Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Ocimum species and varieties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 336 KiB  
Article
Optimizing Light Use Efficiency and Quality of Indoor Organically Grown Leafy Greens by Using Different Lighting Strategies
by Laurent Boucher, Thi-Thuy-An Nguyen, Annie Brégard, Steeve Pepin and Martine Dorais
Agronomy 2023, 13(10), 2582; https://doi.org/10.3390/agronomy13102582 - 9 Oct 2023
Cited by 7 | Viewed by 3826
Abstract
Vertical farming is experiencing significant growth, and the optimization of artificial lighting is essential for enhancing the sustainability of this growing system. Therefore, the aim of this study was to examine how light segmentation, the incorporation of a low-intensity lighting phase known as [...] Read more.
Vertical farming is experiencing significant growth, and the optimization of artificial lighting is essential for enhancing the sustainability of this growing system. Therefore, the aim of this study was to examine how light segmentation, the incorporation of a low-intensity lighting phase known as the light compensation point (LCP) instead of the traditional dark phase, and variations in the light spectrum impact the agricultural outcomes of organically cultivated leafy greens. In controlled growth chamber environments, a variety of leafy plant species (Spinacia oleracea L., Ocimum basilicum, Beta vulgaris L., Lactuca sativa L. cv. ‘Garrison’ and ‘Blade’, Brassica rapa cv. ‘Japonica’ and ‘Chinensis’, Brassica juncea cv. ‘Scarlet Frills’ and ‘Wasabina’, Eruca sativa and Perilla frutescens L.) were subjected to four light treatments with varying intensities and durations of lighting, while in a second experiment, five different spectral growing conditions were compared. Irrespective of the plant species, shortening the length of the diel cycle by extending the cumulative daily lighting to 20–24 h per day (5L/1N [5 h at 261 µmol m−2 s−1 + 1 h darkness for a total of 20 h of light per day] and 5L/1LCP [5 h at 256 µmol m−2 s−1 + 1 h LCP at 20 µmol m−2 s−1 for a total of 24 h of light per day]) led to an average increase of +12% in height, fresh weight (+16%), dry weight (+23%), and specific leaf weight (+11%), compared to the control plants (18L/6N; 18 h at 289 µmol m−2 s−1 + 6 h darkness) and 6L/6LCP plants (6 h at 418 µmol m−2 s−1 + 6 h LCP at 20 µmol m−2 s−1 for a total of 24 h of light per day) during the first harvest. This also resulted in better light utilization, expressed as increased fresh (+16%) and dry (+24%) biomass per mol of light received. Conversely, the studied light spectral treatments had no effect on the growth parameters of the four selected species. In conclusion, our study showed that reducing light intensity while extending the photoperiod could potentially represent a cost-effective LED strategy for the indoor cultivation of organically or conventionally grown leafy greens. Full article
(This article belongs to the Special Issue Agroecology and Organic Horticulture)
25 pages, 5185 KiB  
Article
Sweet Basil between the Soul and the Table—Transformation of Traditional Knowledge on Ocimum basilicum L. in Bulgaria
by Teodora Ivanova, Yulia Bosseva, Mihail Chervenkov and Dessislava Dimitrova
Plants 2023, 12(15), 2771; https://doi.org/10.3390/plants12152771 - 26 Jul 2023
Cited by 2 | Viewed by 2841
Abstract
The study tracks the utilization of Ocimum basilicum L. (sweet basil)—a garden plant popular for its ritual and ornamental value in the past, that is currently applied in various forms and ways as medicine, food, insect repellent, etc.—in Bulgaria. Previous data for Bulgarian [...] Read more.
The study tracks the utilization of Ocimum basilicum L. (sweet basil)—a garden plant popular for its ritual and ornamental value in the past, that is currently applied in various forms and ways as medicine, food, insect repellent, etc.—in Bulgaria. Previous data for Bulgarian rural home gardens showed a significant number of preserved local landraces; however, it remained unclear how people perceive the large varietal diversity of this species and how the traditions related to its use are preserved. We combined a literature review on the cultural value of sweet basil and the breeding of local genetic resources with an online questionnaire, directed to adult laypeople, that sought to access different aspects of past (recalled) and present use and related knowledge. The identification skills of the participants were tested using images of local plant landraces and foreign varieties. Responses from 220 participants showed that potted “Genovese”-type individual was most frequently identified as sweet basil (89.9%), followed by two examples of local landraces in flower. Participants who grow sweet basil or used it in more varied ways had significantly better identification skills. Ocimum basilicum was most frequently reported as food, while ritual/symbolic use was preserved while devalued during the Communism regime (1945–1989). Food and religious uses were negatively associated in the past, but presently, the tendency is completely reversed. Preferences for the informal exchange of seeds and seed-saving practices were discussed. Full article
(This article belongs to the Special Issue New Insights into Ethnobotany and Ethnoecology)
Show Figures

Figure 1

13 pages, 1448 KiB  
Article
Agronomic, Sensory and Essential Oil Characterization of Basil (Ocimum basilicum L.) Accessions
by Fernanda Abduche Galvão Pimentel, Mariana Altenhofen da Silva, Simone Daniela Sartorio de Medeiros, José Magno Queiroz Luz and Fernando César Sala
Horticulturae 2023, 9(7), 831; https://doi.org/10.3390/horticulturae9070831 - 21 Jul 2023
Cited by 2 | Viewed by 1835
Abstract
Basil (Ocimum basilicum L.) is one of the main condiments for fresh consumption and essential oil production. The aim of the present work was to assess the agronomic characterization and analyze the essential oil of 63 basil accessions. The experiment was conducted [...] Read more.
Basil (Ocimum basilicum L.) is one of the main condiments for fresh consumption and essential oil production. The aim of the present work was to assess the agronomic characterization and analyze the essential oil of 63 basil accessions. The experiment was conducted in two stages in a greenhouse using vases and a hydroponic cultivation system. Oil extraction was performed employing the Soxhlet method. There was a significant variation in the agronomic characteristics among the evaluated accessions. The estimated total contents of essential oils ranged from 0.05 to 0.40%, and the major volatile fraction was methyl-eugenol. In the present study, accessions with superior performance compared to commercial varieties were found. Accession BL11 presented agronomic characteristics suitable for cultivation in a hydroponic system due to its better plant structure and late flowering. Accession BL24 stood out for essential oil extraction, producing 17.6% of linalool and a high intensity of color and odor. Accessions BL11 and BL24 presented market potential, given their higher mass productivity and higher essential oil yield, respectively. These accessions can be made available as new varieties in addition to being used in genetic improvement programs for this species. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

24 pages, 1555 KiB  
Review
On the Future Perspectives of Some Medicinal Plants within Lamiaceae Botanic Family Regarding Their Comprehensive Properties and Resistance against Biotic and Abiotic Stresses
by Dan Ioan Avasiloaiei, Mariana Calara, Petre Marian Brezeanu, Otilia Cristina Murariu and Creola Brezeanu
Genes 2023, 14(5), 955; https://doi.org/10.3390/genes14050955 - 22 Apr 2023
Cited by 22 | Viewed by 4257
Abstract
Lamiaceae is one of the largest botanical families, encompassing over 6000 species that include a variety of aromatic and medicinal spices. The current study is focused on three plants within this botanical family: basil (Ocimum basilicum L.), thyme (Thymus vulgaris L.), [...] Read more.
Lamiaceae is one of the largest botanical families, encompassing over 6000 species that include a variety of aromatic and medicinal spices. The current study is focused on three plants within this botanical family: basil (Ocimum basilicum L.), thyme (Thymus vulgaris L.), and summer savory (Satureja hortensis L.). These three species contain primary and secondary metabolites such as phenolic and flavonoid compounds, fatty acids, antioxidants, and essential oils and have traditionally been used for flavoring, food preservation, and medicinal purposes. The goal of this study is to provide an overview of the nutraceutical, therapeutic, antioxidant, and antibacterial key features of these three aromatics to explore new breeding challenges and opportunities for varietal development. In this context, a literature search has been performed to describe the phytochemical profile of both primary and secondary metabolites and their pharmacological uses, as well as to further explore accession availability in the medicine industry and also to emphasize their bioactive roles in plant ecology and biotic and abiotic stress adaptability. The aim of this review is to explore future perspectives on the development of new, highly valuable basil, summer savory, and thyme cultivars. The findings of the current review emphasize the importance of identifying the key compounds and genes involved in stress resistance that can also provide valuable insights for further improvement of these important medicinal plants. Full article
(This article belongs to the Special Issue Phylogenetics, Genetics, and Breeding of Medicinal Plants)
Show Figures

Figure 1

18 pages, 4269 KiB  
Article
Comprehensive Metabolomic Fingerprinting Combined with Chemometrics Identifies Species- and Variety-Specific Variation of Medicinal Herbs: An Ocimum Study
by Abhishek Kumar Rai, Samreen Khan, Akhilesh Kumar, Basant Kumar Dubey, R. K. Lal, Ashutosh Tiwari, Prabodh Kumar Trivedi, Christopher T. Elliott and Ratnasekhar Ch
Metabolites 2023, 13(1), 122; https://doi.org/10.3390/metabo13010122 - 13 Jan 2023
Cited by 21 | Viewed by 4633
Abstract
Identification of plant species is a crucial process in natural products. Ocimum, often referred to as the queen of herbs, is one of the most versatile and globally used medicinal herbs for various health benefits due to it having a wide variety [...] Read more.
Identification of plant species is a crucial process in natural products. Ocimum, often referred to as the queen of herbs, is one of the most versatile and globally used medicinal herbs for various health benefits due to it having a wide variety of pharmacological activities. Despite there being significant global demand for this medicinal herb, rapid and comprehensive metabolomic fingerprinting approaches for species- and variety-specific classification are limited. In this study, metabolomic fingerprinting of five Ocimum species (Ocimum basilicum L., Ocimum sanctum L., Ocimum africanum Lour., Ocimum kilimandscharicum Gurke., and Hybrid Tulsi) and their varieties was performed using LC-MS, GC-MS, and the rapid fingerprinting approach FT-NIR combined with chemometrics. The aim was to distinguish the species- and variety-specific variation with a view toward developing a quality assessment of Ocimum species. Discrimination of species and varieties was achieved using principal component analysis (PCA), partial least squares discriminate analysis (PLS-DA), data-driven soft independent modelling of class analogy (DD-SIMCA), random forest, and K-nearest neighbours with specificity of 98% and sensitivity of 99%. Phenolics and flavonoids were found to be major contributing markers for species-specific variation. The present study established comprehensive metabolomic fingerprinting consisting of rapid screening and confirmatory approaches as a highly efficient means to identify the species and variety of Ocimum, being able to be applied for the quality assessment of other natural medicinal herbs. Full article
Show Figures

Figure 1

15 pages, 798 KiB  
Article
Biological Profiling of Essential Oils and Hydrolates of Ocimum basilicum var. Genovese and var. Minimum Originated from Serbia
by Olja Šovljanski, Anja Saveljić, Milica Aćimović, Vanja Šeregelj, Lato Pezo, Ana Tomić, Gordana Ćetković and Vele Tešević
Processes 2022, 10(9), 1893; https://doi.org/10.3390/pr10091893 - 18 Sep 2022
Cited by 16 | Viewed by 3084
Abstract
The genus Ocimum has many species that are used to treat diverse kinds of illnesses and sicknesses from ancient times. One of them, Ocimum basilicum L., commonly known as basil, has a vital role due to its various medicinal goods. It is best [...] Read more.
The genus Ocimum has many species that are used to treat diverse kinds of illnesses and sicknesses from ancient times. One of them, Ocimum basilicum L., commonly known as basil, has a vital role due to its various medicinal goods. It is best known as a plant with pharmacological activities, but also as an antioxidant, antimicrobial, and larvicidal agent. Although it has been traditionally used in Serbia in traditional medicine for centuries as an insecticidal, antibacterial, and antifungal plant as well as a traditional culinary plant, none of the O. basilicum varieties have been commercialised until today. There are significant numbers of information across the world that oils and by-products are part of the global market, but no references to the essential oil composition of Serbian plants were found. Therefore, the objective of this work was to evaluate the antioxidant and antimicrobial potentials of essential oil and hydrolate of two different varieties: O. basilicum var. genovese and Ocimum. basilicum var. minimum originating from Serbia for further industrial production of antimicrobial- and/or antioxidant-valued products. The results of this study confirm that essential oils of O. basilicum var. genovese and var. minimum represent a significant source of bioactive compounds, especially linalool, with a high rate of biological activities. Similar behaviour is observed for hydrolates, which are the by-product of the essential oil distillation process and can be utilised as bioactive-rich waste in further investigation. Full article
(This article belongs to the Special Issue Recent Advances in Natural Bioactive Compound Valorization)
Show Figures

Figure 1

13 pages, 4412 KiB  
Article
Quality Evaluation of Indoor-Grown Microgreens Cultivated on Three Different Substrates
by Roberta Bulgari, Marco Negri, Piero Santoro and Antonio Ferrante
Horticulturae 2021, 7(5), 96; https://doi.org/10.3390/horticulturae7050096 - 2 May 2021
Cited by 51 | Viewed by 10479
Abstract
The microgreens are innovative products in the horticultural sector. They are appreciated by consumers thanks to their novelty and health-related benefits, having a high antioxidant concentration. This produce can be adopted for indoor production using hydroponic systems. The aim of the present work [...] Read more.
The microgreens are innovative products in the horticultural sector. They are appreciated by consumers thanks to their novelty and health-related benefits, having a high antioxidant concentration. This produce can be adopted for indoor production using hydroponic systems. The aim of the present work was to investigate the influence of three growing media (vermiculite, coconut fiber, and jute fabric) on yield and quality parameters of two basil varieties (Green basil—Ocimum basilicum L., Red basil—Ocimum basilicum var. Purpurecsens) and rocket (Eruca sativa Mill.) as microgreens. Microgreens were grown in floating, in a Micro Experimental Growing (MEG®) system equipped with LED lamps, with modulation of both energy and spectra of the light supplied to plants. Results showed high yield, comprised from 2 to 3 kg m−2. Nutritional quality varied among species and higher antioxidant compounds were found in red basil on vermiculite and jute. Coconut fiber allowed the differentiation of crop performance in terms of sucrose and above all nitrate. In particular, our results point out that the choice of the substrate significantly affected the yield, the dry matter percentage and the nitrate concentration of microgreens, while the other qualitative parameters were most influenced by the species. Full article
(This article belongs to the Special Issue Urban Horticulture - New Trends and Technologies)
Show Figures

Figure 1

20 pages, 1095 KiB  
Article
Trace Elements in Edible Flowers from Italy: Further Insights into Health Benefits and Risks to Consumers
by Giuliana Drava, Valeria Iobbi, Rafaël Govaerts, Vincenzo Minganti, Andrea Copetta, Barbara Ruffoni and Angela Bisio
Molecules 2020, 25(12), 2891; https://doi.org/10.3390/molecules25122891 - 23 Jun 2020
Cited by 23 | Viewed by 4692
Abstract
The use of edible flowers in cooking dates back to ancient times, but recently it is gaining success among the consumers, increasingly attentive to healthy and sustainable foods of high quality, without neglecting taste, flavour, and visual appeal. The present study aims to [...] Read more.
The use of edible flowers in cooking dates back to ancient times, but recently it is gaining success among the consumers, increasingly attentive to healthy and sustainable foods of high quality, without neglecting taste, flavour, and visual appeal. The present study aims to deepen the knowledge regarding the mineral composition of edible flowers, an aspect not widely investigated in scientific literature. The concentrations of Cd, Co, Cu, Fe, Mn, Ni, Pb, Sr, V, and Zn have been determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) in flowers belonging to a wide variety of species. The study highlights that some floral species are characterized by significantly higher concentrations of certain trace elements, e.g., the flowers of Acmella oleracea for Mn, those of basil (Ocimum basilicum) and of pumpkins (Cucurbita moschata and C. pepo) for Cu and Sr, and those of orange daylily (Hemerocallis fulva) for Ni. Potentially toxic elements are present at low concentrations, often below the limit of the detection for Cd, Co, Ni, V. In all samples, Cd and Pb are well below the maximum permitted levels in foodstuffs. It can be concluded that the edible flowers analyzed can be considered a good source of essential elements and do not present risks for the consumer health as for the mineral composition. Full article
Show Figures

Graphical abstract

31 pages, 3169 KiB  
Article
Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers
by Ilaria Marchioni, Basma Najar, Barbara Ruffoni, Andrea Copetta, Luisa Pistelli and Laura Pistelli
Plants 2020, 9(6), 691; https://doi.org/10.3390/plants9060691 - 28 May 2020
Cited by 61 | Viewed by 6888
Abstract
Edible flowers are consumed for their appearance, colours, nutritional and healthy properties, but the use is limited by the actual number of the species. Seven edible flowers of the Lamiaceae family (Ocimeae and Mentheae tribes) were investigated: Monarda didyma ‘Fireball’, Nepeta × faassenii [...] Read more.
Edible flowers are consumed for their appearance, colours, nutritional and healthy properties, but the use is limited by the actual number of the species. Seven edible flowers of the Lamiaceae family (Ocimeae and Mentheae tribes) were investigated: Monarda didyma ‘Fireball’, Nepeta × faassenii ‘Six Hills Giant’, Ocimum basilicum ‘Blue Spice’, O. basilicum ‘Cinnamon’, Ocimum × citriodorum, Salvia discolor, and Salvia microphylla ‘Hot Lips’. Total soluble sugars, proteins, polyphenols, carotenoids, ascorbic acid and antioxidant activity were detected. The species of the Mentheae tribe contained higher sugar content than Ocimeae flowers, the opposite with regard to protein content. Ocimeae tribe flowers showed high polyphenols and carotenoids content. The Ocimeae tribe together with two specie of the Mentheae tribe showed an aroma profile dominated by sesquiterpene hydrocarbons (58.0% in S. discolor to 77.9% in Ocimum × citriodorum). Oxygenated monoterpenes prevailed in Nepeta and Monarda, also present in the essential oil of this latter species (84.5%). By contrast, Nepeta and S. discolor evidenced non-terpenes as the principal class (41.2% and 77.5%, respectively), while the oxygenated sesquiterpene was the main one in S. microphylla. The two varieties of Ocimum spp. showed oxygenated monoterpenes as the main class of volatiles. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract

16 pages, 2709 KiB  
Article
Insight into Composition of Bioactive Phenolic Compounds in Leaves and Flowers of Green and Purple Basil
by Bhakti Prinsi, Silvia Morgutti, Noemi Negrini, Franco Faoro and Luca Espen
Plants 2020, 9(1), 22; https://doi.org/10.3390/plants9010022 - 23 Dec 2019
Cited by 87 | Viewed by 10327
Abstract
Basil (Ocimum basilicum L.) is a culinary, medicinal, and ornamental plant appreciated for its antioxidant properties, mainly attributed to high content of rosmarinic acid. This species also includes purple varieties, characterized by the accumulation of anthocyanins in leaves and flowers. In this [...] Read more.
Basil (Ocimum basilicum L.) is a culinary, medicinal, and ornamental plant appreciated for its antioxidant properties, mainly attributed to high content of rosmarinic acid. This species also includes purple varieties, characterized by the accumulation of anthocyanins in leaves and flowers. In this work, we compared the main morphological characteristics, the antioxidant capacity and the chemical composition in leaves, flowers, and corollas of green (‘Italiano Classico’) and purple (‘Red Rubin’ and ‘Dark Opal’) basil varieties. The LC-ESI-MS/MS analysis of individual compounds allowed quantifying 17 (poly)phenolic acids and 18 flavonoids, differently accumulated in leaves and flowers of the three varieties. The study revealed that in addition to rosmarinic acid, basil contains several members of the salvianolic acid family, only scarcely descripted in this species, as well as, especially in flowers, simple phenolic acids, such as 4-hydroxybenzoic acid and salvianic acid A. Moreover, the study revealed that purple leaves mainly contain highly acylated anthocyanins, while purple flowers accumulate anthocyanins with low degree of decoration. Overall, this study provides new biochemical information about the presence of not yet characterized bioactive compounds in basil that could contribute to boosting the use of this crop and to gaining new knowledge about the roles of these compounds in plant physiology. Full article
(This article belongs to the Special Issue Plant Polyphenols—from Plants to Human Health)
Show Figures

Figure 1

13 pages, 8787 KiB  
Article
Aromatic Profiles of Essential Oils from Five Commonly Used Thai Basils
by Tibet Tangpao, Hsiao-Hang Chung and Sarana Rose Sommano
Foods 2018, 7(11), 175; https://doi.org/10.3390/foods7110175 - 24 Oct 2018
Cited by 76 | Viewed by 9028
Abstract
The research objectives of this study are to analyse the volatile compositions of different basil types available in Thai markets and to descriptively determine their aromatic qualities. Essential oils were hydro-distillated from fresh leaves of two Holy basil (Ocimum sanctum) varieties [...] Read more.
The research objectives of this study are to analyse the volatile compositions of different basil types available in Thai markets and to descriptively determine their aromatic qualities. Essential oils were hydro-distillated from fresh leaves of two Holy basil (Ocimum sanctum) varieties namely, white and red and other basil species, including Tree basil (O. gratissimum), Thai basil (O. basilicum var. thyrsiflorum), and Lemon basil (O. citriodorum). Oil physiochemical characteristics and volatile chromatograms from Gas ChromatographyMass Spectrometry (GC-MS) were used to qualitatively and quantitatively describe the chemical compositions. Estragole, eugenol, and methyl eugenol were among the major volatiles found in the essential oils of these basil types. Classification by Principal Component Analysis (PCA) advised that these Ocimum spp. samples are grouped based on either the distinctive anise, citrus aroma (estragole, geranial and neral), or spice-like aroma (methyl eugenol, β-caryophyllene, and α-cubebene). The essential oils were also used for descriptive sensorial determination by five semi-trained panellists, using the following developed terms: anise, citrus, herb, spice, sweet, and woody. The panellists were able to differentiate essential oils of white Holy basil from red Holy basil based on the intensity of the anisic attribute, while the anise and citrus scents were detected as dominant in the Lemon basil, Tree basil, and Thai basil essential oils. The overall benefit from this research was the elucidation of aromatic qualities from Thai common Ocimum species in order to assess their potential as the raw materials for new food products. Full article
(This article belongs to the Special Issue Analysis of Food Aroma)
Show Figures

Figure 1

13 pages, 949 KiB  
Article
Characterization of Essential Oil Composition in Different Basil Species and Pot Cultures by a GC-MS Method
by Andrea Muráriková, Anton Ťažký, Jarmila Neugebauerová, Alexandra Planková, Josef Jampílek, Pavel Mučaji and Peter Mikuš
Molecules 2017, 22(7), 1221; https://doi.org/10.3390/molecules22071221 - 20 Jul 2017
Cited by 67 | Viewed by 10070
Abstract
Basil (Ocimum L.) species are used as medicinal plants due to their essential oils exhibiting specific biological activity. The present work demonstrated that both the variety and season/conditions of cultivation had a significant effect on (i) the produced amount (extraction yield), (ii) [...] Read more.
Basil (Ocimum L.) species are used as medicinal plants due to their essential oils exhibiting specific biological activity. The present work demonstrated that both the variety and season/conditions of cultivation had a significant effect on (i) the produced amount (extraction yield), (ii) qualitative, as well as (iii) quantitative profile of basil essential oil. Among studied basil varieties, a new variety, ‘Mánes’, was characterized for the first time. Based on our quantitative evaluation of GC-MS profiles, the following chemotypes and average concentrations of a main component were detected in the studied basil varieties: ‘Ohře’, ‘Lettuce Leaf’, ‘Purple Opaal’, ‘Dark Green’ (linalool, 5.99, 2.49, 2.34, 2.01 mg/mL, respectively), and ‘Mammolo Genovese’, ‘Mánes’, ‘Red Rubin’ (eucalyptol, 1.34, 0.96, 0.76 mg/mL, respectively). At the same time, when considering other compounds identified in GC-MS profiles, all the studied varieties, except from ‘Lettuce Leaf’, were methyl eugenol-rich with a strong dependence of the eugenol:methyl eugenol ratio on the seasonal changes (mainly solar irradiation, but also temperature and relative humidity). More complex and/or variable (depending on the season and cultivation) chemotypes were observed with ‘Lettuce Leaf’ (plus estragole, 2.27 mg/mL), ‘Dark Green’ (plus eucalyptol, 1.36 mg/mL), ‘Mammolo Genovese’ (plus eugenol, 1.19 mg/mL), ‘Red Rubin’ (plus linalool and eugenol, 0.46 and 0.56 mg/mL, respectively), and ‘Mánes’ (plus linalool and eugenol, 0.58 and 0.40 mg/mL, respectively). When considering superior extraction yield (ca. 17 mL·kg−1, i.e., two to five times higher than other examined varieties) and consistent amounts (yields) of essential oil when comparing inter-seasonal or inter-year data (RSD and inter-year difference in mean yield values ˂2.5%), this new basil variety is very promising for use in the pharmaceutical, food, and cosmetic industries. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop