Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = O···O distances in O–H···O systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1877 KiB  
Article
Enhanced C3H6O and CO2 Sensory Properties of Nickel Oxide-Functionalized/Carbon Nanotube Composite: A Comprehensive Theoretical Study
by Evgeniy S. Dryuchkov, Sergey V. Boroznin, Irina V. Zaporotskova, Natalia P. Boroznina, Govindhasamy Murugadoss and Shaik Gouse Peera
J. Compos. Sci. 2025, 9(6), 311; https://doi.org/10.3390/jcs9060311 - 19 Jun 2025
Viewed by 405
Abstract
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications [...] Read more.
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications in sensors, supercapacitors, batteries, and catalytic systems. Among these, nickel oxide (NiO)-modified CNTs have garnered significant attention due to their cost-effectiveness, facile synthesis, and promising gas-sensing capabilities. This study employs quantum-chemical calculations within the framework of density functional theory (DFT) to elucidate the interaction mechanisms between CNTs and NiO. The results demonstrate that the adsorption process leads to the formation of stable CNT-NiO complexes, with detailed analysis of adsorption energies, equilibrium distances, and electronic structure modifications. The single-electron spectra and density of states (DOS) of the optimized complexes reveal significant alterations in the electronic properties, particularly the modulation of the energy gap induced by surface and edge functionalization. Furthermore, the interaction of CNT-NiO composites with acetone (C3H6O) and carbon dioxide (CO2) is modeled, revealing a physisorption-dominated mechanism. The adsorption of these gases induces notable changes in the electronic properties and charge distribution within the system, underscoring the potential of CNT-NiO composites for gas-sensing applications. This investigation provides a foundational understanding of the role of metal oxide modifications in tailoring the sensory activity of CNTs toward trace amounts of diverse substances, including metal atoms, inorganic molecules, and organic compounds. The findings suggest that CNT-NiO systems can serve as highly sensitive and selective sensing elements, with potential applications in medical diagnostics and environmental monitoring, thereby advancing the development of next-generation sensor technologies. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

18 pages, 4401 KiB  
Article
Computational Fluid Dynamics Investigation of Flow and Flame Behavior in Natural Gas Burners for Borax Pentahydrate Furnaces
by Mehmed Rafet Ozdemir, Ramazan Sener, İlker Solakoglu and Bahadır Tunaboylu
Processes 2025, 13(6), 1660; https://doi.org/10.3390/pr13061660 - 26 May 2025
Viewed by 826
Abstract
The combustion behavior and thermal performance of industrial-scale borax pentahydrate (Na2B4O7·5H2O) melting furnaces remain underexplored despite their critical role in boric oxide (B2O3) production, a key input for high-performance manufacturing. This [...] Read more.
The combustion behavior and thermal performance of industrial-scale borax pentahydrate (Na2B4O7·5H2O) melting furnaces remain underexplored despite their critical role in boric oxide (B2O3) production, a key input for high-performance manufacturing. This study addressed this gap by employing three-dimensional computational fluid dynamics (CFD) simulations to model two operational natural gas-fired furnaces with distinct burner configurations (four-burner and six-burner systems). The analysis focused on optimizing burner placement, specifically, the axial distance and inclination angle, to enhance thermal uniformity and reduce refractory wall damage caused by aggressive high-temperature borate corrosion. A comprehensive parametric study of twelve burner configurations revealed that tilting the burners at 5–10° significantly improved temperature uniformity while reducing peak wall temperatures and mitigating localized hot spots. The optimal design, incorporating a 10° burner angle and a staggered burner arrangement (Case 11), attained a melt pool temperature of 1831.3 K and a charging average wall temperature of 1812.0 K. These values represent essential benchmarks for maximizing furnace efficiency and operational stability. The modified designs for the four- and six-burner systems led to improved temperature distributions and a notable reduction in maximum wall temperatures, directly contributing to longer maintenance intervals and improved refractory durability. The findings of this study confirm that minor geometrical and angular adjustments in burner placement can yield significant performance gains. The validated CFD approach and proposed design modifications offer a scalable, low-cost strategy for improving combustion efficiency and furnace lifespan in borax processing facilities. Full article
Show Figures

Figure 1

18 pages, 5533 KiB  
Article
Impressive 1D (Ferrocenyl⋯C6F5R⋯)n Stacking Due to Cooperative Interactions in N-(Ferrocenylmethyl)Pentafluorobenzenecarboxamide: Four Crystal Structures and Contacts Analyses in N-(Ferrocenylalkyl)Benzenecarboxamides
by John F. Gallagher, Christian Jelsch, Peter T. M. Kenny and Alan J. Lough
Crystals 2025, 15(4), 299; https://doi.org/10.3390/cryst15040299 - 25 Mar 2025
Cited by 1 | Viewed by 495
Abstract
The crystal structures, interactions, and contacts analyses of four N-(ferrocenylalkyl)benzene-carboxamide derivatives are described as the N-(ferrocenylmethyl)benzenecarboxamide 4a, N-(ferrocenylmethyl)-2,6-difluorobenzenecarboxamide 4e, N-(ferrocenylmethyl)pentafluorobenzenecarboxamide 4f and N-(ferrocenylethyl)-4-fluorobenzenecarboxamide 5. Intermolecular amide⋯amide hydrogen-bonding interactions as 1D intermolecular chains are present in [...] Read more.
The crystal structures, interactions, and contacts analyses of four N-(ferrocenylalkyl)benzene-carboxamide derivatives are described as the N-(ferrocenylmethyl)benzenecarboxamide 4a, N-(ferrocenylmethyl)-2,6-difluorobenzenecarboxamide 4e, N-(ferrocenylmethyl)pentafluorobenzenecarboxamide 4f and N-(ferrocenylethyl)-4-fluorobenzenecarboxamide 5. Intermolecular amide⋯amide hydrogen-bonding interactions as 1D intermolecular chains are present in all four crystal structures, with N⋯O distances ranging from 2.819 (2) to 2.924 (3) Å. Three of the crystal structures have one molecule per asymmetric unit, except the phenyl 4a, which has Z’=2. In the structure of 4a, Fc(C-H)⋯(phenyl) and phenylC-H⋯π(C5H4) ring interactions dominate the interaction landscape, together with (1:1) face-to-face (phenyl)⋯(phenyl) and (C5H5)⋯(C5H5) ring stacked pairs (Fc = ferrocenyl moiety). In 4e, interlocking ferrocenyls, short C-H⋯(C-F) and C-H⋯O hydrogen bonds are the only additional notable intermolecular interactions. In the pentafluorophenyl derivative 4f, a remarkable selection of interactions is present with interwoven 1D ferrocenyl⋯(C6F5) stacking and C-H⋯F interactions; molecules aggregate forming impressive 1D columns comprising intertwined (Fc⋯C6F5⋯)n ring stacking. In the ethyl bridged system 5, C-H⋯F and C-H⋯π (arene) contacts with (4-fluorobenzene) ring⋯ring pairs combine and stack about inversion centres. The reported para-F substituted structure REYWOU (4d) is used for comparisons with the 4a, 4e, 4f, and 5 crystal structures. In view of the rich interaction chemistry, contacts enrichment analyses of the Hirshfeld surface highlights several interesting features in all five ferrocenylalkylcarboxamide structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Graphical abstract

48 pages, 1898 KiB  
Essay
The Code Underneath
by Julio Rives
Axioms 2025, 14(2), 106; https://doi.org/10.3390/axioms14020106 - 30 Jan 2025
Viewed by 810
Abstract
An inverse-square probability mass function (PMF) is at the Newcomb–Benford law (NBL)’s root and ultimately at the origin of positional notation and conformality. PrZ=2Z2, where ZZ+. Under its tail, we find information [...] Read more.
An inverse-square probability mass function (PMF) is at the Newcomb–Benford law (NBL)’s root and ultimately at the origin of positional notation and conformality. PrZ=2Z2, where ZZ+. Under its tail, we find information as harmonic likelihood Ls,t=Ht1Hs1, where Hn is the nth harmonic number. The global Q-NBL is Prb,q=Lq,q+1L1,b=qHb11, where b is the base and q is a quantum (1q<b). Under its tail, we find information as logarithmic likelihood i,j=lnji. The fiducial R-NBL is Prr,d=d,d+11,r=logr1+1d, where rb is the radix of a local complex system. The global Bayesian rule multiplies the correlation between two numbers, s and t, by a likelihood ratio that is the NBL probability of bucket s,t relative to b’s support. To encode the odds of quantum j against i locally, we multiply the prior odds Prb,jPrb,i by a likelihood ratio, which is the NBL probability of bin i,j relative to r’s support; the local Bayesian coding rule is o˜j:i|r=ijlogrji. The Bayesian rule to recode local data is o˜j:i|r=o˜j:i|rlnrlnr. Global and local Bayesian data are elements of the algebraic field of “gap ratios”, ABCD. The cross-ratio, the central tool in conformal geometry, is a subclass of gap ratio. A one-dimensional coding source reflects the global Bayesian data of the harmonic external world, the annulus xQ|1x<b, into the local Bayesian data of its logarithmic coding space, the ball xQ|x<11b. The source’s conformal encoding function is y=logr2x1, where x is the observed Euclidean distance to an object’s position. The conformal decoding function is x=121+ry. Both functions, unique under basic requirements, enable information- and granularity-invariant recursion to model the multiscale reality. Full article
(This article belongs to the Special Issue Mathematical Modelling of Complex Systems)
Show Figures

Figure 1

23 pages, 9027 KiB  
Article
Investigating Induced Infiltration by Municipal Production Wells Using Stable Isotopes of Water (δ18O and δ2H), Four Mile Creek, Ohio
by Idah Ngoma, Jonathan Levy, Jason A. Rech and Tedros M. Berhane
Hydrology 2024, 11(12), 208; https://doi.org/10.3390/hydrology11120208 - 3 Dec 2024
Viewed by 1417
Abstract
Many municipalities around the world place their production wells in shallow alluvial aquifers that are adjacent to streams. Pumping these wells then induces the infiltration of surface water into the aquifer, allowing the greater extraction of water without significantly depleting the aquifer. However, [...] Read more.
Many municipalities around the world place their production wells in shallow alluvial aquifers that are adjacent to streams. Pumping these wells then induces the infiltration of surface water into the aquifer, allowing the greater extraction of water without significantly depleting the aquifer. However, induced infiltration poses a risk of introducing contamination from surface water into groundwater systems. The goal of this study was to quantify the amount of induced infiltration due to municipal pumping at the Four Mile Creek well field in Oxford, Ohio, using stable isotopes of water oxygen (δ18O) and deuterium (δ2H). In areas of municipal pumping, we sampled water from the production wells, Four Mile Creek, and from monitoring wells that we hypothesized to be both influenced and not influenced by induced infiltration. Samples were collected over 10 months in 2012 and over 12 months in 2021. In 2012, surface water δ18O values ranged from −3.89 to −8.04‰, and δ2H ranged from −26.55 to −55.65‰ at sampling sites. PW1 δ18O values ranged from −4.71 to −7.39‰ with a mean of −6.61 and −32.01 to −47.86‰ with a mean of −42.74‰ for δ2H. PW2 δ18O values ranged from −5.74 to −7.34‰, with a mean of −6.45‰, and δ2H ranged from −36.29 to −47.82‰ with a mean of −42.43‰. PW3 had lower values of both δ18O and δ2H, ranging from −6.36 to −8.02‰ and −47.7 to −40.35‰, and with means of −7.08 and −45.11, respectively. In 2021/2022, surface water δ18O values ranged from −5.32 to −7.93‰, and the δ2H ranged from −36.14 to −50.56‰. PW1 δ18O values ranged from −6.15 to −7.54‰ with a mean of −7.13‰, and δ2H ranged from −43.52 to −49.01‰ with a mean of −45.99‰. PW2 δ18O values ranged from −5.72 to −7.34‰, with a mean of −6.70‰, and δ2H ranged from −36.69 to −46.14‰, with a mean of −43.61‰. Using the time averaged values of δ18O of groundwater, production wells and surface water, the percentages of surface water resulting from induced infiltration in 2012 were 57%, 59% and 15% at the three wells, respectively, while in 2021, PW1 had 35% and PW2 91%. The amount of induced infiltration was apparently related to the pumping rates of the production wells, the length of time of pumping and the distance between Four Mile Creek and production wells. Our results indicate that stable isotopes of water provide a reliable method of quantifying groundwater/surface water interaction in alluvial aquifers. Full article
(This article belongs to the Special Issue Isotope Hydrology in the U.S.)
Show Figures

Figure 1

18 pages, 7145 KiB  
Review
Evolution of Auriferous Fluids in the Kraaipan-Amalia Greenstone Belts: Evidence from Mineralogical and Isotopic Constraints
by Kofi Adomako-Ansah, Napoleon Q. Hammond, Yuichi Morishita and Daizo Ishiyama
Minerals 2024, 14(11), 1171; https://doi.org/10.3390/min14111171 - 18 Nov 2024
Viewed by 1192
Abstract
The Kraaipan and Amalia greenstone belts in South Africa occur in the western part of the Kaapvaal Craton. The two belts stretch discontinuously in an approximately north–south orientation over a distance of about 250 km from southern Botswana in the north to the [...] Read more.
The Kraaipan and Amalia greenstone belts in South Africa occur in the western part of the Kaapvaal Craton. The two belts stretch discontinuously in an approximately north–south orientation over a distance of about 250 km from southern Botswana in the north to the Vaal River near Christiana in the south and are separated by a distance of about 90 km. Gold mineralization is hosted in banded iron formation at both the Kalahari Goldridge deposit (Kalgold) in the Kraaipan greenstone belt in the north and the Amalia deposit in the Amalia greenstone belt in the south, with the mineralization associated with quartz–carbonate veins. The footwalls of these deposits are generally composed of mafic volcanic schist and the hanging walls consisting of graywackes, schist and shale units. The Kalgold and Amalia gold deposits show some variation in the redox condition of the mineralizing system and fluid chemistry. The ore mineral assemblage is characterized by magnetite–pyrrhotite–pyrite at Kalgold, which is indicative of reducing conditions, and a magnetite–hematite–pyrite assemblage at Amalia that suggests a relatively oxidizing environment. Average mineralizing temperatures determined from chlorite geothermometry were relatively higher at the Kalahari Goldridge deposit ranging from 350 to 400 °C compared to the slightly cooler range of 330 to 390 °C at Amalia. The composition of the fluids derived from fluid inclusions is indicative of low salinity H2O--CO2±CH4-rich fluids at Kalgold against relatively H2O-CO2-rich fluids at Amalia. Evidence from strontium–carbon–oxygen isotopic ratios from carbonates suggests that differences in redox conditions in the deposits could be attributed to different flow pathways by an evolving fluid from a common source (with minimum 87Sr/86Sr = 0.70354) to the sites of gold deposition, with a significant ore fluid interaction with a thick sequence of carbonaceous meta-pelitic rock units at the Kalahari Goldridge deposit that is absent in the Amalia deposit. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

16 pages, 6303 KiB  
Article
Seasonal Variations in Ochreous Precipitates and Drainage Waters in the Grantcharitsa Tungsten Deposit, Western Rhodopes, Bulgaria
by Mihail Tarassov, Eugenia Tarassova, Valentina Lyubomirova, Milen Stavrev, Elena Tacheva and Aleksey Benderev
Minerals 2024, 14(11), 1090; https://doi.org/10.3390/min14111090 - 28 Oct 2024
Viewed by 1035
Abstract
Seasonal variations of drainage waters and ochreous products of their discharge from the closed abandoned old gallery at the Grantcharitsa scheelite deposit (Bulgaria) were studied by field and laboratory methods for the period 2019–2023. The drainage is generated under anoxic conditions and is [...] Read more.
Seasonal variations of drainage waters and ochreous products of their discharge from the closed abandoned old gallery at the Grantcharitsa scheelite deposit (Bulgaria) were studied by field and laboratory methods for the period 2019–2023. The drainage is generated under anoxic conditions and is inherently diluted (EC = 100–202 µS/cm) with S (6–12 mg/L), Si (6–22 mg/L), Na (6–10 mg/L), Fe (0.2–3.3 mg/L), and W (0.19–3.5 µg/L), at a pH 4.4–6.5 and temperature 7–11.5 °C, with dissolved oxygen DO (2.1–7.7 mg/L). The concentrations of Fe and W and the pH of the water are variable and reach their maximum values during the dry (autumn) season. It was found that such parameters as pH, Eh, DO, Fe and W content change dramatically at a distance of up to 3 m from the water outlet; the values of pH, DO and Eh are sharply increased with a simultaneous nearly 5–6-times reduction in iron and tungsten content. The decrease in the contents of these elements is associated with the precipitation of ochreous material consisting of nanoscale ferrihydrite with an intermediate structural ordering between 2-line and 6-line ferrihydrite (major phase), hematite, goethite, quartz, montmorillonite and magnetite. The formation of ferrihydrite occurs as a result of abiotic and biotic processes with the participation of iron-oxidizing bacteria. Besides Fe2O3 (55.5–64.0 wt.%), the ochreous sediment contains SiO2 (12.0–16.4 wt.%), SO3 (1.3–2.4 wt.%), Al2O3 (3.1–6.8 wt.%) and WO3 (0.07–0.11 wt.%). It has been shown that drainage waters and ochreous sediments do not inherently have a negative impact on the environment. The environmental problem arises with intense snowmelt and heavy rainfall, as a result of which the accumulated sediments are washed away and carried in the form of suspensions into the water systems. It is suggested that by providing atmospheric oxygen access to the closed gallery (via local boreholes), it is possible to stop the generation of iron-enriched drainage. Full article
(This article belongs to the Special Issue Characterization and Management of Mine Waters)
Show Figures

Figure 1

18 pages, 4137 KiB  
Article
Synthesis, X-ray Crystallography, Spectroscopic Characterizations, Density Functional Theory, and Hirshfeld Surface Analyses of a Novel (Carbonato) Picket Fence Iron(III) Complex
by Mondher Dhifet, Bouzid Gassoumi, Maxim A. Lutoshkin, Anna S. Kazachenko, Aleksandr S. Kazachenko, Omar Al-Dossary, Noureddine Issaoui and Habib Nasri
Molecules 2024, 29(16), 3722; https://doi.org/10.3390/molecules29163722 - 6 Aug 2024
Cited by 2 | Viewed by 1498
Abstract
An Fe(III)-carbonato six-coordinate picket fence porphyrin complex with the formula [K(2,2,2-crypt)][FeIII(TpivPP)(CO3)]·C6H5Cl·3H2O (I) has been synthesized and characterized by UV-Vis and FT-IR spectra. The structure of (carbonato)(α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) was also established [...] Read more.
An Fe(III)-carbonato six-coordinate picket fence porphyrin complex with the formula [K(2,2,2-crypt)][FeIII(TpivPP)(CO3)]·C6H5Cl·3H2O (I) has been synthesized and characterized by UV-Vis and FT-IR spectra. The structure of (carbonato)(α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) was also established by XRD. The iron atom is hexa-coordinated by the four nitrogen atoms of the pyrrol rings and the two oxygen atoms of the CO32− group. Complex I, characterized as a ferric high-spin complex (S = 5/2), presented higher Fe-Np (2.105(6) Å) and Fe-PC (0.654(2) Å) distances. Both X-ray molecular structure and Hirshfeld surface analysis results show that the crystal packing of I is made by C-H⋯O and C-H⋯Cg weak intermolecular hydrogen interactions involving neighboring [FeIII(TpivPP)(CO3)] ion complexes. Computational studies were carried out at DFT/B3LYP-D3/LanL2DZ to investigate the HOMO and LUMO molecular frontier orbitals and the reactivity within the studied compound. The stability of compound I was investigated by analyzing both intra- and inter-molecular interactions using the 2D and 3DHirshfeld surface (HS) analyses. Additionally, the frontier molecular orbital (FMO) calculations and the molecular electronic potential (MEP) analyses were conducted to determine the electron localizations, electrophilic, and nucleophilic regions, as well as charge transfer (ECT) within the studied system. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

17 pages, 3699 KiB  
Article
Numerical and Experimental Analyses of the Effect of Water Injection on Combustion of Mg-Based Hydroreactive Fuels
by Shiyao Shao, Songchen Yue, Hong Qiao, Peijin Liu and Wen Ao
Aerospace 2024, 11(7), 542; https://doi.org/10.3390/aerospace11070542 - 1 Jul 2024
Cited by 1 | Viewed by 1582
Abstract
The energy release process of the Mg-based hydroreactive fuels directly affects the performance of water ramjet engines, and the burning rate is one of the key parameters of the Mg-based hydroreactive fuels. However, there is not enough in-depth understanding of the combustion process [...] Read more.
The energy release process of the Mg-based hydroreactive fuels directly affects the performance of water ramjet engines, and the burning rate is one of the key parameters of the Mg-based hydroreactive fuels. However, there is not enough in-depth understanding of the combustion process of Mg-based hydroreactive fuels within the chamber of water ramjet engines, and there is a lack of effective means of prediction of the burning rate. Therefore, this paper aims to examine the flame structure of Mg-based hydroreactive fuels with a high metal content and analyze the impact of the water injection velocity and droplet diameter on the combustion property. A combustion experiment system was designed to replicate the combustion of Mg-based hydroreactive fuels within water ramjet engines, and the average linear burning rate was calculated through the target line method. On the basis of the experiment, a combustion–flow coupling solution model of Mg-based hydroreactive fuels was formulated, including the reaction mechanism between Mg/H2O and the decomposition products from an oxidizer and binder. The model was validated through experimental results with Mg-based hydroreactive fuels at various pressures and water injection velocities. The mean absolute percentage error (MAPE) in the experimental results was less than 5%, proving the accuracy and validity of the model. The resulting model was employed for simulating the combustion of Mg-based hydroreactive fuels under different water injection parameters. The addition of water injection resulted in the creation of a new high-temperature region, namely the Mg/H2O non-premixed combustion region in addition to improving the radial diffusion of the flame. With the increasing water injection velocity, the characteristic distance of Mg/H2O non-premixed combustion region is decreased, which enhances the heat transfer to burning surface and accelerates the fuel combustion. The impact of droplet parameters was investigated, revealing that larger droplets enhance the penetration of the fuel-rich gas, which is similar to the effect of injection velocity. However, when the droplet size becomes too large, the aqueous droplets do not fully evaporate, resulting in a slight decrease in the burning rate. These findings enhance the understanding of the mechanisms behind the burning rate variation in Mg-based hydroreactive fuels and offer theoretical guidance for the optimal selection of the engine operating parameters. Full article
(This article belongs to the Special Issue Combustion of Solid Propellants)
Show Figures

Figure 1

23 pages, 6816 KiB  
Article
Fabrication and Optimisation of Alumina Nanoporous Membranes for Drug Delivery Applications: A Comparative Study
by Lamyaa Osama, Hala T. Handal, Sara A. M. El-Sayed, Emad M. Elzayat and Mostafa Mabrouk
Nanomaterials 2024, 14(13), 1078; https://doi.org/10.3390/nano14131078 - 24 Jun 2024
Cited by 4 | Viewed by 1908
Abstract
Neurodegenerative disorders cause most physical and mental disabilities, and therefore require effective treatment. The blood–brain barrier (BBB) prevents drug molecules from crossing from the blood to the brain, making brain drug delivery difficult. Implantable devices could provide sustained and regulated medication to solve [...] Read more.
Neurodegenerative disorders cause most physical and mental disabilities, and therefore require effective treatment. The blood–brain barrier (BBB) prevents drug molecules from crossing from the blood to the brain, making brain drug delivery difficult. Implantable devices could provide sustained and regulated medication to solve this problem. Two electrolytes (0.3 M oxalic acid and 0.3 M sulphuric acid) were used to anodise Al2O3 nanoporous membranes, followed by a third anodisation in concentrated H2SO4 to separate the through-hole membranes from the aluminium substrate. FTIR, AFM, and SEM/EDX were used to characterise the membranes’ structure and morphology. The effects of the anodisation time and electrolyte type on the AAO layer pore density, diameter, interpore distance, and thickness were examined. As a model drug for neurodegenerative disorders, donepezil hydrochloride (DHC) was loaded onto thin alumina nanoporous membranes. The DHC release profiles were characterised at two concentrations using a UV–Vis spectrophotometer. Oxalic acid membranes demonstrated an average pore diameter of 39.6–32.5 nm, which was two times larger than sulphuric acid membranes (22.6–19.7 nm). After increasing the anodisation time from 3 to 5 h, all of the membranes showed a reduction in pore diameter that was stable regardless of the electrolyte type or period. Drug release from oxalic acid-fabricated membranes was controlled and sustained for over 2 weeks. Thus, nanoporous membranes as implantable drug delivery systems could improve neurodegenerative disease treatment. Full article
Show Figures

Figure 1

18 pages, 3089 KiB  
Article
Hydration of N-Hydroxyurea from Ab Initio Molecular Dynamics Simulations
by Mateusz Balicki and Maciej Śmiechowski
Molecules 2024, 29(11), 2435; https://doi.org/10.3390/molecules29112435 - 22 May 2024
Viewed by 1312
Abstract
N-Hydroxyurea (HU) is an important chemotherapeutic agent used as a first-line treatment in conditions such as sickle cell disease and β-thalassemia, among others. To date, its properties as a hydrated molecule in the blood plasma or cytoplasm are dramatically understudied, although [...] Read more.
N-Hydroxyurea (HU) is an important chemotherapeutic agent used as a first-line treatment in conditions such as sickle cell disease and β-thalassemia, among others. To date, its properties as a hydrated molecule in the blood plasma or cytoplasm are dramatically understudied, although they may be crucial to the binding of HU to the radical catalytic site of ribonucleotide reductase, its molecular target. The purpose of this work is the comprehensive exploration of HU hydration. The topic is studied using ab initio molecular dynamic (AIMD) simulations that apply a first principles representation of the electron density of the system. This allows for the calculation of infrared spectra, which may be decomposed spatially to better capture the spectral signatures of solute–solvent interactions. The studied molecule is found to be strongly hydrated and tightly bound to the first shell water molecules. The analysis of the distance-dependent spectra of HU shows that the E and Z conformers spectrally affect, on average, 3.4 and 2.5 of the closest H2O molecules, respectively, in spheres of radii of 3.7 Å and 3.5 Å, respectively. The distance-dependent spectra corresponding to these cutoff radii show increased absorbance in the red-shifted part of the water OH stretching vibration band, indicating local enhancement of the solvent’s hydrogen bond network. The radially resolved IR spectra also demonstrate that HU effortlessly incorporates into the hydrogen bond network of water and has an enhancing effect on this network. Metadynamics simulations based on AIMD methodology provide a picture of the conformational equilibria of HU in solution. Contrary to previous investigations of an isolated HU molecule in the gas phase, the Z conformer of HU is found here to be more stable by 17.4 kJ·mol−1 than the E conformer, pointing at the crucial role that hydration plays in determining the conformational stability of solutes. The potential energy surface for the OH group rotation in HU indicates that there is no intramolecular hydrogen bond in Z-HU in water, in stark contrast to the isolated solute in the gas phase. Instead, the preferred orientation of the hydroxyl group is perpendicular to the molecular plane of the solute. In view of the known chaotropic effect of urea and its N-alkyl-substituted derivatives, N-hydroxyurea emerges as a unique urea derivative that exhibits a kosmotropic ordering of nearby water. This property may be of crucial importance for its binding to the catalytic site of ribonucleotide reductase with a concomitant displacement of a water molecule. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

18 pages, 5051 KiB  
Article
Unveiling the Nature and Strength of Selenium-Centered Chalcogen Bonds in Binary Complexes of SeO2 with Oxygen-/Sulfur-Containing Lewis Bases: Insights from Theoretical Calculations
by Tao Lu, Renhua Chen, Qingyu Liu, Yeshuang Zhong, Fengying Lei and Zhu Zeng
Int. J. Mol. Sci. 2024, 25(11), 5609; https://doi.org/10.3390/ijms25115609 - 21 May 2024
Cited by 2 | Viewed by 1885
Abstract
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π–hole-type Se∙∙∙O/S ChBs in [...] Read more.
Among various non-covalent interactions, selenium-centered chalcogen bonds (SeChBs) have garnered considerable attention in recent years as a result of their important contributions to crystal engineering, organocatalysis, molecular recognition, materials science, and biological systems. Herein, we systematically investigated π–hole-type Se∙∙∙O/S ChBs in the binary complexes of SeO2 with a series of O-/S-containing Lewis bases by means of high-level ab initio computations. The results demonstrate that there exists an attractive interaction between the Se atom of SeO2 and the O/S atom of Lewis bases. The interaction energies computed at the MP2/aug-cc-pVTZ level range from −4.68 kcal/mol to −10.83 kcal/mol for the Se∙∙∙O chalcogen-bonded complexes and vary between −3.53 kcal/mol and −13.77 kcal/mol for the Se∙∙∙S chalcogen-bonded complexes. The Se∙∙∙O/S ChBs exhibit a relatively short binding distance in comparison to the sum of the van der Waals radii of two chalcogen atoms. The Se∙∙∙O/S ChBs in all of the studied complexes show significant strength and a closed-shell nature, with a partially covalent character in most cases. Furthermore, the strength of these Se∙∙∙O/S ChBs generally surpasses that of the C/O–H∙∙∙O hydrogen bonds within the same complex. It should be noted that additional C/O–H∙∙∙O interactions have a large effect on the geometric structures and strength of Se∙∙∙O/S ChBs. Two subunits are connected together mainly via the orbital interaction between the lone pair of O/S atoms in the Lewis bases and the BD*(OSe) anti-bonding orbital of SeO2, except for the SeO2∙∙∙HCSOH complex. The electrostatic component emerges as the largest attractive contributor for stabilizing the examined complexes, with significant contributions from induction and dispersion components as well. Full article
Show Figures

Figure 1

18 pages, 1645 KiB  
Article
Assessing the Effect of Cold Plasma on the Softening of Postharvest Blueberries through Reactive Oxygen Species Metabolism Using Transcriptomic Analysis
by Can Zhang and Jun-Hu Cheng
Foods 2024, 13(7), 1132; https://doi.org/10.3390/foods13071132 - 8 Apr 2024
Cited by 6 | Viewed by 2302
Abstract
The postharvest softening and corresponding quality deterioration of blueberry fruits are crucial factors that hinder long-distance sales and long-term storage. Cold plasma (CP) is an effective technology to solve this, but the specific mechanism of delaying fruit softening remains to be revealed. Here, [...] Read more.
The postharvest softening and corresponding quality deterioration of blueberry fruits are crucial factors that hinder long-distance sales and long-term storage. Cold plasma (CP) is an effective technology to solve this, but the specific mechanism of delaying fruit softening remains to be revealed. Here, this study found that CP significantly improved blueberry hardness. Physiological analysis showed that CP regulated the dynamic balance of reactive oxygen species (ROS) to maintain hardness by increasing antioxidant content and antioxidant enzyme activity, resulting in a 12.1% decrease in the H2O2 content. Transcriptome analysis revealed that CP inhibited the expression of cell wall degradation-related genes such as the pectin hydrolase gene and cellulase gene, but up-regulated the genes of the ROS-scavenging system. In addition, the resistance genes in the MAPK signaling pathway were also activated by CP in response to fruit ripening and softening and exhibited positive response characteristics. These results indicate that CP can effectively regulate the physiological characteristics of blueberries at a genetic level and delay the softening process, which is of great significance to the storage of blueberries. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

13 pages, 2360 KiB  
Article
Theoretical Insights into Different Complexation Modes of Dioxovanadium(V) Compounds with Pyridoxal Semicarbazone/Thiosemicarbazone/S-Methyl-iso-thiosemicarbazone Ligands
by Odeh Abdullah Odeh Alshammari, Sawsan Maisara, Badriah Alshammari, Maha Raghyan Alshammari, Violeta Rakic, Jasmina Dimitrić Marković, Violeta Jevtovic and Dušan Dimić
Molecules 2024, 29(6), 1213; https://doi.org/10.3390/molecules29061213 - 8 Mar 2024
Cited by 6 | Viewed by 1540
Abstract
Vanadium complexes have gained considerable attention as biologically active compounds. In this contribution, three previously reported dioxovanadium(V) complexes with pyridoxal semicarbazone, thiosemicarbazone, and S-methyl-iso-thiosemicarbazone ligands are theoretically examined. The intermolecular stabilization interactions within crystallographic structures were investigated by Hirshfeld surface analysis. These experimental [...] Read more.
Vanadium complexes have gained considerable attention as biologically active compounds. In this contribution, three previously reported dioxovanadium(V) complexes with pyridoxal semicarbazone, thiosemicarbazone, and S-methyl-iso-thiosemicarbazone ligands are theoretically examined. The intermolecular stabilization interactions within crystallographic structures were investigated by Hirshfeld surface analysis. These experimental structures were optimized at the B3LYP-D3BJ/6-311++G(d,p)(H,C,N,O,S)/def2-TZVP(V) level of theory, and crystallographic and optimized bond lengths and angles were compared. High correlation coefficients and low mean absolute errors between these two data sets proved that the selected level of theory was appropriate for the description of the system. The changes in structures and stability were examined by adding explicit solvent molecules. The Quantum Theory of Atoms in Molecules (QTAIM) was employed to analyze the intramolecular interactions with special emphasis on the effect of substituents. A good correlation between electron density/Laplacian and interatomic distance was found. Through molecular docking simulations towards Bovine Serum Albumin (BSA), the binding affinity of complexes was further investigated. The spontaneity of binding in the active position of BSA was shown. Further experimental studies on this class of compounds are advised. Full article
(This article belongs to the Special Issue Advances in Vanadium Complexes)
Show Figures

Figure 1

11 pages, 1709 KiB  
Article
Molecular-Simulation–Inspired Synthesis of [6]-Prismane via Photoisomerisation of Octafluoro[2.2]paracyclophane
by Yoichi Hosokawa, Shuji Kajiya, Ayako Ohshima, Satoshi Kawata, Nobuhiro Ishida and Arimitsu Usuki
Molecules 2024, 29(4), 783; https://doi.org/10.3390/molecules29040783 - 8 Feb 2024
Cited by 1 | Viewed by 1965
Abstract
Prismanes have been attracting interest for nearly 50 years because of their geometric symmetry, highly strained structures, and unique applications due to their high carbon densities and bulky structures. Although [3]-, [4]-, and [5]-prismanes have been synthesised, [6]-prismanes and their derivatives remain elusive. [...] Read more.
Prismanes have been attracting interest for nearly 50 years because of their geometric symmetry, highly strained structures, and unique applications due to their high carbon densities and bulky structures. Although [3]-, [4]-, and [5]-prismanes have been synthesised, [6]-prismanes and their derivatives remain elusive. Herein, fluorine chemistry, molecular mechanics, molecular orbital package, and density functional theory calculations were used to design and implement the photoisomerisation of octafluoro[2.2]paracyclophane (selected based on the good overlap of its lowest unoccupied molecular orbitals and short distance between the benzene rings) into octafluoro-[6]-prismane. Specifically, a dilute solution of the above precursor in CH3CN/H2O/dimethyl sulfoxide (DMSO) (2:1:8, v/v/v) solution was irradiated with ultraviolet light, with the formation of the desired product confirmed through the use of nuclear magnetic resonance spectroscopy and gas chromatography–mass spectrometry. The product was thermally stable in solution but not under work-up conditions, which complicated the further analysis and single-crystal preparation. The key criteria for successful photoisomerisation were the presence of fluorine substituents in the cyclophane structure and DMSO in the solvent system. A more stable derivative design requires the isolation of prismane products. The proposed fluorination-based synthetic strategy is applicable to developing novel high-strain molecules/materials with three-dimensional skeletons. Full article
(This article belongs to the Special Issue Insights for Organofluorine Chemistry, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop