Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,828)

Search Parameters:
Keywords = OMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 (registering DOI) - 1 Aug 2025
Viewed by 159
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Study on the Distribution and Quantification Characteristics of Soil Nutrients in the Dryland Albic Soils of the Sanjiang Plain, China
by Jingyang Li, Huanhuan Li, Qiuju Wang, Yiang Wang, Xu Hong and Chunwei Zhou
Agronomy 2025, 15(8), 1857; https://doi.org/10.3390/agronomy15081857 - 31 Jul 2025
Viewed by 163
Abstract
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination [...] Read more.
The main soil type in the Sanjiang Plain of Northeast China, dryland albic soil is of great significance for studying nutrient distribution characteristics. This study focuses on 852 Farm in the typical dryland albic soil area of the Sanjiang Plain, using a combination of paired t-test, geostatistics, correlation analysis, and principal component analysis to systematically reveal the spatial differentiation of soil nutrients in the black soil layer and white clay layer of dryland albic soil, and to clarify the impact mechanism of plow layer nutrient characteristics on crop productivity. The results show that the nutrient content order in both the black and white clay layers is consistent: total potassium (TK) > organic matter (OM) > total nitrogen (TN) > total phosphorus (TP) > alkali-hydrolyzable nitrogen (HN) > available potassium (AK) > available phosphorus (AP). Both layers exhibit a spatial pattern of overall consistency and local differentiation, with spatial heterogeneity dominated by altitude gradients—nutrient content increases with decreasing altitude. Significant differences exist in nutrient content and distribution between the black and white clay layers, with the comprehensive fertility of the black layer being significantly higher than that of the white clay layer, particularly for TN, TP, TK, HN, and OM contents (effect size > 8). NDVI during the full maize growth period is significantly positively correlated with TP, TN, AK, AP, and HN, and the NDVI dynamics (first increasing. then decreasing) closely align with the peak periods of available nitrogen/phosphorus and crop growth cycles, indicating a strong coupling relationship between vegetation biomass accumulation and nutrient availability. These findings provide important references for guiding rational fertilization, agricultural production layout, and ecological environmental protection, contributing to the sustainable utilization of dryland albic soil resources and sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 233
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

12 pages, 691 KiB  
Article
A Novel Approach to Estimate the Impact of PCV20 Immunization in Children by Incorporating Indirect Effects to Generate the Number Needed to Vaccinate
by Mark H. Rozenbaum, Maria J. Tort, Blair Capitano, Ruth Chapman, Desmond Dillon-Murphy, Benjamin M. Althouse and Alejandro Cane
Vaccines 2025, 13(8), 805; https://doi.org/10.3390/vaccines13080805 - 29 Jul 2025
Viewed by 248
Abstract
Background/Objectives: The number needed to vaccinate (NNV) is a metric commonly used to evaluate the public health impact of a vaccine as it represents the number of individuals that must be vaccinated to prevent one case of disease. Traditional calculations may underestimate vaccine [...] Read more.
Background/Objectives: The number needed to vaccinate (NNV) is a metric commonly used to evaluate the public health impact of a vaccine as it represents the number of individuals that must be vaccinated to prevent one case of disease. Traditional calculations may underestimate vaccine benefits by neglecting indirect effects and duration of protection (DOP), resulting in NNV overestimation. This study evaluated the NNV for the pediatric 20-valent pneumococcal conjugate (PCV20) US immunization program, as compared to PCV13, with a unique approach to NNV. Methods: A multi-cohort, population-based Markov model accounting for indirect effects was employed to calculate the NNV of PCV20 to avert a case of pneumococcal disease, invasive pneumococcal disease (IPD), hospitalized non-bacteremic pneumonia (NBP), ambulatory NBP, and otitis media (OM), as well as to prevent antibiotic-resistant cases and antibiotic prescriptions. Results: The mean NNV over a 25-year time horizon to prevent one case of pneumococcal disease was 6, with NNVs of 854 for IPD, 106 for hospitalized NBP, 25 for outpatient NBP, and 9 for OM, 11 for a course of antibiotic, and 4 for resistant disease. The mean NNV per year decreased over time, reflecting the DOP and increasing indirect effects over time. Conclusions: This study presents a novel approach to NNVs and shows that relatively few vaccinations are required to prevent disease. The decrease in NNV over time highlights the necessity of including DOP and indirect effects in NNV calculations, ensuring a more realistic assessment of a vaccine’s impact. Full article
(This article belongs to the Special Issue Estimating Vaccines' Value and Impact)
Show Figures

Figure 1

28 pages, 33384 KiB  
Article
Spatial Analysis of Soil Acidity and Available Phosphorus in Coffee-Growing Areas of Pichanaqui: Implications for Liming and Site-Specific Fertilization
by Kenyi Quispe, Nilton Hermoza, Sharon Mejia, Lorena Estefani Romero-Chavez, Elvis Ottos, Andrés Arce and Richard Solórzano Acosta
Agriculture 2025, 15(15), 1632; https://doi.org/10.3390/agriculture15151632 - 28 Jul 2025
Viewed by 341
Abstract
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for [...] Read more.
Soil acidity is one of the main limiting factors for coffee production in Peruvian rainforests. The objective of this study is to predict the spatial acidity variability for recommending site-specific liming and phosphorus fertilization treatments. We analyzed thirty-six edaphoclimatic variables, eight methods for estimating liming doses, and three geospatial variables from 552 soil samples in the Pichanaqui district of Peru. Multivariate statistics, nonparametric comparison, and geostatistical analysis with Ordinary Kriging interpolation were used for data analysis. The results showed low coffee yields (0.70 ± 0.16 t ha−1) due to soil acidification. The interquartile ranges (IQR) were found to be 3.80–5.10 for pH, 0.21–0.87 cmol Kg−1 for Al+3, and 2.55–6.53 mg Kg−1 for available P, which are limiting soil conditions for coffee plantations. Moreover, pH, Al+3, Ca+2, and organic matter (OM) were the variables with the highest accuracy and quality in the spatial prediction of soil acidity (R2 between 0.77 and 0.85). The estimation method of liming requirements, MPM (integration of pH and organic material method), obtained the highest correlation with soil acidity-modulating variables and had a high spatial predictability (R2 = 0.79), estimating doses between 1.50 and 3.01 t ha−1 in soils with organic matter (OM) > 4.00%. The MAC (potential acidity method) method (R2 = 0.59) estimated liming doses between 0.51 and 0.88 t ha−1 in soils with OM < 4.00% and potential acidity greater than 0.71 cmol Kg−1. Regarding phosphorus fertilization (DAP), the results showed high requirements (median = 137.21 kg ha−1, IQR = 8.28 kg ha−1), with high spatial predictability (R2 = 0.74). However, coffee plantations on Ferralsols, with Paleogene parental material, mainly in dry forests, had the lowest predicted fertilization requirements (between 6.92 and 77.55 kg ha−1 of DAP). This research shows a moderate spatial variation of acidity, the need to optimize phosphorus fertilization, and an optimal prediction of liming requirements using the MPM and MAC methods, which indicate high requirements in the southwest of the Pichanaqui district. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 650 KiB  
Article
LEMAD: LLM-Empowered Multi-Agent System for Anomaly Detection in Power Grid Services
by Xin Ji, Le Zhang, Wenya Zhang, Fang Peng, Yifan Mao, Xingchuang Liao and Kui Zhang
Electronics 2025, 14(15), 3008; https://doi.org/10.3390/electronics14153008 - 28 Jul 2025
Viewed by 339
Abstract
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time [...] Read more.
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time monitoring, accuracy, and scalability in such environments. This paper proposes a novel service performance anomaly detection system based on large language models (LLMs) and multi-agent systems (MAS). By integrating the semantic understanding capabilities of LLMs with the distributed collaboration advantages of MAS, we construct a high-precision and robust anomaly detection framework. The system adopts a hierarchical architecture, where lower-layer agents are responsible for tasks such as log parsing and metric monitoring, while an upper-layer coordinating agent performs multimodal feature fusion and global anomaly decision-making. Additionally, the LLM enhances the semantic analysis and causal reasoning capabilities for logs. Experiments conducted on real-world data from the State Grid Corporation of China, covering 1289 service combinations, demonstrate that our proposed system significantly outperforms traditional methods in terms of the F1-score across four platforms, including customer services and grid resources (achieving up to a 10.3% improvement). Notably, the system excels in composite anomaly detection and root cause analysis. This study provides an industrial-grade, scalable, and interpretable solution for intelligent power grid O&M, offering a valuable reference for the practical implementation of AIOps in critical infrastructures. Evaluated on real-world data from the State Grid Corporation of China (SGCC), our system achieves a maximum F1-score of 88.78%, with a precision of 92.16% and recall of 85.63%, outperforming five baseline methods. Full article
(This article belongs to the Special Issue Advanced Techniques for Multi-Agent Systems)
Show Figures

Figure 1

15 pages, 5275 KiB  
Article
Effect of Copper in Gas-Shielded Solid Wire on Microstructural Evolution and Cryogenic Toughness of X80 Pipeline Steel Welds
by Leng Peng, Rui Hong, Qi-Lin Ma, Neng-Sheng Liu, Shu-Biao Yin and Shu-Jun Jia
Materials 2025, 18(15), 3519; https://doi.org/10.3390/ma18153519 - 27 Jul 2025
Viewed by 300
Abstract
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding [...] Read more.
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding (GMAW) parameters. The mechanical capacities were assessed via tensile testing, Charpy V-notch impact tests at −20 °C and Vickers hardness measurements. Microstructural evolution was characterized through optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Key findings reveal that increasing the Cu content from 0.13 wt.% to 0.34 wt.% reduces the volume percentage of acicular ferrite (AF) in the weld metal by approximately 20%, accompanied by a significant decline in cryogenic toughness, with the average impact energy decreasing from 221.08 J to 151.59 J. Mechanistic analysis demonstrates that the trace increase in the Cu element. The phase transition temperature and inclusions is not significant but can refine the prior austenite grain size of the weld, so that the total surface area of the grain boundary increases, and the surface area of the inclusions within the grain is relatively small, resulting in the nucleation of acicular ferrite within the grain being weak. This microstructural transition lowers the critical crack size and diminishes the density for high-angle grain boundaries (HAGBs > 45°), which weakens crack deflection capability. Consequently, the crack propagation angle decreases from 54.73° to 45°, substantially reducing the energy required for stable crack growth and deteriorating low-temperature toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 3460 KiB  
Article
Morphometric, Nutritional, and Phytochemical Characterization of Eugenia (Syzygium paniculatum Gaertn): A Berry with Under-Discovered Potential
by Jeanette Carrera-Cevallos, Christian Muso, Julio C. Chacón Torres, Diego Salazar, Lander Pérez, Andrea C. Landázuri, Marco León, María López, Oscar Jara, Manuel Coronel, David Carrera and Liliana Acurio
Foods 2025, 14(15), 2633; https://doi.org/10.3390/foods14152633 - 27 Jul 2025
Viewed by 415
Abstract
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric [...] Read more.
Magenta Cherry or Eugenia (Syzygium paniculatum Gaertn) is an underutilized berry species with an interesting source of functional components. This study aimed to evaluate these berries’ morphometric, nutritional, and phytochemical characteristics at two ripening stages, CM: consumer maturity (CM) and OM: over-maturity. Morphometric analysis revealed size and weight parameters comparable to commercial berries such as blueberries. Fresh fruits were processed into pulverized material, and in this, a proximate analysis was evaluated, showing high moisture content (88.9%), dietary fiber (3.56%), and protein (0.63%), with negligible fat, indicating suitability for low-calorie diets. Phytochemical screening by HPLC identified gallic acid, chlorogenic acid, hydroxycinnamic acid, ferulic acid, quercetin, rutin, and condensed tannins. Ethanol extracts showed stronger bioactive profiles than aqueous extracts, with significant antioxidant capacity (up to 803.40 µmol Trolox/g via Ferric Reducing Antioxidant Power (FRAP assay). Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopic analyses established structural transformations of hydroxyl, carbonyl, and aromatic groups associated with ripening. These changes were supported by observed variations in anthocyanin and flavonoid contents, both higher at the CM stage. A notable pigment loss in OM fruits could be attributed to pH changes, oxidative degradation, enzymatic activity loss, and biotic stressors. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed higher radical scavenging activity in CM-stage berries. Elemental analysis identified minerals such as potassium, calcium, magnesium, iron, and zinc, although in moderate concentrations. In summary, Syzygium paniculatum Gaertn fruit demonstrates considerable potential as a source of natural antioxidants and bioactive compounds. These findings advocate for greater exploration and sustainable use of this native berry species in functional food systems. Full article
Show Figures

Graphical abstract

17 pages, 3579 KiB  
Article
Source Apportionment of PM2.5 in a Chinese Megacity During Special Periods: Unveiling Impacts of COVID-19 and Spring Festival
by Kejin Tang, Xing Peng, Yuqi Liu, Sizhe Liu, Shihai Tang, Jiang Wu, Shaoxia Wang, Tingting Xie and Tingting Yao
Atmosphere 2025, 16(8), 908; https://doi.org/10.3390/atmos16080908 - 26 Jul 2025
Viewed by 223
Abstract
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the [...] Read more.
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the long-term impact of coronavirus disease 2019 and the short-term impact of the Spring Festival on PM2.5 levels. The measured average PM2.5 concentration during the research period was 22.5 μg/m3, with organic matter (OM) being the dominant component. Vehicle emissions, secondary sulfate, secondary nitrate, and secondary organic aerosol were identified by receptor model as the primary sources of PM2.5 during the observational periods. The pandemic led to a decrease of between 30% and 50% in the contributions of most anthropogenic sources in 2022 compared to 2021, followed by a rebound. PM2.5 levels in January–March 2024 dropped by 1.4 μg/m3 compared to 2021, mainly due to reduced vehicle emissions, secondary sulfate, fugitive dust, biomass burning, and industrial emissions, reflecting Shenzhen’s and nearby cities’ effective control measures. However, secondary nitrate and fireworks-related emissions rose significantly. During the Spring Festival, PM2.5 concentrations were 23% lower than before the festival, but the contributions of fireworks burning exhibited a marked increase in both 2023 and 2024. Specifically, during intense peak events, fireworks burning triggered sharp, short-term spikes in characteristic metal concentrations, accounting for over 50% of PM2.5 on those peak days. In the future, strict control over vehicle emissions and enhanced management of fireworks burning during special periods like the Spring Festival are necessary to reduce PM2.5 concentration and improve air quality. Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Show Figures

Figure 1

27 pages, 5140 KiB  
Article
How Do Nematode Communities and Soil Properties Interact in Riparian Areas of Caatinga Under Native Vegetation and Agricultural Use?
by Juliana M. M. de Melo, Elvira Maria R. Pedrosa, Iug Lopes, Thais Fernanda da S. Vicente, Thayná Felipe de Morais and Mário Monteiro Rolim
Diversity 2025, 17(8), 514; https://doi.org/10.3390/d17080514 - 25 Jul 2025
Viewed by 253
Abstract
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their [...] Read more.
Global interest in nematode communities and their ecological relationships as unique and complex soil ecosystems has remarkably increased in recent years. As they have a representative role in the soil biota, nematodes present great potential to help understand soil health through analyzing their food chains in different environments. The objective of this study was to analyze the spatial and dynamic distributions of nematode communities and soil properties in two riparian areas of the Caatinga biome: one with native vegetation and the other with a history of agricultural use (modified). The study was carried out in a semi-arid region of Brazil in Parnamirim, PE. In both areas, sampling grids of 60 m × 40 m were established to obtain data on soil moisture, organic matter, particle size, electrical conductivity, and pH, as well as metabolic activity and ecological indices of nematode communities. There was a greater abundance and diversity of nematodes in riparian soils with native vegetation compared to in the modified area due to agricultural use and the dominance of exotic and invasive species. In both areas, bacterivores and plant-parasitic nematodes were dominant, with the genus Acrobeles and Tylenchorhynchus as the main contributors to the community. In the modified area, soil variables (fine sand, clay, and pH) positively influenced Fu4 and PP4 guilds, while in the area with native vegetation, moisture and organic matter exerted a greater influence on Om4, PP5, and Ba3 guilds. Kriging maps showed the soil variables were more concentrated in the center in the areas with native vegetation, in contrast to the area with modified vegetation, where they concentrated more on the margins. The functional guilds in the native vegetation did not exhibit a gradual increase towards the regions close to the riverbank, unlike in the modified area. The presence of plant-parasitic nematodes, especially of the genus Tylenchorhynchus, indicates the need for greater attention in the management of these ecosystems. The study contributes to understanding the interactions between nematode communities and soil in riparian areas of the Caatinga biome, emphasizing the importance of preserving native vegetation to maintain the diversity and balance of this ecosystem, in addition to highlighting the need for appropriate management practices in areas with a history of agricultural use, aiming to conserve soil biodiversity. Full article
(This article belongs to the Special Issue Distribution, Biodiversity, and Ecology of Nematodes)
Show Figures

Figure 1

13 pages, 1520 KiB  
Article
Dynamic vs. Static Light Scattering: Evaluating the Tandem Use of Dynamic Light Scattering and Optical Microscopy as an Attractive Alternative for Oleosomes Size Characterization
by Idit Yuli, Lotan Ben Yakov, Ariel Gliksberg and Paul Salama
Cosmetics 2025, 12(4), 158; https://doi.org/10.3390/cosmetics12040158 - 25 Jul 2025
Viewed by 318
Abstract
Accurate characterization of oleosome particle size distribution is needed for understanding their functionality in various applications. Traditionally, high-cost methods such as static laser diffraction and confocal or electron microscopy have been used. The current study presents a cost-effective alternative by combining optical microscopy [...] Read more.
Accurate characterization of oleosome particle size distribution is needed for understanding their functionality in various applications. Traditionally, high-cost methods such as static laser diffraction and confocal or electron microscopy have been used. The current study presents a cost-effective alternative by combining optical microscopy (OM) with image analysis and dynamic light scattering (DLS) to evaluate particle size distribution in safflower (Carthamus tinctorius) oleosomes. Monodisperse and polydisperse standards (2 µm and 1–10 µm, respectively) were selected to validate instrument performance. The use of a smaller cuvette with a shorter path length in DLS extended its detection capabilities by minimizing multiple scattering and thermal effects. DLS and OM produced relatively consistent results, accurate particles’ diameters and distribution widths that agreed well with the standards. In contrast, static light scattering (SLS) showed strong sensitivity to the weighting method used (by number vs. by volume). In the case of polydisperse standard, volume-weighted SLS overestimated the particle size and yielded a broader distribution with a span of 2.2 compared to a span value of 0.8 as reported by the supplier. These findings highlight the importance of method selection and demonstrate the potential of combining DLS and OM as a practical and reliable approach for oleosome characterization. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

21 pages, 1980 KiB  
Article
Organic Manure with Chemical Fertilizers Improves Rice Productivity and Decreases N2O Emissions by Increasing Soil Nitrogen Sequestration
by Yiren Liu, Jingshang Xiao, Xianjin Lan, Jianhua Ji, Hongqian Hou, Liumeng Chen and Zhenzhen Lv
Agronomy 2025, 15(8), 1783; https://doi.org/10.3390/agronomy15081783 - 24 Jul 2025
Viewed by 214
Abstract
Soil organic nitrogen (SON) positively influences crop productivity, greenhouse gas (GHG) emissions, and sustained nitrogen (N) supply. Herein, we observed the effect of different treatments; no fertilizers (CK), chemical fertilizers (nitrogen, phosphorus, and potassium (NPK)), organic manure, and NPK + OM (NPKOM). This [...] Read more.
Soil organic nitrogen (SON) positively influences crop productivity, greenhouse gas (GHG) emissions, and sustained nitrogen (N) supply. Herein, we observed the effect of different treatments; no fertilizers (CK), chemical fertilizers (nitrogen, phosphorus, and potassium (NPK)), organic manure, and NPK + OM (NPKOM). This study was performed in a randomized complete block design (RCBD) with three replications. The results indicated that NPKOM treatment significantly decreased the nitrous oxide (N2O) emissions by 19.97% and 17.47% compared to NPK in both years. This was linked with improved soil nutrient availability, soil organic carbon, soil organic nitrogen (SON) storage (10.06% and 12.38%), SON sequestration (150% and 140%), increased soil particulate (44.11% and 44%), and mineral-associated organic N (26.98% and 26.47%) availability. Furthermore, NPKOM also enhanced nitrate reductase (NR: 130% and 112%), glutamine synthetase (GS: 93% and 88%), sucrose phosphate synthase (SPS: 79% and 98%), SSs (synthetic direction; 57% and 50%), and decreased SSs activity in the decomposition direction (18% and 21%). This, in turn, inhibited the decomposition of sucrase and enhanced starch conversion into carbohydrates, thus leading to an increase in rice yield and a decrease in N2O emissions. All fertilizations, particularly NPKOM, significantly enhanced grain protein contents by increasing N uptake and its availability. Therefore, NPKOM is an effective practice to enhance rice productivity, and SON sequestration and mitigate the N2O emissions and subsequent climate change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

11 pages, 448 KiB  
Article
Advancing DIEP Flap Surgery: Robotic-Assisted Harvest Reduces Pain and Narcotic Use
by Chloe V. McCreery, Amy Liu, Peter Deptula and Daniel Murariu
J. Clin. Med. 2025, 14(15), 5204; https://doi.org/10.3390/jcm14155204 - 23 Jul 2025
Viewed by 211
Abstract
Background: Robotic deep inferior epigastric artery perforator (DIEP) flap surgery is a technique used for autologous breast reconstruction to maintain the integrity of the rectus abdominis muscle while also utilizing robotic assistance for flap harvest. This study assesses postoperative outcomes of patients undergoing [...] Read more.
Background: Robotic deep inferior epigastric artery perforator (DIEP) flap surgery is a technique used for autologous breast reconstruction to maintain the integrity of the rectus abdominis muscle while also utilizing robotic assistance for flap harvest. This study assesses postoperative outcomes of patients undergoing robotic DIEP flap reconstruction through the measurement of postoperative pain, narcotics use, and antiemetic usage. Methods: A retrospective analysis was performed for patients undergoing robotic DIEP flap breast reconstruction between March 2024 and March 2025. Postoperative pain scores (1–10 scale), narcotics usage (measured in oral morphine equivalents), antiemetic usage, and complications were recorded. Patient outcomes were compared to a control group of 40 patients who had undergone abdominal-based free flap breast reconstruction. Results: Overall, 14 patients underwent robotic DIEP flap breast reconstruction, representing 24 breasts. The average patient age was 56.5 (range: 30–73). Ten patients underwent bilateral breast reconstruction, and four underwent unilateral breast reconstruction. The average length of stay postoperatively was 4.86 days (±1.23 days), and the return of bowel function occurred in 1.29 days (±0.47 days). No patients experienced an unplanned return to the OR or flap failure. Average pain scores on postoperative day 1 (POD1), 2 (POD2), and 3 (POD3) were 4.0 (±0.6), 3.4 (±0.6), and 2.93 (±0.5), respectively. Average antiemetic usage totalled 1.25 doses (±0.25). Average daily OME use was 27.7 (±5.0) for POD1, 25.96 (±6.3) for POD2, and 21.23 (±7.11) for POD3. This averaged to a total hospital OME use of 74.9 (±15.7) per patient. Patients undergoing robotic DIEP flap reconstruction required a significantly lower narcotics dosage, as well as a lower antiemetic dosage, during the first three days postoperatively compared to the control abdominal free flap group. Average pain scores in the robotic DIEP flap reconstruction patient group were also significantly decreased, specifically in POD2 and POD3. Conclusions: The robotic DIEP flap offers advantages in autologous breast reconstruction compared to other abdominal free flap reconstructive methods. In this limited retrospective study, the use of the robotic DIEP flap lowers chances of flap failure and complications, while also improving narcotics use, antiemetic use, and postoperative pain. Full article
(This article belongs to the Special Issue Clinical Advances in Breast Reconstruction: Treatment and Management)
Show Figures

Figure 1

21 pages, 6045 KiB  
Article
Frequency-Bounded Matching Strategy for Wideband LNA Design Utilising a Relaxed SSNM Approach
by Vanya Sharma, Patrick E. Longhi, Walter Ciccognani, Sergio Colangeli, Antonio Serino, Swati Sharma and Ernesto Limiti
Appl. Sci. 2025, 15(15), 8148; https://doi.org/10.3390/app15158148 - 22 Jul 2025
Viewed by 171
Abstract
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load [...] Read more.
This paper proposes relaxed Simultaneous Signal and Noise Matching (SSNM) conditions to address limitations in selecting source degeneration inductors for multistage LNA design, achieved by introducing controlled mismatches at the external ports. Additionally, a novel frequency-bounded mismatch envelope is introduced to guide load termination selection based on desired IM-OM (input mismatch-output mismatch) characteristics across the operating band. Building on these concepts, a systematic, easy-to-follow strategy is presented for implementing wideband multistage low-noise amplifiers (LNAs), significantly reducing reliance on blind CAD-based optimisation. This approach is validated through a three-stage MMIC LNA prototype, fabricated using a 0.15 μm GaAs process and operating from 28 to 34 GHz. The measured results closely match the simulation, demonstrating a stable gain of 23 ± 1 dB and a noise figure of 2–2.5 dB, confirming the practical effectiveness of the proposed design approach for wideband amplifiers. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 1604 KiB  
Article
Elicitation-Induced Enhancement of Lovastatin and Pigment Production in Monascus purpureus C322
by Sirisha Yerramalli, Stephen J. Getting, Godfrey Kyazze and Tajalli Keshavarz
Fermentation 2025, 11(8), 422; https://doi.org/10.3390/fermentation11080422 - 22 Jul 2025
Viewed by 484
Abstract
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This [...] Read more.
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This study evaluated the impact of carbohydrate-derived elicitors—mannan oligosaccharides, oligoguluronate, and oligomannuronate—on the enhancement of pigment and lovastatin production in M. purpureus C322 under submerged fermentation. Elicitors were added at 48 h in shake flasks and 24 h in 2.5 L stirred-tank fermenters. All treatments increased the production of yellow, orange, and red pigments and lovastatin compared to the control, with higher titres upon scale-up. OG led to the highest orange pigment yield (1.2 AU/g CDW in flasks; 1.67 AU/g CDW in fermenters), representing 2.3- and 3.0-fold increases. OM yielded the highest yellow and red pigments (1.24 and 1.35 AU/g CDW in flasks; 1.58 and 1.80 AU/g CDW in fermenters) and the highest lovastatin levels (10.46 and 12.6 mg/g CDW), corresponding to 2.03–3.03-fold improvements. These results highlight the potential of carbohydrate elicitors to stimulate metabolite biosynthesis and facilitate scalable optimisation of fungal fermentation. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

Back to TopTop