Determination of the Possibilities of Using Woody Biomass Ash from Thermal Power Plants in Corn Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Experiment
2.2. Plant
2.3. Pot Experiment
2.4. Origin of Ash and Ash Properties
2.5. Analytical Methods
- UPme—element uptake with plant yield, mg pot−1;
- Y—plant yield, g pot−1;
- C—Ma—macronutrient content, g kg−1 of dry matter (DM);
- Me—trace metal content, mg kg−1 DM;
- 1000—conversion factor of the content per 1 kg of soil.
2.6. Statistical Methods
3. Results
3.1. Plant Height, Corn Yield, and Dry Matter
3.2. SPAD Index
3.3. Macronutrients
3.4. Trace Elements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash Management Review—Applications of Biomass Bottom Ash. Energies 2012, 5, 3856–3873. [Google Scholar] [CrossRef]
- Demirbas, M.F.; Balat, M.; Bala, H. Potential Contribution of Biomass to the Sustainable Energy Development. Energy Convers. Manag. 2009, 50, 1746–1760. [Google Scholar] [CrossRef]
- Silva, F.C.; Cruz, N.C.; Tarelho, L.A.C.; Rodrigues, S.M. Use of Biomass Ash-Based Materials as Soil Fertilisers: Critical Review of the Existing Regulatory Framework. J. Clean. Prod. 2019, 214, 112–124. [Google Scholar] [CrossRef]
- Schiemenz, K.; Eichler-Löbermann, B. Biomass Ashes and Their Phosphorus Fertilizing Effect on Different Crops. Nutr. Cycl. Agroecosyst. 2010, 87, 471–482. [Google Scholar] [CrossRef]
- Johansen, J.L.; Nielsen, M.L.; Vestergård, M.; Mortensen, L.H.; Cruz-Paredes, C.; Rønn, R.; Kjøller, R.; Hovmand, M.; Christensen, S.; Ekelund, F. The Complexity of Wood Ash Fertilization Disentangled: Effects on Soil PH, Nutrient Status, Plant Growth and Cadmium Accumulation. Environ. Exp. Bot. 2021, 185, 104424. [Google Scholar] [CrossRef]
- Mayer, E.; Eichermüller, J.; Endriss, F.; Baumgarten, B.; Kirchhof, R.; Tejada, J.; Kappler, A.; Thorwarth, H. Utilization and Recycling of Wood Ashes from Industrial Heat and Power Plants Regarding Fertilizer Use. Waste Manag. 2022, 141, 92–103. [Google Scholar] [CrossRef]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Szostek, M.; Pawlak, R.; Gorzelany, J.; Migut, D. Effect of Fertilisation with Ash from Biomass Combustion on the Mechanical Properties of Potato Tubers (Solanum tuberosum L.) Grown in Two Types of Soil. Agronomy 2022, 12, 379. [Google Scholar] [CrossRef]
- Park, B.B.; Yanai, R.D.; Sahm, J.M.; Lee, D.K.; Abrahamson, L.P. Wood Ash Effects on Plant and Soil in a Willow Bioenergy Plantation. Biomass Bioenergy 2005, 28, 355–365. [Google Scholar] [CrossRef]
- Romdhane, L.; Ebinezer, L.B.; Panozzo, A.; Barion, G.; Dal Cortivo, C.; Radhouane, L.; Vamerali, T. Effects of Soil Amendment With Wood Ash on Transpiration, Growth, and Metal Uptake in Two Contrasting Maize (Zea mays L.) Hybrids to Drought Tolerance. Front. Plant Sci. 2021, 12, 661909. [Google Scholar] [CrossRef]
- Rolka, E.; Żołnowski, A.C.; Wyszkowski, M.; Zych, W.; Skorwider-Namiotko, A. Wood Biomass Ash (WBA) from the Heat Production Process as a Mineral Amendment for Improving Selected Soil Properties. Energies 2023, 16, 5110. [Google Scholar] [CrossRef]
- Asare, M.O.; Hejcman, M. Effect of Tree Species on the Elemental Composition of Wood Ashes and Their Fertilizer Values on Agricultural Soils. GCB Bioenergy 2022, 14, 1321–1335. [Google Scholar] [CrossRef]
- Iderawumi, A.M. Effects of Ash on Soil Properties and Yield of Crops. Agric. Obs. 2020, 1, 61–66. [Google Scholar]
- Couch, R.L.; Luckai, N.; Morris, D.; Diochon, A. Short-Term Effects of Wood Ash Application on Soil Properties, Growth, and Foliar Nutrition of Picea Mariana and Picea Glauca Seedlings in a Plantation Trial. Can. J. Soil Sci. 2021, 101, 203–215. [Google Scholar] [CrossRef]
- Basu, M.; Pande, M.; Bhadoria, P.B.S.; Mahapatra, S.C. Potential Fly-Ash Utilization in Agriculture: A Global Review. Prog. Nat. Sci. 2009, 19, 1173–1186. [Google Scholar] [CrossRef]
- Gill, K.S.; Malhi, S.S.; Lupwayi, N.Z. Wood Ash Improved Soil Properties and Crop Yield for Nine Years and Saved Fertilizer. J. Agric. Sci. 2015, 7, 72. [Google Scholar] [CrossRef]
- Adekayode, F.; Olojugba, M. The Utilization of Wood Ash as Manure to Reduce the Use of Mineral Fertilizer for Improved Performance of Maize (Zea mays L.) as Measured in the Chlorophyll Content and Grain Yeild. J. Soil Sci. Environ. Manag. 2010, 1, 40–45. [Google Scholar]
- Wójcik, M.; Stachowicz, F.; Masłoń, A. The Use of Wood Biomass Ash in Sewage Sludge Treatment in Terms of Its Agricultural Utilization. Waste Biomass Valorization 2020, 11, 753–768. [Google Scholar] [CrossRef]
- Meller, E.; Bilenda, E. Effects of Biomass Ash on the Physicochemical Properties of Light Soil. Energy Policy J. 2012, 15, 287–292. [Google Scholar]
- Nabeela, F.; Murad, W.; Khan, I.; Mian, I.A.; Rehman, H.; Adnan, M.; Azizullah, A. Effect of Wood Ash Application on the Morphological, Physiological and Biochemical Parameters of Brassica napus L. Plant Physiol. Biochem. 2015, 95, 15–25. [Google Scholar] [CrossRef]
- Ajala, R.; Awodun, M.; Oladele, S. Effects of Wood Ash Biomass Application on Growth Indices and Chlorophyll Content of Maize and Lima Bean Intercrop. Turk. J. Agric. Food Sci. Technol. 2017, 5, 614–621. [Google Scholar] [CrossRef]
- Víg, R.; Huzsvai, L.; Dobos, A.; Nagy, J. Systematic Measurement Methods for the Determination of the SPAD Values of Maize (Zea mays L.) Canopy and Potato (Solanum tuberosum L.). Commun. Soil Sci. Plant Anal. 2012, 43, 1684–1693. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Quemada, M.; Alonso-Ayuso, M.; Lizaso, J.I.; Martín-Lammerding, D. Predicting Status in Maize with Clip Sensors: Choosing Sensor, Leaf Sampling Point, and Timing. Sensors 2019, 19, 3881. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Bocianowski, J.; Nowosad, K.; Zielewicz, W.; Kobus-Cisowska, J. SPAD Leaf Greenness Index: Green Mass Yield Indicator of Maize (Zea mays L.), Genetic and Agriculture Practice Relationship. Plants 2021, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Żołnowski, A.C.; Bakuła, T.; Rolka, E.; Klasa, A. Effect of Mineral–Microbial Deodorizing Preparation on the Value of Poultry Manure as Soil Amendment. Int. J. Environ. Res. Public Health 2022, 19, 6639. [Google Scholar] [CrossRef] [PubMed]
- Konica Minolta Optics. SPAD-502Plus A Lightweight Handheld Meter for Measuring the Chlorophyll Content of Leaves without Causing Damage to Plants. Available online: https://www.konicaminolta.com/instruments/download/instruction_manual/color/pdf/spad-502plus_instruction_eng.pdf (accessed on 25 June 2023).
- Binder. Model FED 260|Drying and Heating Chambers Avantgarde. Line with Forced Convection and Enhanced Timer Functions. BINDER Data Sheet. Available online: https://www.binder-world.com/uk-en/products/drying-and-heating/product/asset/234959?cHash=24cee8f5d281d852f658295ea723d277 (accessed on 18 June 2023).
- Retsch. Cutting Mill SM200. Manual. Available online: https://www.retsch.com/files/9806/sm-200.pdf (accessed on 18 June 2023).
- FAO of the United Nations. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. 2014. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 14 April 2023).
- US Department of Agriculture Natural Resources Conservation Service—Soils. Soil Texture Calculator. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-11/MultiPointTriangle_v1.xlsm (accessed on 14 April 2023).
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001; Available online: http://base.dnsgb.com.ua/files/book/Agriculture/Soil/Trace-Elements-in-Soils-and-Plants.pdf (accessed on 12 June 2023).
- Ministry of Agriculture and Rural Development. Regulation of 18 June 2008 on the Implementation of Certain Provisions of Fertilizers and Fertilization. J. Laws Repub. Pol. 2008, 119, 6515–6520. [Google Scholar]
- Panalytical Malvern. Mastersizer 3000. Brochure. Available online: https://www.malvernpanalytical.com/en/assets/mastersizer3000brochure(en)_tcm50-58994.pdf (accessed on 14 April 2023).
- Karczewska, A.; Kabała, C. Methodology of Laboratory Analyzes of Soils and Plants; University of Life Sciences: Wrocław, Poland, 2008. [Google Scholar]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1087–1123. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plants Properties, 1st ed.; Institute of Environmental Protection: Warsaw, Poland, 1991. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen Uber Die Chemische Bodenanalyse Als Grundlage Fur Die Beurteilung Des Nahrstoffzustandes Der Boden. II. Chemische Extraktionsmethoden Zur Phosphorund Kaliumbestimmung. K. Lantbrukshogskolans Ann. 1960, 26, 199–215. [Google Scholar]
- CEM Corporation. CEM Mars 6 Operation Manual; CEM Corporation: Matthews, NC, USA, 2017. [Google Scholar]
- US Environmental Protection Agency. Method 3051 Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. 2007. Available online: https://settek.com/documents/EPA-Methods/PDF/EPA-Method-3051.pdf (accessed on 10 February 2023).
- Rolka, E.; Wyszkowski, M. Availability of Trace Elements in Soil with Simulated Cadmium, Lead and Zinc Pollution. Minerals 2021, 11, 879. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Wyszkowski, M.; Rolka, E.; Sawicka, M. Mineral Materials as a Neutralizing Agent Used on Soil Contaminated with Copper. Materials 2021, 14, 6830. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Busse, M.K.; Zając, P.K. Response of Maize (Zea mays L.) to Soil Contamination with Copper Depending on Applied Contamination Neutralizing Substances. J. Elem. 2013, 18, 507–520. [Google Scholar] [CrossRef]
- Rolka, E. Effect of Soil Contamination with Cadmium and Application of Neutralizing Substances on the Yield of Oat (Avena sativa L.) and the Uptake of Cadmium by This Crop. J. Elem. 2015, 20, 975–986. [Google Scholar] [CrossRef]
- Microsoft. MS Excel® for Microsoft 365 MSO; Microsoft Corporation: Albuquerque, NM, USA, 2021. [Google Scholar]
- Burdzy, J. Statistical Tables; Lublin University of Technology Publishing House: Lublin, Poland, 1999. [Google Scholar]
- Tibco. Statistica Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021. [Google Scholar]
- Füzesi, I.; Heil, B.; Kovács, G. Effects of Wood Ash on the Chemical Properties of Soil and Crop Vitality in Small Plot Experiments. Acta Silv. Lignaria Hung. 2015, 11, 55–64. [Google Scholar] [CrossRef]
- Gautam, S.; Singh, A.; Singh, J.; Shikha. Effect of Flyash Amended Soil on Growth and Yield of Indian Mustard (Brassica juncea). Adv. Biores. 2012, 3, 39–45. [Google Scholar]
- Szostek, M.; Szpunar-Krok, E.; Jańczak-Pieniążek, M.; Ilek, A. Short-Term Effect of Fly Ash from Biomass Combustion on Spring Rape Plants Growth, Nutrient, and Trace Elements Accumulation, and Soil Properties. Int. J. Environ. Res. Public Health 2023, 20, 455. [Google Scholar] [CrossRef] [PubMed]
- Saletnik, B.; Zagula, G.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus × Giganteus). Energies 2018, 11, 2535. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, X.; Ma, Y.; Zhang, R.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. A Comparative Assessment of Measures of Leaf. Sensors 2019, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Symanowicz, B.; Becher, M.; Jaremko, D.; Skwarek, K. Possibilities for the Use of Wood Ashes in Agriculture. J. Ecol. Eng. 2018, 19, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Ozolincius, R.; Varnagiryte, I. Effects of Wood Ash Application on Heavy Metal Concentrations in Soil, Soil Solution and Vegetation in a Lithuanian Scots Pine Stand. For. Stud. 2005, 42, 66–73. [Google Scholar]
- Antonkiewicz, J. The Effect of Hard Coal Ashes on the Amount and Quality of Maize Yield. Pol. J. Chem. Technol. 2007, 9, 20–25. [Google Scholar] [CrossRef]
- Stankowski, S.; Sobolewska, M.; Jaroszewska, A.; Gibczyńska, M. Influence of Biomass Ash, Lime and Gypsum Fertilization on Macro-and Microelement Contents in the Soil and Grains of Spring Wheat. Soil Sci. Annu. 2018, 69, 177–183. [Google Scholar] [CrossRef]
- European Parliament and the Council of the EU. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed; Official Journal of the European Community: Aberdeen, UK, 2002; pp. 10–21. [Google Scholar]
- Cruz, N.; Ruivo, L.; Avellan, A.; Römkens, P.F.A.M.; Tarelho, L.A.C.; Rodrigues, S.M. Stabilization of biomass ash granules using accelerated carbonation to optimize the preparation of soil improvers. Waste Manag. 2022, 156, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Kong, F.; Liu, B.-F.; Song, X.; Ren, H.-Y. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. Environ. Sci. Ecotechnol. 2024, 21, 100420. [Google Scholar] [CrossRef] [PubMed]
WBA Treatments | T0 | T1 | T2 | T3 | T4 | T5 | T6 | Mean | r | LSDp≤0.05 |
---|---|---|---|---|---|---|---|---|---|---|
Dry mass (%) | 13.69 b ± 0.21 | 13.22 ab ± 0.75 | 12.32 a ± 0.44 | 13.05 ab ± 0.30 | 12.43 a ± 0.12 | 12.52 a ± 0.86 | 12.94 ab ± 0.15 | 12.88 ± 0.62 | n.s. | 4.31 |
WBA Treatments | Nitrogen (N) | Phosphorus (P) | Potassium (K) | Magnesium (Mg) | Calcium (Ca) | Sodium (Na) |
---|---|---|---|---|---|---|
g kg−1 DM | ||||||
T0 | 9.33 ± 1.41 a | 0.383 ± 0.021 a | 14.71 ± 1.74 a | 0.89 ± 0.13 b | 2.67 ± 0.36 c | 0.324 ± 0.011 ac |
T1 | 9.05 ± 0.81 a | 0.356 ± 0.014 ab | 15.14 ± 0.53 ab | 0.96 ± 0.10 b | 3.07 ± 0.21 ac | 0.311 ± 0.037 a |
T2 | 9.89 ± 0.86 a | 0.377 ± 0.024 a | 18.03 ± 1.61 abc | 1.10 ± 0.03 a | 3.20 ± 0.36 a | 0.314 ± 0.032 a |
T3 | 9.99 ± 1.13 a | 0.365 ± 0.028 ab | 18.53 ± 1.93 bcd | 1.15 ± 0.08 a | 3.17 ± 0.25 a | 0.296 ± 0.021 a |
T4 | 10.36 ± 1.01 a | 0.369 ± 0.024 ab | 21.91 ± 2.16 de | 1.19 ± 0.02 a | 3.52 ± 0.12 ab | 0.384 ± 0.026 b |
T5 | 10.64 ± 0.84 a | 0.359 ± 0.027 ab | 22.65 ± 3.66 e | 1.23 ± 0.06 a | 3.83 ± 0.04 b | 0.385 ± 0.014 b |
T6 | 10.17 ± 0.43 a | 0.330 ± 0.010 b | 21.61 ± 0.74 cde | 1.15 ± 0.01 a | 3.73 ± 0.19 b | 0.364 ± 0.007 bc |
Mean | 9.92 ± 0.97 | 0.363 ± 0.025 | 18.94 ± 3.51 | 1.10 ± 0.13 | 3.31 ± 0.44 | 0.340 ± 0.041 |
r | 0.466 * | −0.486 * | 0.827 ** | 0.767 ** | 0.844 ** | 0.615 ** |
LSDp≤0.05 | n.s. | n.s. | n.s. | 0.13 | 0.43 | 0.041 |
WBA Treatments | Iron (Fe) | Manganese (Mn) | Zinc (Zn) | Copper (Cu) | Lead (Pb) | Cadmium (Cd) | Nickel (Ni) | Chromium (Cr) | Cobalt (Co) |
---|---|---|---|---|---|---|---|---|---|
mg kg−1 DM | |||||||||
T0 | 48.35 a ± 13.45 | 92.94 a ± 12.48 | 8.01 c ± 0.38 | 5.22 b ± 0.19 | 1.43 d ± 0.36 | 0.122 a ± 0.069 | 3.93 c ± 0.39 | 18.94 d ± 0.92 | 14.21 c ± 0.67 |
T1 | 43.89 a ± 11.93 | 84.64 a ± 1.01 | 7.09 abc ± 1.09 | 4.79 ab ± 0.77 | 7.42 ab ± 1.32 | 0.156 a ± 0.135 | 7.98 c ± 2.11 | 17.78 d ± 0.73 | 12.51 bc ± 1.30 |
T2 | 67.21 b ± 15.58 | 81.81 a ± 11.46 | 6.51 ab ± 0.44 | 5.33 b ± 0.33 | 9.81 bc ± 0.00 | 0.456 bc ± 0.241 | 18.47 a ± 7.65 | 15.20 c ± 0.45 | 11.38 bc ± 2.94 |
T3 | 48.07 a ± 3.91 | 84.60 a ± 10.58 | 7.04 abc ± 1.16 | 4.89 ab ± 0.51 | 11.61 c ± 1.56 | 0.122 a ± 0.102 | 25.06 b ± 1.34 | 14.66 bc ± 0.71 | 9.46 ab ± 0.43 |
T4 | 47.99 a ± 5.81 | 86.37 a ± 6.62 | 6.82 abc ± 0.45 | 4.67 ab ± 0.33 | 7.65 ab ± 1.47 | 0.278 ab ± 0.168 | 24.08 ab ± 0.50 | 13.34 b ± 0.71 | 8.17 a ± 0.30 |
T5 | 49.80 a ± 2.11 | 89.74 a ± 15.27 | 7.22 bc ± 0.23 | 4.32 a ± 0.02 | 6.79 a ± 0.73 | 0.644 c ± 0.051 | 23.06 ab ± 0.50 | 11.4 a ± 0.54 | 7.87 a ± 1.72 |
T6 | 40.81 a ± 5.40 | 89.13 a ± 4.63 | 5.80 a ± 0.75 | 4.28 a ± 0.05 | 7.90 ab ± 2.78 | 0.333 ab ± 0.120 | 21.79 ab ± 2.30 | 11.00 a ± 1.25 | 7.77 a ± 2.62 |
Mean | 49.45 ± 11.35 | 87.04 ± 9.10 | 6.93 ± 0.89 | 4.78 ± 0.51 | 7.52 ± 3.23 | 0.302 ± 0.219 | 17.77 ± 8.41 | 14.62 ± 2.92 | 10.19 ± 2.81 |
r | n.s. | n.s. | −0.501 * | −0.634 ** | n.s. | 0.479 * | 0.777 ** | −0.962 ** | −0.828 ** |
LSDp≤0.05 | 16.87 | 17.50 | 1.27 | 0.70 | 2.54 | 0.245 | 5.57 | 1.40 | 3.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolka, E.; Żołnowski, A.C.; Wyszkowski, M.; Skorwider-Namiotko, A. Determination of the Possibilities of Using Woody Biomass Ash from Thermal Power Plants in Corn Cultivation. Energies 2024, 17, 2783. https://doi.org/10.3390/en17112783
Rolka E, Żołnowski AC, Wyszkowski M, Skorwider-Namiotko A. Determination of the Possibilities of Using Woody Biomass Ash from Thermal Power Plants in Corn Cultivation. Energies. 2024; 17(11):2783. https://doi.org/10.3390/en17112783
Chicago/Turabian StyleRolka, Elżbieta, Andrzej Cezary Żołnowski, Mirosław Wyszkowski, and Anna Skorwider-Namiotko. 2024. "Determination of the Possibilities of Using Woody Biomass Ash from Thermal Power Plants in Corn Cultivation" Energies 17, no. 11: 2783. https://doi.org/10.3390/en17112783
APA StyleRolka, E., Żołnowski, A. C., Wyszkowski, M., & Skorwider-Namiotko, A. (2024). Determination of the Possibilities of Using Woody Biomass Ash from Thermal Power Plants in Corn Cultivation. Energies, 17(11), 2783. https://doi.org/10.3390/en17112783