Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,910)

Search Parameters:
Keywords = O2 saturation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

12 pages, 3641 KiB  
Article
Metallic Lanthanum (III) Hybrid Magnetic Nanocellulose Composites for Enhanced DNA Capture via Rare-Earth Coordination Chemistry
by Jiayao Yang, Jie Fei, Hongpeng Wang and Ye Li
Inorganics 2025, 13(8), 257; https://doi.org/10.3390/inorganics13080257 - 1 Aug 2025
Viewed by 125
Abstract
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen [...] Read more.
Lanthanide rare earth elements possess significant promise for material applications owing to their distinctive optical and magnetic characteristics, as well as their versatile coordination capabilities. This study introduced a lanthanide-functionalized magnetic nanocellulose composite (NNC@Fe3O4@La(OH)3) for effective phosphorus/nitrogen (P/N) ligand separation. The hybrid material employs the adaptable coordination geometry and strong affinity for oxygen of La3+ ions to show enhanced DNA-binding capacity via multi-site coordination with phosphate backbones and bases. This study utilized cellulose as a carrier, which was modified through carboxylation and amination processes employing deep eutectic solvents (DES) and polyethyleneimine. Magnetic nanoparticles and La(OH)3 were subsequently incorporated into the cellulose via in situ growth. NNC@Fe3O4@La(OH)3 showed a specific surface area of 36.2 m2·g−1 and a magnetic saturation intensity of 37 emu/g, facilitating the formation of ligands with accessible La3+ active sites, hence creating mesoporous interfaces that allow for fast separation. NNC@Fe3O4@La(OH)3 showed a significant affinity for DNA, with adsorption capacities reaching 243 mg/g, mostly due to the multistage coordination binding of La3+ to the phosphate groups and bases of DNA. Simultaneously, kinetic experiments indicated that the binding process adhered to a pseudo-secondary kinetic model, predominantly dependent on chemisorption. This study developed a unique rare-earth coordination-driven functional hybrid material, which is highly significant for constructing selective separation platforms for P/N-containing ligands. Full article
Show Figures

Graphical abstract

21 pages, 10439 KiB  
Article
Camera-Based Vital Sign Estimation Techniques and Mobile App Development
by Tae Wuk Bae, Young Choon Kim, In Ho Sohng and Kee Koo Kwon
Appl. Sci. 2025, 15(15), 8509; https://doi.org/10.3390/app15158509 (registering DOI) - 31 Jul 2025
Viewed by 100
Abstract
In this paper, we propose noncontact heart rate (HR), oxygen saturation (SpO2), and respiratory rate (RR) detection methods using a smartphone camera. HR frequency is detected through filtering after obtaining a remote PPG (rPPG) signal and its power spectral density (PSD) is detected [...] Read more.
In this paper, we propose noncontact heart rate (HR), oxygen saturation (SpO2), and respiratory rate (RR) detection methods using a smartphone camera. HR frequency is detected through filtering after obtaining a remote PPG (rPPG) signal and its power spectral density (PSD) is detected using color difference signal amplification and the plane-orthogonal-to-the-skin method. Additionally, the SpO2 is detected using the HR frequency and the absorption ratio of the G and B color channels based on oxyhemoglobin absorption and reflectance theory. After this, the respiratory frequency is detected using the PSD of rPPG through respiratory frequency band filtering. For the image sequences recorded under various imaging conditions, the proposed method demonstrated superior HR detection accuracy compared to existing methods. The confidence intervals for HR and SpO2 detection were analyzed using Bland–Altman plots. Furthermore, the proposed RR detection method was also verified to be reliable. Full article
Show Figures

Figure 1

26 pages, 6611 KiB  
Article
The Geochronology, Geochemical Characteristics, and Tectonic Settings of the Granites, Yexilinhundi, Southern Great Xing’an Range
by Haixin Yue, Henan Yu, Zhenjun Sun, Yanping He, Mengfan Guan, Yingbo Yu and Xi Chen
Minerals 2025, 15(8), 813; https://doi.org/10.3390/min15080813 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late [...] Read more.
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late Mesozoic. The study area is situated within the Huanggangliang-Ganzhuermiao metallogenic belt in the southern Great Xing’an Range. The region has witnessed extensive magmatism, with Mesozoic magmatic activities being particularly closely linked to regional mineralization. We present petrographic, zircon U-Pb chronological, lithogeochemical, and Lu-Hf isotopic analyses of the Yexilinhundi granites. The results indicate that the granite porphyry and granodiorite were emplaced during the Late Jurassic. Both rocks exhibit high SiO2, K2O + Na2O, differentiation index (DI), and 10,000 Ga/Al ratios, coupled with low MgO contents. They show distinct fractionation between light and heavy rare earth elements (LREEs and HREEs), exhibit Eu anomalies, and have low whole-rock zircon saturation temperatures (Tzr), collectively demonstrating characteristics of highly fractionated I-type granites. The εHf(t) values of the granites range from 0.600 to 9.14, with young two-stage model ages (TDM2 = 616.0~1158 Ma), indicating that the magmatic source originated from partial melting of Mesoproterozoic-Neoproterozoic juvenile crust. This study proposes that the granites formed in a post-collisional/post-orogenic extensional setting associated with the subduction of the Mongol-Okhotsk Ocean, providing a scientific basis for understanding the relationship between the formation of Sn-polymetallic deposits and granitic magmatic evolution in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 4569 KiB  
Article
Tailored Magnetic Fe3O4-Based Core–Shell Nanoparticles Coated with TiO2 and SiO2 via Co-Precipitation: Structure–Property Correlation for Medical Imaging Applications
by Elena Emanuela Herbei, Daniela Laura Buruiana, Alina Crina Muresan, Viorica Ghisman, Nicoleta Lucica Bogatu, Vasile Basliu, Claudiu-Ionut Vasile and Lucian Barbu-Tudoran
Diagnostics 2025, 15(15), 1912; https://doi.org/10.3390/diagnostics15151912 - 30 Jul 2025
Viewed by 143
Abstract
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4 [...] Read more.
Background/Objectives: Magnetic nanoparticles, particularly iron oxide-based materials, such as magnetite (Fe3O4), have gained significant attention as contrast agents in medical imaging This study aimsto syntheze and characterize Fe3O4-based core–shell nanostructures, including Fe3O4@TiO2 and Fe3O4@SiO2, and to evaluate their potential as tunable contrast agents for diagnostic imaging. Methods: Fe3O4, Fe3O4@TiO2, and Fe3O4@SiO2 nanoparticles were synthesized via co-precipitation at varying temperatures from iron salt precursors. Fourier transform infrared spectroscopy (FTIR) was used to confirm the presence of Fe–O bonds, while X-ray diffraction (XRD) was employed to determine the crystalline phases and estimate average crystallite sizes. Morphological analysis and particle size distribution were assessed by scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) and transmission electron microscopy (TEM). Magnetic properties were investigated using vibrating sample magnetometry (VSM). Results: FTIR spectra exhibited characteristic Fe–O vibrations at 543 cm−1 and 555 cm−1, indicating the formation of magnetite. XRD patterns confirmed a dominant cubic magnetite phase, with the presence of rutile TiO2 and stishovite SiO2 in the coated samples. The average crystallite sizes ranged from 24 to 95 nm. SEM and TEM analyses revealed particle sizes between 5 and 150 nm with well-defined core–shell morphologies. VSM measurements showed saturation magnetization (Ms) values ranging from 40 to 70 emu/g, depending on the synthesis temperature and shell composition. The highest Ms value was obtained for uncoated Fe3O4 synthesized at 94 °C. Conclusions: The synthesized Fe3O4-based core–shell nanomaterials exhibit desirable structural, morphological, and magnetic properties for use as contrast agents. Their tunable magnetic response and nanoscale dimensions make them promising candidates for advanced diagnostic imaging applications. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

22 pages, 780 KiB  
Review
Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review
by Garbiñe Larrea, David Elustondo and Adrián Durán
Molecules 2025, 30(15), 3178; https://doi.org/10.3390/molecules30153178 - 29 Jul 2025
Viewed by 167
Abstract
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, [...] Read more.
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, and wastewater, as well as in less complex samples like tap and bottled water. The general steps of MPs extraction typically include drying the sample, sieving to remove larger particles, removal of organic matter, density separation to isolate polymers, filtration using meshes of various sizes, oven drying of the filters, and polymer identification. Complex matrices with high organic matter content require specific removal steps. Most studies employ an initial drying process with temperature control to prevent polymer damage. For removal of organic matter, 30% H2O2 is the most commonly used reagent, and for density separation, saturated NaCl and ZnCl2 solutions are typically applied for low- and high-density polymers, respectively. Finally, filtration is carried out using meshes selected according to the identification technique. This review analyzes the advantages and limitations of the different methodologies to extract microplastics from different sources, aiming to provide in-depth insight for researchers dedicated to the study of environmental samples. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Graphical abstract

14 pages, 1354 KiB  
Article
Layered Structures Based on Ga2O3/GaS0.98Se0.02 for Gas Sensor Applications
by Veaceslav Sprincean, Mihail Caraman, Tudor Braniste and Ion Tiginyanu
Surfaces 2025, 8(3), 53; https://doi.org/10.3390/surfaces8030053 - 28 Jul 2025
Viewed by 256
Abstract
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O [...] Read more.
Efficient detection of toxic and flammable vapors remains a major technological challenge, especially for environmental and industrial applications. This paper reports on the fabrication technology and gas-sensing properties of nanostructured Ga2O3/GaS0.98Se0.02. The β-Ga2O3 nanowires/nanoribbons with inclusions of Ga2S3 and Ga2Se3 microcrystallites were obtained by thermal treatment of GaS0.98Se0.02 slabs in air enriched with water vapors. The microstructure, crystalline quality, and elemental composition of the obtained samples were investigated using electron microscopy, X-ray diffraction, and Raman spectroscopy. The obtained structures show promising results as active elements in gas sensor applications. Vapors of methanol (CH3OH), ethanol (C2H5OH), and acetone (CH3-CO-CH3) were successfully detected using the nanostructured samples. The electrical signal for gas detection was enhanced under UV light irradiation. The saturation time of the sensor depends on the intensity of the UV radiation beam. Full article
Show Figures

Figure 1

18 pages, 3426 KiB  
Article
XPS on Co0.95R0.05Fe2O4 Nanoparticles with R = Gd or Ho
by Adam Szatmari, Rareș Bortnic, Tiberiu Dragoiu, Radu George Hategan, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Appl. Sci. 2025, 15(15), 8313; https://doi.org/10.3390/app15158313 - 25 Jul 2025
Viewed by 152
Abstract
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit splitting of about 15.4 eV observed in Co 2p core-level spectra is an indication that Co is predominantly present as Co3+ state, while the satellite structures located at about 6 eV higher energies than the main lines confirm the existence of divalent Co in Co0.95R0.05Fe2O4. The positions of the Co 3s and Fe 3s main peaks obtained by curve fitting and the exchange splitting obtained values for Co 3s and Fe 3s levels point to the high Co3+/Co2+ and Fe3+/Fe2+ ratios in both samples. The saturation magnetizations are smaller for the doped samples compared to the pristine ones. For theoretical magnetization calculation, we have considered that the heavy rare earths are in octahedral sites and their magnetic moments are aligned antiparallelly with 3d transition magnetic moments. ZFC-FC curves shows that some nanoparticles remain superparamagnetic, while the rest are ferrimagnetic, ordered at room temperature, and showing interparticle interactions. The MS/Ms ratio at room temperature is below 0.5, indicating the predominance of magnetostatic interactions. Full article
Show Figures

Figure 1

21 pages, 1745 KiB  
Article
AI and Q Methodology in the Context of Using Online Escape Games in Chemistry Classes
by Markéta Dobečková, Ladislav Simon, Lucia Boldišová and Zita Jenisová
Educ. Sci. 2025, 15(8), 962; https://doi.org/10.3390/educsci15080962 - 25 Jul 2025
Viewed by 212
Abstract
The contemporary digital era has fundamentally reshaped pupil education. It has transformed learning into a dynamic environment with enhanced access to information. The focus shifts to the educator, who must employ teaching strategies, practices, and methods to engage and motivate the pupils. New [...] Read more.
The contemporary digital era has fundamentally reshaped pupil education. It has transformed learning into a dynamic environment with enhanced access to information. The focus shifts to the educator, who must employ teaching strategies, practices, and methods to engage and motivate the pupils. New possibilities are emerging for adopting active pedagogical approaches. One example is the use of educational online escape games. In the theoretical part of this paper, we present online escape games as a tool that broadens pedagogical opportunities for schools in primary school chemistry education. These activities are known to foster pupils’ transversal or soft skills. We investigate the practical dimension of implementing escape games in education. This pilot study aims to analyse primary school teachers’ perceptions of online escape games. We collected data using Q methodology and conducted the Q-sort through digital technology. Data analysis utilised both the PQMethod programme and ChatGPT 4-o, with a subsequent comparison of their respective outputs. Although some numerical differences appeared between the ChatGPT and PQMethod analyses, both methods yielded the same factor saturation and overall results. Full article
(This article belongs to the Special Issue Innovation in Teacher Education Practices)
Show Figures

Figure 1

13 pages, 1895 KiB  
Article
Class-Dependent Solar Flare Effects on Mars’ Upper Atmosphere: MAVEN NGIMS Observations of X8.2 and M6.0 from September 2017
by Junaid Haleem and Shican Qiu
Universe 2025, 11(8), 245; https://doi.org/10.3390/universe11080245 - 25 Jul 2025
Viewed by 226
Abstract
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on [...] Read more.
Transient increments of X-ray radiation and extreme ultraviolet (EUV) during solar flares are strong drivers of thermospheric dynamics on Mars, yet their class-dependent impacts remain poorly measured. This work provides the first direct, side-by-side study of Martian thermospheric reactions to flares X8.2 on 10 September 2017 and M6.0 on 17 September 2017. This study shows nonlinear, class-dependent effects, compositional changes, and recovery processes not recorded in previous investigations. Species-specific responses deviated significantly from irradiance proportionality, even though the soft X-ray flux in the X8.2 flare was 13 times greater. Argon (Ar) concentrations rose 3.28× (compared to 1.13× for M6.0), and radiative cooling led CO2 heating to approach a halt at ΔT = +40 K (X8.2) against +19 K (M6.0) at exobase altitudes (196–259 km). N2 showed the largest class difference, where temperatures rose by +126 K (X8.2) instead of +19 K (M6.0), therefore displaying flare-magnitude dependent thermal sensitivity. The 1.95× increase in O concentrations during X8.2 and the subsequent decrease following M6.0 (−39 K cooling) illustrate the contradiction between photochemical production and radiative loss. The O/CO2 ratio at 225 km dropped 46% during X8.2, revealing compositional gradients boosted by flares. Recovery timeframes varied by class; CO2 quickly re-equilibrated because of effective cooling, whereas inert species (Ar, N2) stabilized within 1–2 orbits after M6.0 but needed >10 orbits of the MAVEN satellite after the X8.2 flare. The observations of the X8.2 flare came from the western limb of the Sun, but the M6.0 flare happened on the far side. The CME shock was the primary driver of Mars’ EUV reaction. These findings provide additional information on atmospheric loss and planetary habitability by indicating that Mars’ thermosphere has a saturation threshold where strong flares induce nonlinear energy partitioning that encourages the departure of lighter species. Full article
Show Figures

Figure 1

19 pages, 7965 KiB  
Article
The Influence of Light Rare-Earth Substitution on Electronic and Magnetic Properties of CoFe2O4 Nanoparticles
by Rareș Bortnic, Adam Szatmari, Tiberiu Dragoiu, Radu George Hategan, Roman Atanasov, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Nanomaterials 2025, 15(15), 1152; https://doi.org/10.3390/nano15151152 - 25 Jul 2025
Viewed by 298
Abstract
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), and magnetic measurements. All compounds were found to be single phases adopting a cubic Fd-3m structure. EDS analysis confirmed the presence of Co, Fe, R, and oxygen in all cases. The XPS measurements reveal that the Co 2p core-level spectra are characteristic for Co3+ ions, as indicated by the 2p3/2 and 2p1/2 binding energies and spin–orbit splitting values. The analysis of the Fe 2p core-level spectra reveals the presence of both Fe3+ and Fe2+ ions in the investigated samples. The doped samples exhibit lower saturation magnetizations than the pristine sample. Very good agreement with the saturation magnetization values was obtained if we assumed that the light rare-earth ions occupy octahedral sites and their magnetic moments align parallel to those of the 3d transition metal ions. The ZFC-FC curves indicate that some nanoparticles remain superparamagnetic, while others exhibit ferrimagnetic ordering at room temperature, suggesting the presence of interparticle interactions. The Mr/Ms ratio at room temperature reflects the dominance of magnetostatic interactions. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

13 pages, 342 KiB  
Review
The Role of Venous Blood Gas Analysis in Critical Care: A Narrative Review
by Dario Giani, Michele Cosimo Santoro, Maurizio Gabrielli, Roberta Di Luca, Martina Malaspina, Maria Lumare, Licia Antonella Scatà, Martina Pala, Alberto Manno, Marcello Candelli, Marcello Covino, Antonio Gasbarrini and Francesco Franceschi
Medicina 2025, 61(8), 1337; https://doi.org/10.3390/medicina61081337 - 24 Jul 2025
Viewed by 350
Abstract
ABG analysis is the gold standard for assessing acid–base balance, oxygenation, and ventilation in critically ill patients, but it is invasive and associated with patient discomfort and potential complications. Venous blood gas (VBG) analysis offers a less invasive alternative, although its clinical utility [...] Read more.
ABG analysis is the gold standard for assessing acid–base balance, oxygenation, and ventilation in critically ill patients, but it is invasive and associated with patient discomfort and potential complications. Venous blood gas (VBG) analysis offers a less invasive alternative, although its clinical utility remains debated. This review evaluates the current evidence on VBG analysis, exploring its correlation with ABG, clinical applications, and limitations. Studies show a strong correlation between ABG and VBG for pH and a good correlation for bicarbonate and base excess in most cases, while the correlation for pCO2 remains controversial. Predictably, pO2 values differ significantly due to oxygen consumption gradients between the arterial and venous blood. VBG analysis is especially valuable for initial assessments, monitoring therapeutic responses, and guiding resuscitation in intensive care settings. It is not merely an alternative to ABG but a complementary tool that can provide unique insights, such as mixed venous oxygen saturation (SvO2) or indices that require combined ABG and VBG data, like the pCO2 gap. This review highlights the diagnostic equivalence of VBG in appropriate contexts and advocates for its use when arterial sampling is unnecessary or impractical. Furthermore, VBG analysis could enhance patient care by enabling the timely, less invasive assessment of hemodynamic and metabolic conditions. Future research should focus on refining interpretation algorithms and expanding the clinical applications of VBG to fully realize its potential in critical care practice. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
15 pages, 5562 KiB  
Article
Effect of Amino Trimethylene Phosphonic Acid and Tartaric Acid on Compressive Strength and Water Resistance of Magnesium Oxysulfate Cement
by Yutong Zhou, Zheng Zhou, Lvchao Qiu, Kuangda Lu, Dongmei Xu, Shiyuan Zhang, Shixuan Zhang, Shouwei Jian and Hongbo Tan
Materials 2025, 18(15), 3473; https://doi.org/10.3390/ma18153473 - 24 Jul 2025
Viewed by 151
Abstract
Organic acids could act as retarders in magnesium oxysulfide (MOS) systems, not only delaying setting and improving fluidity but also enhancing compressive strength and water resistance. These effects are generally attributed to both the presence of H+ ions and anion chelation. However, [...] Read more.
Organic acids could act as retarders in magnesium oxysulfide (MOS) systems, not only delaying setting and improving fluidity but also enhancing compressive strength and water resistance. These effects are generally attributed to both the presence of H+ ions and anion chelation. However, the enhancement efficiency of different organic acids in MOS systems varies significantly due to differences in their molecular structures. To determine the underlying mechanism, this study comparatively investigated the effects of amino trimethylene phosphonic acid (ATMP) and tartaric acid (TA) on the setting time, fluidity, compressive strength, and water resistance of the MOS system, with the two additives incorporated at mole ratios to MgO ranging from 0.002 to 0.006. The mechanism behind it was revealed by discussion on the hydration heat, hydrates, and pH value. Results showed that both ATMP and TA could effectively improve the fluidity, delay the setting process, and enhance the mechanical properties, including strength and water resistance. At a mole ratio of 0.006, the incorporation of ATMP increased the 28 d compressive strength and the softening coefficient by 214.12% and 37.29%, respectively, compared with the blank group. In contrast, under the same dosage, TA led to an increase of 55.13% in the 28 d strength and 22.03% in the softening coefficient. Furthermore, hydration heat, product analysis, and pH measurements indicated that both ATMP and TA inhibited hydration during the initial hours but promoted hydration at later stages. The potential reason could be divided into two aspects: (1) H+ ions from ATMP and TA suppressing the formation of Mg(OH)2; (2) anion chelation with Mg2+ in the liquid phase, leading to a supersaturated solution with higher saturation, which further hindered Mg(OH)2 formation and facilitated the later development of 5Mg(OH)2·MgSO4·7H2O (517 phase). By contrast, under the same mole dosage of H+ or anions, the enhancement in compressive strength as well as the water resistance is superior when using ATMP. This was owing to its stronger chelating ability of ATMP, which more effectively inhibited Mg(OH)2 formation and then promoted the formation of the 517 phase. These findings confirm that the chelating ability of anions exerts an important impact on the retarding effect as well as the enhancement of strength in MOS systems. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

37 pages, 3799 KiB  
Systematic Review
Improvement of Expansive Soils: A Review Focused on Applying Innovative and Sustainable Techniques in the Ecuadorian Coastal Soils
by Mariela Macías-Párraga, Francisco J. Torrijo Echarri, Olegario Alonso-Pandavenes and Julio Garzón-Roca
Appl. Sci. 2025, 15(15), 8184; https://doi.org/10.3390/app15158184 - 23 Jul 2025
Viewed by 219
Abstract
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These [...] Read more.
Traditional stabilization techniques, such as lime and cement, widely used for their effectiveness, albeit with economic and environmental limitations, are leading to the search for sustainable approaches that utilize agricultural and industrial waste, such as rice husk ash, bagasse, and natural fibers. These have been shown to improve key geotechnical properties, even under saturated conditions, significantly. In particular, the combination of rice husk ash and recycled ceramics has shown notable results in Ecuadorian coastal soils. The article emphasizes the importance of selecting techniques that balance effectiveness, cost, and sustainability and identifies existing limitations, such as the lack of long-term data (ten years) and predictive models adapted to the Ecuadorian climate. From a bibliographic perspective, this article analyzes the challenges posed by expansive soils in the western coastal region of Ecuador, whose high plasticity and instability to moisture negatively affect civil works such as roads and buildings. The Ecuadorian clay contained 30% kaolinite and only 1.73% CaO, limiting its chemical reactivity compared to soils such as Saudi Arabia, which contained 34.7% montmorillonite and 9.31% CaO. Natural fibers such as jute, with 85% cellulose, improved the soil’s mechanical strength, increasing the UCS by up to 130%. Rice husk ash (97.69% SiO2) and sugarcane bagasse improved the CBR by 90%, highlighting their potential as sustainable stabilizers. All of this is contextualized within Ecuador’s geoenvironmental conditions, which are influenced by climatic phenomena such as El Niño and La Niña, as well as global warming. Finally, it is proposed to promote multidisciplinary research that fosters more efficient and environmentally responsible solutions for stabilizing expansive soils. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 2723 KiB  
Article
FTIR Characterization of Asphalt SARA Fractions in Response to Rubber Modification
by Mohyeldin Ragab, Eslam Deef-Allah and Magdy Abdelrahman
Appl. Sci. 2025, 15(14), 8062; https://doi.org/10.3390/app15148062 - 20 Jul 2025
Viewed by 351
Abstract
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency [...] Read more.
Asphalt–rubber binders (A-RBs) have a long and deep history of use; however, little is known regarding the interrelated chemical behaviors and miscibility of rubber with the asphalt fractions [saturates, aromatics, resins, and asphaltenes (SARA)]. This study comprehensively attempted to address this knowledge deficiency by employing Fourier transform infrared spectroscopy (FTIR) to investigate the chemical evolution of A-RBs. A-RB interacted at 190 °C and 3000 min−1 for 8 h was deemed to have the optimal rheological performance. FTIR of the liquid fractions of A-RB 190–3000 showed a prominent chemical shift in the SARA fractions, with new peaks that showed rubber polybutadiene (PB) and polystyrene migration into asphaltenes. Meanwhile, decreases in peaks with C–H aromatic bending and S=O stretching for the A-RB 190–3000 saturates showed that the rubber absorbed low-molecular-weight maltenes during swelling. Peaks associated with C=C aromatic appeared in saturates and aromatics, respectively, emphasizing that unsaturated components migrated from the rubber into the asphalt. Thermal analysis showed that rubber dissolution for this sample reached 82%. While a PB peak existed in asphaltenes of A-RB 220–3000, its intensity was diminished by depolymerization, thus compromising the integrity of the migrated rubber structure and generating less rheological enhancement. This study concludes that FTIR characterization of SARA fractions offers valuable insights into the interactions between asphalt and rubber, and that regulated processing conditions are essential for enhancing binder performance. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

Back to TopTop