ba, and Pb) composition of edible (arm and mantle) and non-edible (viscera) tissues of octopus (Octopus vulgaris) was studied. Three different size groups were considered separately (1–2, 2–3, and 3–4 kg per specimen). Additionally, the effect of cooking processing (40 min at 90 °C) and frozen storage (4 months at –18 °C) was determined. All raw tissues depicted the following increasing sequence for the macroelement content (p < 0.05): Ca < Mg < P ≈ K < Na ≈ S; regarding microelements, the raw viscera tissue showed a higher level (p < 0.05) than the counterpart edible tissues. The cooking process led to a general decrease in macroelement values (p < 0.05) in arm and mantle tissues; for microelements, no effect (p > 0.05) was observed for Co, Mn, and Sn content, but an average increase was obtained for Cd, Cu, and Pb values. The frozen storage did not lead to element content changes in the arm tissue (p > 0.05); in contrast, general content increases and decreases were detected for mantle and viscera, respectively. In spite of level changes detected, this study proves that viscera, a common waste of commercial processing, can be considered a valuable source of essential elements. Full article
(This article belongs to the Special Issue Trace Elements in Food: Nutritional and Safety Issues)
Show Figures

Figure 1

15 pages, 807 KiB  
Article
Development and Chemical, Physical, Functional, and Multi-Element Profile Characterization of Requeijão with Guabiroba Pulp
by Amanda Alves Prestes, Brunna de Kacia Souza Coelho, Leandro José de Oliveira Mindelo, Ana Caroline Ferreira Carvalho, Jefferson Santos de Gois, Dayanne Regina Mendes Andrade, Carolina Krebs de Souza, Cristiane Vieira Helm, Adriano Gomes da Cruz and Elane Schwinden Prudencio
Processes 2025, 13(5), 1322; https://doi.org/10.3390/pr13051322 - 26 Apr 2025
Cited by 2 | Viewed by 659
Abstract
Five requeijão samples, classified as Brazilian cream cheeses, were developed: one control (without guabiroba pulp (Campomanesia xanthocarpa O. Berg) and four with 5, 10, 15, and 20% (m/m) guabiroba pulp. They were evaluated for pH, water activity (aw), [...] Read more.
Five requeijão samples, classified as Brazilian cream cheeses, were developed: one control (without guabiroba pulp (Campomanesia xanthocarpa O. Berg) and four with 5, 10, 15, and 20% (m/m) guabiroba pulp. They were evaluated for pH, water activity (aw), color, texture, multi-mineral composition, carotenoid content, and microstructure. The addition of guabiroba pulp reduced pH and maintained Aw. The samples with 5%, 10%, 15%, and 20% guabiroba pulp presented a yellow–reddish coloration. The formulation with 5% had the lowest values of firmness, resilience, texture, and spreadability. From 10% onwards, an increase in cohesiveness and a reduction in creaminess were observed. The sample with 15% presented better spreadability, while the 20% sample had adhesiveness similar to the control. No traces of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Pb, or Se were detected. The detected elements, in descending order, were Na, Ca, P, S, K, Mg, Sr, and Zn. β-carotene was predominant, with guabiroba pulp enhancing α-carotene, β-carotene, β-cryptoxanthin, and λ-carotene levels, especially at 20% pulp. Microstructure analysis by scanning electron microscopy (SEM) showed no significant differences. These findings highlight the potential of guabiroba pulp as a functional ingredient in requeijão, enhancing its carotenoid profile while maintaining desirable textural and physicochemical properties. Full article
Show Figures

Figure 1

24 pages, 4578 KiB  
Article
Influence of Phosphogypsum Waste on Rainwater Chemistry in a Highly Polluted Area with High Mortality Rates in Huelva Metropolitan Area, Spain
by Manuel Contreras-Llanes, Vanessa Santos-Sánchez, Juan Alguacil and Roberto Rodríguez-Pacheco
Sustainability 2025, 17(7), 3102; https://doi.org/10.3390/su17073102 - 31 Mar 2025
Viewed by 721
Abstract
This study evaluates the impact of phosphogypsum stacks on the chemical composition of rainwater in the Huelva metropolitan area, a metal-polluted area with high cancer and heart disease mortality rates. A total of 612 rainwater samples were collected using 17 rain gauges located [...] Read more.
This study evaluates the impact of phosphogypsum stacks on the chemical composition of rainwater in the Huelva metropolitan area, a metal-polluted area with high cancer and heart disease mortality rates. A total of 612 rainwater samples were collected using 17 rain gauges located around the study area between January 2021 and December 2022. The pH, conductivity, major ions, and trace metals were detected in the soluble fraction of rainwater. The results revealed spatial variability in the rainwater quality. The highest values of As, Ca2+, Cr, F, NH4+, Ni, PO43−, SO42−, Sr, and V were detected in rain-gauges near phosphogypsum stacks, exceeding the levels of pH, F, and Ni according to the guideline values for drinking water quality from the WHO. Additionally, other pollution sources also contributed: a regional source (marine factors: Ca2+, Cl, K+, Mg2+, and Na+) and a local source (chemical complexes emissions: Co, Cu, Pb, and Zn). A downward trend of most toxic metal(loid) concentrations in wet depositions was detected as the distance to the affected area increased. The findings revealed that phosphogypsum stacks are a relevant source of metal(loid)s with potentially adverse environmental and public health effects that, if replicated, could be relevant for environmental monitoring and policy making. Full article
Show Figures

Figure 1

14 pages, 285 KiB  
Article
The Effect of Waste Organic Matter on the Soil Chemical Composition After Three Years of Miscanthus × giganteus Cultivation in East-Central Poland
by Elżbieta Malinowska and Paweł Kania
Sustainability 2025, 17(6), 2532; https://doi.org/10.3390/su17062532 - 13 Mar 2025
Cited by 1 | Viewed by 534
Abstract
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped [...] Read more.
The circular economy practice of using waste to fertilize plants should be more widespread. It is a means to manage natural resources sustainably in agriculture. This approach is in line with organic and sustainable farming strategies, reducing the cultivation costs. Organic waste dumped into a landfill decomposes and emits greenhouse gases. This can be reduced through its application to energy crops, which not only has a positive impact on the environment but also improves the soil quality and increases yields. However, organic waste with increased content of heavy metals, when applied to the soil, can also pose a threat. Using Miscanthus × giganteus M 19 as a test plant, an experiment with a randomized block design was established in four replications in Central–Eastern Poland in 2018. Various combinations of organic waste (municipal sewage sludge and spent mushroom substrate) were applied, with each dose containing 170 kg N ha−1. After three years (in 2020), the soil content of total nitrogen (Nt) and carbon (Ct) was determined by elemental analysis, with the total content of P, K, Ca, Mg, S, Na, Fe, Mn, Mo, Zn, Ni, Pb, Cr, Cd, and Cu determined by optical emission spectrometry, after wet mineralization with aqua regia. For the available forms of P and K, the Egner–Riehm method was used, and the Schachtschabel method was used for the available forms of Mg. The total content of bacteria, actinomycetes, and fungi was also measured. The application of municipal sewage sludge (SS) alone and together with spent mushroom substrate (SMS) improved the microbiological composition of the soil and increased the content of Nt and Ct and the available forms of P2O5 and Mg more than the application of SMS alone. SMS did not contaminate the soil with heavy metals. In the third year, their content was higher after SS than after SMS application, namely for Cd by 12.2%, Pb by 18.7%, Cr by 25.3%, Zn by 16.9%, and Ni by 14.7%. Full article
32 pages, 1768 KiB  
Article
Assessment of Chemical Pollution Load in Surface Waters of the Turkestan Region and Its Indirect Impact on Landscapes: A Comprehensive Study
by Dana Akhmetova, Zhanar Ozgeldinova, Nurgul Ramazanova, Saltanat Sadvakassova, Zhansulu Inkarova, Rabiga Kenzhebay, Zhadra Shingisbayeva, Roza Abildaeva, Zakhida Kozhabekova, Manira Alagujayeva and Zhamila Sikhynbayeva
Geosciences 2025, 15(2), 73; https://doi.org/10.3390/geosciences15020073 - 19 Feb 2025
Viewed by 802
Abstract
This study is aimed at a comprehensive assessment of the chemical composition of surface waters in the Turkestan region and their impact on regional landscapes. The primary objective of the research is to systematically evaluate the level of chemical pollution in the region’s [...] Read more.
This study is aimed at a comprehensive assessment of the chemical composition of surface waters in the Turkestan region and their impact on regional landscapes. The primary objective of the research is to systematically evaluate the level of chemical pollution in the region’s water resources and determine its indirect effects on landscape-ecological stability. In August 2024, water samples from eight sampling points (S1–S8) were analyzed for 24 physicochemical parameters, including total hardness (mg*eq/L), pH, dry residue (mg/L), electrical conductivity (µS/cm), total salinity (mg/L), Al, As, B, Ca, Cd, Co, Cr, Ti, Fe, Pb, Cu, Mg, K, Mn, Na, Ni, Zn, SO42−, and C6H5OH. To determine the degree of pollution, variational-statistical analysis, principal component analysis (PCA), as well as the calculation of the OIP, NPI, and HPI indices were performed. For land use and land cover change (LULC) analysis, LULC classification was carried out based on Landsat data from 2000 to 2020, forming the basis for land resource management and planning. The research results showed a deterioration in the ecological condition of water resources and an increasing anthropogenic impact. Specifically, at point S8, the concentration of Al was found to be 56 times higher than the maximum allowable limit, while the concentration of Fe was 42 times higher. High levels of pollution were also recorded at points S1, S4, S5, and S6, where the increase in Al and Na concentrations caused a sharp rise in the OIP value. The main factors influencing water pollution include industrial effluents, agricultural waste, and irrigation drainage waters. The pollution’s negative impact on regional landscapes has led to issues related to the distribution of vegetation, soil fertility, and landscape stability. To improve the current ecological situation and restore natural balance, the phytoremediation method is proposed. The research results will serve as the foundation for developing water resource management strategies for the Turkestan region and making informed decisions aimed at ensuring ecological sustainability. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

16 pages, 284 KiB  
Article
Changes in the Concentration Profile of Selected Micro- and Macro-Elements in the Yellow Ligament Obtained from Patients with Degenerative Stenosis of the Lumbo-Sacral Spine
by Damian Strojny, Dawid Sobański, Roman Wojdyła, Klaudia Skóra, Martyna Hoczela, Katarzyna Wyczarska-Dziki, Mateusz Miller, Mateusz Masternak, Rafał Staszkiewicz, Jerzy Wieczorek, Weronika Wieczorek-Olcha, Barbara Waltoś-Tutak, Paweł Gogol and Beniamin Oskar Grabarek
J. Clin. Med. 2025, 14(4), 1252; https://doi.org/10.3390/jcm14041252 - 14 Feb 2025
Cited by 1 | Viewed by 869
Abstract
Background/Objectives: Degenerative lumbo-sacral spinal stenosis is characterized by spinal canal narrowing, often linked to ligamentum flavum hypertrophy. This study evaluated the elemental composition of ligamentum flavum tissue in DLSS patients compared to healthy controls. Methods: This study involved 180 patients diagnosed [...] Read more.
Background/Objectives: Degenerative lumbo-sacral spinal stenosis is characterized by spinal canal narrowing, often linked to ligamentum flavum hypertrophy. This study evaluated the elemental composition of ligamentum flavum tissue in DLSS patients compared to healthy controls. Methods: This study involved 180 patients diagnosed with degenerative lumbo-sacral spinal stenosis and 102 healthy controls. Ligamentum flavum samples were analyzed for concentrations of magnesium (Mg), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu), iron (Fe), sodium (Na), potassium (K), manganese (Mn), and lead (Pb) using inductively coupled plasma optical emission spectrometry (ICP-OES). Statistical analyses were conducted using Student’s t-test, ANOVA, and Pearson’s correlation, with a significance threshold of p < 0.05. Results: The study group exhibited significantly elevated levels of Mg (p < 0.001), Ca (p = 0.014), and P (p = 0.006), along with reduced concentrations of Zn (p = 0.021) and Cu (p = 0.038) compared to controls. No statistically significant differences were observed for Na, K, Mn, or Fe (p > 0.05). Elemental imbalances were more pronounced in individuals with higher body mass index (BMI) and varied by gender. Pain intensity demonstrated a significant correlation with Zn (p = 0.012) and Na (p = 0.045), but no consistent associations with Mg, Ca, or P. Conclusions: Altered Mg, Ca, P, and Zn levels in ligamentum flavum suggest their involvement in degenerative lumbo-sacral spinal stenosis pathophysiology. These elements may serve as potential biomarkers and therapeutic targets for mitigating spinal canal narrowing. Full article
(This article belongs to the Special Issue Advances in Spine Disease Research)
23 pages, 2611 KiB  
Article
Effects of Intercropped Insectary Plants (Sweet Alyssum, Coriander, and White Mustard) on Elemental Composition and Antioxidant Levels in Broad Bean Plants
by Janina Gospodarek, Gedyon Tamiru, Aleksandra Nadgórska-Socha, Marta Kandziora-Ciupa and Iwona B. Paśmionka
Molecules 2024, 29(24), 6031; https://doi.org/10.3390/molecules29246031 - 21 Dec 2024
Viewed by 1124
Abstract
Insectary plants, such as sweet alyssum, coriander, and white mustard, are well known for their traits that attract beneficial insects, allowing them to protect crops from pests. The aim of the study was to analyze the compounds that are important in the antioxidant [...] Read more.
Insectary plants, such as sweet alyssum, coriander, and white mustard, are well known for their traits that attract beneficial insects, allowing them to protect crops from pests. The aim of the study was to analyze the compounds that are important in the antioxidant response, such as malondialdehyde, ascorbic acid, proline, total phenolics, and total flavonoids, as well as the content of elements, including macroelements (K, Mg, Na, Ca, P, and S) and heavy metals (Cd, Cu, Zn, Pb, Ni, Mn, and Fe) in broad bean plants. These plants were grown in field conditions as the main protected plant alongside a mixture of three insectary plants at different proportions of the individual components. The soil was analyzed in terms of the above-mentioned elements, as well as in terms of its enzymatic activity (arylsulfatase, β-glucosidase, dehydrogenase, FDA (fluorescein diacetate), and acid phosphatase). The introduction of insectary plant mixtures did not cause major changes in the content of the elements in the soil. The changes in the content of elements in broad bean leaves depended on the type of element and the proportion of individual components in the companion plant mixture. However, a general trend of increasing macronutrient content was observed, influenced by the presence of companion plants. All types of companion plant mixtures used enhanced the activity of FDA, while the mixture with 50% sweet alyssum additionally caused an increase in arylsulfatase activity (more than 2 fold). The companion plants improved the physiological condition of the protected plant, which was reflected in the reduced content of proline and total flavonoids. Considering the response of the protected plant to the proposed intercropped plant mixtures and their effect on broad bean growth, it appears that the most suitable mixtures are those with an equal share of all three plant species or a mixture with a predominance of sweet alyssum. Full article
Show Figures

Figure 1

36 pages, 7490 KiB  
Article
Metal Contamination and Human Health Risk Assessment of Soils from Parks of Industrialized Town (Galati, Romania)
by Antoaneta Ene, Alina Sion, Claudia Stihi, Anca Irina Gheboianu, Vasile Basliu, Alina Mihaela Ceoromila and Steluta Gosav
Appl. Sci. 2024, 14(22), 10379; https://doi.org/10.3390/app142210379 - 11 Nov 2024
Cited by 1 | Viewed by 2581
Abstract
The aim of the present study was to evaluate the contamination state of the surface soil from 10 parks from Galati, Romania, and the health hazards of the soil. The soil samples, collected in each site from the playing ground and from the [...] Read more.
The aim of the present study was to evaluate the contamination state of the surface soil from 10 parks from Galati, Romania, and the health hazards of the soil. The soil samples, collected in each site from the playing ground and from the edge of the park, were analyzed by using combined Wavelength- (WDXRF) and Energy-Dispersive (EDXRF) X-ray fluorescence techniques. A total number of 27 chemical elements (Ag, Al, As, Ba, Ca, Cd, Cr, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Ti, V, Zn and Zr) were quantified in the urban soils, and the results were compared to the normal and alert values from Romanian legislation for toxic trace elements, as well as with European and world average values of element concentrations. The mineralogical analyses were performed by Scanning Electron Microscopy with Energy-Dispersive X-ray Analysis (SEM-EDX) and the Attenuated Total Reflectance–Fourier Transform Infrared technique (ATR-FTIR). To assess the soil contamination and the impact on human health of the presence of potential toxic elements and heavy metals in the soil, a series of pollution and health risk indices were used. All the results indicated an unpolluted to moderately polluted soil. The soil samples collected from the edge of the parks presented higher values for the specific pollutants, which originated from heavy traffic, such as Cu, Cr, Zn and Pb. The non-carcinogenic and carcinogenic risk to children was assessed using estimated daily intake (EDI) in relation to the pathways whereby pollutants can enter the human body, such as ingestion, dermal contact, inhalation and vaporization. Using the obtained values for EDI, the hazard quotient and hazard index were determined, which strengthen the formerly issued presumption that soil pollution is moderate and, by itself, does not present any threat to children’s health. Full article
Show Figures

Figure 1

12 pages, 2188 KiB  
Article
Multi-Elemental Analysis and Geographical Discrimination of Greek “Gigantes Elefantes” Beans Utilizing Inductively Coupled Plasma Mass Spectrometry and Machine Learning Models
by Eleni C. Mazarakioti, Anastasios Zotos, Vassilios S. Verykios, Efthymios Kokkotos, Anna-Akrivi Thomatou, Achilleas Kontogeorgos, Angelos Patakas and Athanasios Ladavos
Foods 2024, 13(18), 3015; https://doi.org/10.3390/foods13183015 - 23 Sep 2024
Viewed by 1089
Abstract
Greek giant beans, also known as “Gigantes Elefantes” (elephant beans, Phaseolus vulgaris L.,) are a traditional and highly cherished culinary delight in Greek cuisine, contributing significantly to the economic prosperity of local producers. However, the issue of food fraud associated with these products [...] Read more.
Greek giant beans, also known as “Gigantes Elefantes” (elephant beans, Phaseolus vulgaris L.,) are a traditional and highly cherished culinary delight in Greek cuisine, contributing significantly to the economic prosperity of local producers. However, the issue of food fraud associated with these products poses substantial risks to both consumer safety and economic stability. In the present study, multi-elemental analysis combined with decision tree learning algorithms were investigated for their potential to determine the multi-elemental profile and discriminate the origin of beans collected from the two geographical areas. Ensuring the authenticity of agricultural products is increasingly crucial in the global food industry, particularly in the fight against food fraud, which poses significant risks to consumer safety and economic stability. To ascertain this, an extensive multi-elemental analysis (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, Se, Sr, Ta, Ti, Tl, U, V, W, Zn, and Zr) was performed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Bean samples originating from Kastoria and Prespes (products with Protected Geographical Indication (PGI) status) were studied, focusing on the determination of elemental profiles or fingerprints, which are directly related to the geographical origin of the growing area. In this study, we employed a decision tree algorithm to classify Greek “Gigantes Elefantes” beans based on their multi-elemental composition, achieving high performance metrics, including an accuracy of 92.86%, sensitivity of 87.50%, and specificity of 96.88%. These results demonstrate the model’s effectiveness in accurately distinguishing beans from different geographical regions based on their elemental profiles. The trained model accomplished the discrimination of Greek “Gigantes Elefantes” beans from Kastoria and Prespes, with remarkable accuracy, based on their multi-elemental composition. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

19 pages, 5902 KiB  
Article
Fire-Induced Changes in Geochemical Elements of Forest Floor in Southern Siberia
by Olga A. Shapchenkova, Elena A. Kukavskaya and Pavel Y. Groisman
Fire 2024, 7(7), 243; https://doi.org/10.3390/fire7070243 - 11 Jul 2024
Cited by 1 | Viewed by 1870
Abstract
Wildfires significantly influence the environmental distribution of various elements through their fire-induced input and mobilization, yet little is known about their effects on the forest floor in Siberian forests. The present study evaluated the effects of spring wildfires of various severities on the [...] Read more.
Wildfires significantly influence the environmental distribution of various elements through their fire-induced input and mobilization, yet little is known about their effects on the forest floor in Siberian forests. The present study evaluated the effects of spring wildfires of various severities on the levels of major and minor (Ca, Al, Fe, S, Mg, K, Na, Mn, P, Ti, Ba, and Sr) trace and ultra-trace (B, Co, Cr, Cu, Ni, Se, V, Zn, Pb, As, La, Sn, Sc, Sb, Be, Bi, Hg, Li, Mo, and Cd) elements in the forest floors of Siberian forests. The forest floor (Oi layer) samples were collected immediately following wildfires in Scots pine (Pinus sylvestris L.), larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.), and birch (Betula pendula Roth) forests. Total concentrations of elements were determined using inductively coupled plasma–optical emission spectroscopy. All fires resulted in a decrease in organic matter content and an increase in mineral material content and pH values in the forest floor. The concentrations of most elements studied in a burned layer of forest floor were statistically significantly higher than in unburned precursors. Sb and Sn showed no statistically significant changes. The forest floor in the birch forest showed a higher increase in mineral material content after the fire and higher levels of most elements studied than the burned coniferous forest floors. Ca was a predominant element in both unburned and burned samples in all forests studied. Our study highlighted the role of wildfires in Siberia in enhancing the levels of geochemical elements in forest floor and the effect of forest type and fire severity on ash characteristics. The increased concentrations of elements represent a potential source of surface water contamination with toxic and eutrophying elements if wildfire ash is transported with overland flow. Full article
Show Figures

Figure 1

17 pages, 2553 KiB  
Article
Determination of the Possibilities of Using Woody Biomass Ash from Thermal Power Plants in Corn Cultivation
by Elżbieta Rolka, Andrzej Cezary Żołnowski, Mirosław Wyszkowski and Anna Skorwider-Namiotko
Energies 2024, 17(11), 2783; https://doi.org/10.3390/en17112783 - 6 Jun 2024
Cited by 1 | Viewed by 1115
Abstract
Combustion of woody biomass in professional bioheating plants to generate heat and reduce the dust emissions from this process results in the formation of a huge mass of woody biomass ash (WBA). Due to WBA’s rich chemical composition and the assumptions of the [...] Read more.
Combustion of woody biomass in professional bioheating plants to generate heat and reduce the dust emissions from this process results in the formation of a huge mass of woody biomass ash (WBA). Due to WBA’s rich chemical composition and the assumptions of the circular economy, this mineral material should be used for environmental purposes to recover valuable macro- and micronutrients. The basis of the research was a pot experiment designed to assess the effect of six doses of WBA (15, 30, 45, 60, 75, and 90 g pot−1) on the growth, development, yield, and chemical composition of corn. Each pot contained 9 kg of soil. Observations show that the use of increasing doses of WBA had a positive effect on the height of corn plants, increasing its yield by 7 to 10% but reducing the dry matter content by 0.47 to 1.37% and the leaf greenness index (SPAD). Moreover, WBA application (T1–T5 treatments) had a positive effect on the content of macroelements (N, K, Mg, Ca, and Na) in corn biomass. A significant increase in the content of K (54%), Mg (38%), Ca (43%), and Na (19%) was observed. However, at the same time, a significant increase in the content of heavy metals—Ni, Cd, and Pb—was observed. Different results were obtained for P, Zn, Cu, Cr, and Co, whose content in corn decreased after WBA application to soil. The obtained results indicate the possibility of using WBA in an environmentally friendly way. However, due to the great diversity of this material in terms of the content of undesirable heavy metals, it is necessary to optimize its dosage and monitor its chemical composition. Considering the growing number of bioheating plants in our country in recent years and the resulting increase in the amount of WBA produced, it is necessary to develop a rational and environmentally friendly method for managing them in the future. The results of our research may provide partial indications of such solutions. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

17 pages, 5032 KiB  
Article
Element Cycling at Thermally Active Coal-Waste Dumps: A Case Study of Calamagrostis epigejos and Solidago canadensis
by Anna K. Abramowicz and Oimahmad Rahmonov
Resources 2024, 13(6), 73; https://doi.org/10.3390/resources13060073 - 30 May 2024
Cited by 2 | Viewed by 1300
Abstract
Coal-waste dumps in the Upper Silesian Coal Basin are usually colonized by tall grass Calamagrostis epigejos and Solidago canadensis, which influence the direction of vegetation formation and the soil chemistry. The aim of this study is to analyze and determine the content [...] Read more.
Coal-waste dumps in the Upper Silesian Coal Basin are usually colonized by tall grass Calamagrostis epigejos and Solidago canadensis, which influence the direction of vegetation formation and the soil chemistry. The aim of this study is to analyze and determine the content of major elements (Fe, Ca, P, Mg, Al, Na, K, S) and trace elements (Mo, Cu, Pb, Zn, Ni, Co, Mn, Sr, Cd, Cr) in aboveground and underground parts of the plants and the soil at the thermally active coal-waste dump. Analysis of the heavy metal concentrations reveals that they are higher in plant materials than in soil materials within the root zone of the plants. Environmental indicator analysis (geoaccumulation index, enrichment factor, translocation factor) shows that the studied species exhibit varying degrees of pollution, with cadmium and zinc showing the highest accumulation rates. The content of elements in the analyzed species, both in washed and unwashed specimens, does not show significant differences, which is confirmed by the enrichment factor. Statistical analysis shows a positive correlation between the amount of microelements in plants (roots, aerial part) and soil samples in both thermally active and inactive zones. These findings broaden the scientific inquiry and hold practical significance for the reclamation of post-industrial areas. Full article
(This article belongs to the Special Issue Mineral Resource Management 2023: Assessment, Mining and Processing)
Show Figures

Figure 1

9 pages, 508 KiB  
Article
Micronutrient Deficiency May Be Associated with the Onset of Chalkbrood Disease in Honey Bees
by Ratko Pavlović, Robert Brodschneider, Walter Goessler, Ljubiša Stanisavljević, Zoran Vujčić and Nenad M. Zarić
Insects 2024, 15(4), 269; https://doi.org/10.3390/insects15040269 - 12 Apr 2024
Cited by 7 | Viewed by 2894
Abstract
Chalkbrood is a disease of honey bee brood caused by the fungal parasite Ascosphaera apis. Many factors such as genetics, temperature, humidity and nutrition influence the appearance of clinical symptoms. Poor nutrition impairs the immune system, which favors the manifestation of symptoms [...] Read more.
Chalkbrood is a disease of honey bee brood caused by the fungal parasite Ascosphaera apis. Many factors such as genetics, temperature, humidity and nutrition influence the appearance of clinical symptoms. Poor nutrition impairs the immune system, which favors the manifestation of symptoms of many honey bee diseases. However, a direct link between dietary ingredients and the symptoms of chalkbrood disease has not yet been established. We show here that the elemental composition of chalkbrood mummies and healthy larvae from the same infected hives differ, as well as that mummies differ from larvae from healthy hives. Chalkbrood mummies had the highest concentration of macroelements such as Na, Mg, P, S, K and Ca and some microelements such as Rb and Sn, and at the same time the lowest concentration of B, As, Sr, Ag, Cd, Sb, Ba and Pb. Larvae from infected hives contained less Pb, Ba, Cs, Sb, Cd, Sr, As, Zn, Cu, Ni, Co, Mn, Cr, V and Al in contrast to healthy larvae from a disease-free apiary. This is the first study to demonstrate such differences, suggesting that an infection alters the larval nutrition or that nutrition is a predisposition for the outbreak of a chalkbrood infection. Though, based on results obtained from a case study, rather than from a controlled experiment, our findings stress the differences in elements of healthy versus diseased honey bee larvae. Full article
Show Figures

Figure 1

Back to TopTop