Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (655)

Search Parameters:
Keywords = O/W emulsions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1524 KB  
Article
Phytocosmetic Water-in-Oil Emulsions with Plant Oils: Physicochemical, Rheological and Photoprotective Evaluation
by Nebojša Pavlović, Katarina Žabić, Dragana Zaklan, Jovana Milutinov, Dejan Ćirin and Veljko Krstonošić
Cosmetics 2026, 13(1), 23; https://doi.org/10.3390/cosmetics13010023 - 18 Jan 2026
Viewed by 68
Abstract
Plant oils are increasingly explored as sustainable functional ingredients in topical emulsions due to their emollient properties and reported photoprotective potential. This study aimed to formulate physically stable W/O emulsions containing selected plant oils (olive, avocado, sesame, flaxseed, and grape seed oils) at [...] Read more.
Plant oils are increasingly explored as sustainable functional ingredients in topical emulsions due to their emollient properties and reported photoprotective potential. This study aimed to formulate physically stable W/O emulsions containing selected plant oils (olive, avocado, sesame, flaxseed, and grape seed oils) at two concentrations (15% and 30%) and to evaluate their physicochemical, rheological, occlusive, and UV-protective properties. All formulations were confirmed as W/O systems with skin-compatible pH values and demonstrated shear-thinning, non-Newtonian flow with varying degrees of thixotropy. Increasing oil content from 15% to 30% reduced shear stress, consistency index, and viscoelastic moduli, indicating a softer internal structure. Moreover, the viscosities of the emulsions were not solely determined by the viscosities of the individual oils, suggesting significant interactions with the emulsifier system. High occlusion factors were demonstrated for all emulsions, with the highest values observed for 30% olive- and grape seed oil–based formulations. Spectrophotometric SPF assessment revealed measurable UV-protective activity only for emulsions containing 30% olive, avocado, or flaxseed oil (SPF > 1). All formulations exhibited satisfactory physical stability under mechanical and thermal stress. These findings demonstrate that plant oils can modulate the structure and performance of W/O emulsions and may serve as valuable supportive ingredients in the development of photoprotective cosmetic products. Full article
Show Figures

Graphical abstract

21 pages, 2856 KB  
Article
Influence of pH and Heat Treatment on the Physicochemical, Interfacial, and Emulsifying Properties of Hemp Seed Protein Dispersions
by Davide Odelli, Lingxin You, Jennyfer Fortuin, Jérôme Bour, Marcus Iken, Axel Archaimbault and Christos Soukoulis
Foods 2026, 15(2), 257; https://doi.org/10.3390/foods15020257 - 10 Jan 2026
Viewed by 176
Abstract
This study reports the effect of pH (2, 7, 10) and heat treatment (80 °C for 30 min) on the oil–water (o/w) interfacial behavior of hemp seed protein isolate (HPI) aqueous dispersions. The physicochemical, interfacial adsorption, rheology, and emulsifying properties of protein dispersions [...] Read more.
This study reports the effect of pH (2, 7, 10) and heat treatment (80 °C for 30 min) on the oil–water (o/w) interfacial behavior of hemp seed protein isolate (HPI) aqueous dispersions. The physicochemical, interfacial adsorption, rheology, and emulsifying properties of protein dispersions were evaluated. HPI dispersions at pH 10 exhibited the highest water solubility (60%), the greatest net charge (−27 mV), and the lowest hydrophobicity (~5 a.u.), promoting o/w interfacial pressure (π) and interfacial viscoelasticity. Strong interfacial viscoelastic protein layers (E* = 25 mN/m) were also observed under acidic conditions (pH 2), where proteins exhibited high solubility (40%), a high positive net charge (21 mV), and increased hydrophobicity (46 a.u.). HPI dispersions in their neutral state (pH 7) were not able to form stable o/w emulsions due to their poor physicochemical properties such as low solubility (18%), low surface charge (−18 mV), and hydrophobicity (~5 a.u.). Heat treatment significantly increased the charge and hydrophobicity of both neutral and alkaline proteins (~30 mV and ~10 a.u., respectively), increasing their particle size distribution and ultimately reducing their interfacial protein layer elasticity (E* = 20 and 13 nM/m, respectively). While particles at acidic conditions showed high thermal resistance, heat treatment improved the emulsifying stability in alkaline conditions while further reducing it in the neutral state. Overall, HPI dispersions demonstrated the ability to form stable emulsions at both alkaline and acid pHs, with those formed at pH 2 exhibiting a lower droplet size and superior stability. Full article
(This article belongs to the Special Issue Research Trends in Plant-Based Foods)
Show Figures

Figure 1

15 pages, 2260 KB  
Article
Molecular Association Between Short Linear Maltodextrin and Ferulic Acid and the Exploration of Its Applicability
by Shigesaburo Ogawa, Daisuke Sugitani, Minenosuke Matsutani, Mizuho Takayashiki and Atsushi Kawano
Polymers 2026, 18(2), 166; https://doi.org/10.3390/polym18020166 - 7 Jan 2026
Viewed by 244
Abstract
Short linear maltodextrin (SLMD) mixtures, which are modified from starch, comprise approximately 10 linear glucose molecules. In this study, we explored the noncovalent molecular association of SLMD with ferulic acid (FA) in aqueous and solid systems, as well as its applicability to water-in-oil [...] Read more.
Short linear maltodextrin (SLMD) mixtures, which are modified from starch, comprise approximately 10 linear glucose molecules. In this study, we explored the noncovalent molecular association of SLMD with ferulic acid (FA) in aqueous and solid systems, as well as its applicability to water-in-oil (W/O) emulsion systems. Results showed that SLMD interacts with FA at a 1:1 molar ratio with an average equilibrium constant of 13.3 M−1 in pure water. Changes in ellipticity in the involved circular dichroism absorption spectrum and nuclear magnetic resonance spectroscopy revealed that multipoint direct interactions exist between SLMD and FA suggesting complex formation through inclusion. Complexation does not impede the radical scavenging ability of FA; instead, there is an additive effect with a slight contribution from SLMD. SLMD crystals with a high FA content were obtained for B-type amylose. However, no strong interaction between the solid forms of SLMD and FA was recognized. For both SLMD aq. and W/O emulsions with different FA concentrations, the UV protection effect increased due to the solubility enhancement of FA by SLMD. Overall, this study demonstrates the ability and potential importance of SLMD to associate with functional components in water and solid systems and the applicability to emulsified systems. Full article
Show Figures

Figure 1

22 pages, 3127 KB  
Article
Poly(ε-caprolactone) Nanoparticle Tumor-Lysate Vaccination in Mice Generates Hybridoma-Derived Antibodies Enabling Breast Cancer Diagnosis and Chemotherapy Synergy
by Murat Ihlamur, Pelin Pelit Arayıcı and Emrah Şefik Abamor
Biomedicines 2026, 14(1), 88; https://doi.org/10.3390/biomedicines14010088 - 1 Jan 2026
Viewed by 411
Abstract
Background: Tumor-lysate vaccines can capture tumor heterogeneity; however, their effectiveness may be reduced by antigen instability and short antigen presentation. Here, we aimed to improve antigen protection and prolong presentation by using a slow-degrading polymeric nanocarrier and an approved adjuvant. Methods: We encapsulated [...] Read more.
Background: Tumor-lysate vaccines can capture tumor heterogeneity; however, their effectiveness may be reduced by antigen instability and short antigen presentation. Here, we aimed to improve antigen protection and prolong presentation by using a slow-degrading polymeric nanocarrier and an approved adjuvant. Methods: We encapsulated breast cancer cell lysates (MCF-7 and MDA-MB-231) in poly(ε-caprolactone) (PCL) nanoparticles using a double-emulsion (w/o/w) method and co-administered them with alum. We then characterized particle size, PDI, zeta potential, morphology, and in vitro release. Next, we evaluated nitric oxide (NO), TNF-α/IL-10 responses, and cytocompatibility in J774 macrophages. Finally, we quantified serum antibody titers in Balb/c mice after six biweekly immunizations, generated hybridomas, purified IgG, and tested antibody-mediated cytotoxicity alone and together with doxorubicin. Results: PCL nanoparticles were ~220–255 nm (PDI 0.10–0.19; ζ −2 to −3 mV) and released ~90–95% of encapsulated lysate by 800 h (~33 days). Encapsulated lysate (40 μg/mL) modestly increased NO versus control and increased further with alum (p < 0.05). TNF-α increased 7.4–9.72-fold, whereas IL-10 rose 2.82–3.11-fold. Importantly, encapsulated antigen + alum produced the highest ELISA responses after the sixth dose (6.36-fold for MCF-7 and 7.00-fold for MDA-MB-231 versus control; p < 0.05). Hybridoma-derived antibody signals increased through day 42, and Protein G purification yielded up to ~395 μg and ~318 μg IgG. Purified antibodies reduced cell viability, and viability decreased further when antibodies were combined with doxorubicin (to ~31.6% in MCF-7 and ~40.3% in MDA-MB-231). Conclusions: Overall, sustained PCL-mediated antigen release combined with alum strengthened humoral responses to tumor lysate and enabled recovery of functional antibodies with diagnostic capture and in vitro cytotoxic activity. In future work, key mechanistic steps such as lymph-node trafficking and cross-presentation should be tested directly. Full article
(This article belongs to the Section Nanomedicine and Nanobiology)
Show Figures

Figure 1

15 pages, 2178 KB  
Article
Enhanced Stability of O/W Pickering Emulsions Driven by Interfacial Adsorption of Whey Protein Nanogels
by Zhaoshuo Yu, Fangzhou He, Lijing Ke and Jean-Christophe Jacquier
Foods 2026, 15(1), 9; https://doi.org/10.3390/foods15010009 - 19 Dec 2025
Viewed by 361
Abstract
Whey protein is valued for its health and emulsifying benefits, yet its intrinsic instability limits its effectiveness as an emulsifier under food processing conditions. To address the need for physically stable emulsions, this study developed O/W Pickering emulsions stabilised by nanogel WPI (GWEs) [...] Read more.
Whey protein is valued for its health and emulsifying benefits, yet its intrinsic instability limits its effectiveness as an emulsifier under food processing conditions. To address the need for physically stable emulsions, this study developed O/W Pickering emulsions stabilised by nanogel WPI (GWEs) and investigated their stability under common food processing conditions, including thermal treatment, pH adjustment, and cold storage. For comparison, emulsions stabilised by non-heated (NWEs) and heat-treated WPI (HWEs) were also prepared. The results showed that while the oil droplet size of GWEs (12.2 ± 1.16 µm) was comparable to NWEs (13.6 ± 0.26 µm), HWEs exhibited significantly larger droplets (18.0 ± 0.16 µm). GWEs demonstrated the highest protein adsorption at the oil–water interface (68.7%). TEM further revealed that whey nanogels achieved nearly full monolayer coverage of oil droplets. By contrast, only partial protein coverage and exposed interfaces were observed in NWEs and HWEs. Additionally, GWEs exhibited superior stability under food processing conditions, with minimal changes in emulsion capacity, droplet size, viscosity, and flow behaviour when subjected to heat (up to 90 °C), acidification (pH down to 3), and storage for up to 3 days, confirming the potential of nanogel WPI as an advanced stabiliser in emulsion-based formulations. Full article
Show Figures

Graphical abstract

17 pages, 2276 KB  
Article
Mesquite-Derived Galactomannan Esters as Novel Oleogelators: Emulsion Characteristics and Their Emulsion-Templated Oleogels
by Gabriel H. Gómez-Rodríguez, Osiris Álvarez-Bajo, Waldo M. Argüelles-Monal, Jaime Lizardi-Mendoza, Tomás J. Madera-Santana, Francisco Vásquez-Lara and Yolanda L. López-Franco
Polysaccharides 2026, 7(1), 1; https://doi.org/10.3390/polysaccharides7010001 - 19 Dec 2025
Viewed by 281
Abstract
This study investigates the emulsifying capacity (EC), emulsion stability (ES), and oleogel-forming potential of galactomannan (GM) esters modified with decanoic (GD) and palmitic (GP) fatty acids at low (L) and high (H) degrees of esterification (DE) (GDL, DE 0.37; GDH, DE 0.71; GPL, [...] Read more.
This study investigates the emulsifying capacity (EC), emulsion stability (ES), and oleogel-forming potential of galactomannan (GM) esters modified with decanoic (GD) and palmitic (GP) fatty acids at low (L) and high (H) degrees of esterification (DE) (GDL, DE 0.37; GDH, DE 0.71; GPL, DE 0.47; GPH, DE 0.57). Oil-in-water (O/W) emulsions (6, 8, and 10% w/v) of native GM and GM esters were prepared and characterized for droplet size, ζ-potential, and rheological behavior. Esterified GMs demonstrated improved EC compared to native GM, especially at higher concentrations and lower DE. All emulsions exhibited non-Newtonian and pseudoplastic behavior, with the GDH and GPL samples showing gel-like viscoelastic profiles (G′ > G″). Emulsions were freeze-dried to form oleogels, which were then analyzed for oil-binding capacity (OBC), hardness, chemical interactions (FTIR-ATR), and microstructure (SEM). The GDH and GPL oleogels exhibited higher OBC (59–73%) and lower hardness, which can be attributed to denser polymer–oil networks and enhanced hydrophobic interactions. SEM analysis further confirmed that esterification improved the microstructural integrity of emulsion-templated oleogels. These findings support the potential of mesquite GM esters as amphiphilic oleogelators for the formulation of structured lipid systems, offering valuable applications in food and pharmaceutical industries seeking solid fat alternatives. Full article
Show Figures

Figure 1

17 pages, 1098 KB  
Article
Utilization of a Bioinformatic Approach to Identify Emulsifying Peptides Embedded in Brewers’ Spent Grain Proteins and Characterization of Their Emulsifying Properties
by Rasmus Kranold Mikkelsen, Ioanna Fragkaki, Simon Gregersen Echers, Naim Abdul-Khalek, Michael Toft Overgaard, Charlotte Jacobsen and Betül Yesiltas
Colloids Interfaces 2026, 10(1), 1; https://doi.org/10.3390/colloids10010001 - 19 Dec 2025
Viewed by 364
Abstract
Brewers’ spent grain (BSG) represents the major byproduct of the brewing industry and remains largely underutilized. While BSG contains a rather high amount of protein, poor functional properties limit its use as a functional ingredient for foods without additional processing. In this work, [...] Read more.
Brewers’ spent grain (BSG) represents the major byproduct of the brewing industry and remains largely underutilized. While BSG contains a rather high amount of protein, poor functional properties limit its use as a functional ingredient for foods without additional processing. In this work, we investigate emulsifying peptides embedded in the major BSG proteins based on a mass spectrometry-based proteomic analysis and subsequent bioinformatic prediction to explore the utilization of BSG as a raw material for the production of protein-based emulsifying ingredients. Forty-eight peptides were selected based on EmulsiPred score, amino acid sequence, and protein abundance for evaluation. All peptides effectively reduced the interfacial tension between oil–water, but only 15 could produce and stabilize emulsions with droplet sizes below 5 µm. Some peptides were able to produce stable emulsions with sub-micron droplet sizes, implying very promising emulsifying properties. This study demonstrated promising emulsifying properties of BSG peptides and suggested that the functionality could be predicted using bioinformatic tools. However, the used tool needs to be further optimized for higher success rate. Full article
(This article belongs to the Special Issue Food Colloids: 4th Edition)
Show Figures

Graphical abstract

16 pages, 1926 KB  
Article
Investigation of the Effects of Sodium Caseinate/Xanthan Gum Complexes on the Stability and Sustained Release of Acid Double Emulsions Using Box–Behnken Design
by Houria Bouziane, Soumia Seddari and Nadji Moulai-Mostefa
ChemEngineering 2025, 9(6), 141; https://doi.org/10.3390/chemengineering9060141 - 9 Dec 2025
Viewed by 348
Abstract
This study investigates the formulation and optimization of acid-stable water-in-oil-in-water (W/O/W) double emulsions stabilized by sodium caseinate (NaCN)–xanthan gum (XG) complexes, with the aim of developing a natural biopolymer-based delivery system exhibiting controlled release behavior. The emulsions were prepared at pH 4, and [...] Read more.
This study investigates the formulation and optimization of acid-stable water-in-oil-in-water (W/O/W) double emulsions stabilized by sodium caseinate (NaCN)–xanthan gum (XG) complexes, with the aim of developing a natural biopolymer-based delivery system exhibiting controlled release behavior. The emulsions were prepared at pH 4, and the effects of NaCN concentration, XG concentration, and primary fraction (PF) on the encapsulation efficiency (EE) and droplet size (DS) were systematically evaluated using response surface methodology (RSM) based on a Box–Behnken design (BBD). Microscopic and rheological analyses confirmed the formation of a rigid interfacial film around the droplets, leading to improved emulsion stability over one month of storage at 4, 25, and 40 °C. The release kinetics of chlortetracycline (CTC), used as a model drug, followed a Fickian diffusion mechanism, indicating efficient control of the release rate by the NaCN/XG interfacial complex. The optimized formulation (NaCN = 0.652%, XG = 0.339%, PF = 10%) yielded an encapsulation efficiency of 87.7% and a mean droplet size of 24.83 µm, demonstrating excellent predictive accuracy of the statistical model. The results highlight the potential of NaCN/XG complexes to produce acid-stable, biopolymer-based double emulsions capable of sustained release of bioactive compounds, making this system promising for food and pharmaceutical delivery applications. Full article
Show Figures

Figure 1

18 pages, 2311 KB  
Article
TD-NMR-Based Determination of the Entrapped Water Yield of Water-in-Oil-in-Water Double Emulsions: Influence of Xanthan Gum Addition
by Yulin Hu, Ferre Rebry and Paul Van der Meeren
Molecules 2025, 30(24), 4680; https://doi.org/10.3390/molecules30244680 - 6 Dec 2025
Viewed by 329
Abstract
Water-in-oil-in-water (W/O/W) double emulsions (DEs) are considered promising systems for encapsulating, protecting, and delivering hydrophilic compounds. However, their thermodynamic instability limits their practical application. The addition of stabilizers and/or thickeners is a straightforward strategy to improve their stability. However, the high viscosity of [...] Read more.
Water-in-oil-in-water (W/O/W) double emulsions (DEs) are considered promising systems for encapsulating, protecting, and delivering hydrophilic compounds. However, their thermodynamic instability limits their practical application. The addition of stabilizers and/or thickeners is a straightforward strategy to improve their stability. However, the high viscosity of DEs complicates the accurate determination of their entrapped water yield (EY), especially when applying techniques based on phase separation. In this study, two TD-NMR-based techniques (T2 relaxometry, and NMR diffusometry) were compared to analytical photocentrifugation to evaluate their effectiveness in determining the entrapped water yield of DEs formulated with various concentrations (0–0.8 wt%) of xanthan gum (Xan) in the external aqueous (W2) phase. For EY determination, analytical photocentrifugation led to overestimated results for DEs containing xanthan, primarily due to the high viscosity, which inhibited the complete separation between the cream and serum layers. In contrast, after optimizing measurement and analysis conditions to minimize interference from water and/or solute exchange between the inner and outer aqueous phases, T2 relaxometry and NMR diffusometry yielded comparable EY values for all DEs with or without Xan. Hence, these two TD-NMR-based techniques can be considered direct and reliable methods for EY determination in viscous DE system. Full article
(This article belongs to the Special Issue NMR and MRI in Materials Analysis: Opportunities and Challenges)
Show Figures

Figure 1

19 pages, 1628 KB  
Article
Antioxidant, Photoprotective, and In Vitro Antiaging Assessment of Optimized Water/Oil Emulsions of Selenized Chickpea Glutelin with Rosehip Oil or Grapeseed Oil
by Ada Keila Milán-Noris, Ángel R. Rábago-Monzón, Maritza G. Castro-Quintero, Marilena Antunes-Ricardo, Álvaro Montoya-Rodríguez, Julio Montes-Ávila, Cuauhtémoc Reyes-Moreno and Daniela Guardado-Félix
Macromol 2025, 5(4), 59; https://doi.org/10.3390/macromol5040059 - 4 Dec 2025
Viewed by 325
Abstract
The selenized glutelin (Se-G) from Se-enriched chickpea sprouts has demonstrated high antioxidant potential. In this study, the response surface methodology was employed to optimize Se-G content (1–4%) and grape or rosehip oils (10–40%) for the preparation of W/O emulsions with strong antioxidant activity. [...] Read more.
The selenized glutelin (Se-G) from Se-enriched chickpea sprouts has demonstrated high antioxidant potential. In this study, the response surface methodology was employed to optimize Se-G content (1–4%) and grape or rosehip oils (10–40%) for the preparation of W/O emulsions with strong antioxidant activity. In the optimal emulsions (Se-GG with grape oil and Se-GR with rosehip oil), antioxidant, photoprotective, and antiaging properties were evaluated. Non-Se glutelin was used in the control emulsions. The optimal conditions determined (4.0% Se-G/10.0% rosehip oil and 3.39% Se-G/12.50% grape oil) allowed for the preparation of emulsions with higher antioxidant capacity. The Se-GR with rosehip oil had greater antioxidant capacity than the Se-GG with grape oil. The optimal emulsions with Se, compared to their Se-free controls, had significantly higher antioxidant activity. The zeta potential value increased with the presence of Se. A positive effect on the inhibition of ROS production and lipid peroxidation was observed, as well as the inhibition of collagenase, elastase, and hyaluronidase activity, mainly due to the presence of selenium. Se-G represents a powerful tool for preventing damage to the skin caused by UV exposure. Full article
Show Figures

Graphical abstract

19 pages, 5227 KB  
Article
Exploring the Role of Tamarind Seed Polysaccharides in Modulating the Structural, Digestive, and Emulsion Stability Properties of Waxy Corn Starch Composites
by Xiangyu Ya, Yongshuai Ma, Zibo Song, Yongli Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(23), 4152; https://doi.org/10.3390/foods14234152 - 3 Dec 2025
Viewed by 549
Abstract
This study investigated the effects of tamarind seed polysaccharide (TSP) on the structural characteristics, digestibility, and emulsifying properties of waxy maize starch (WMS), as well as their interaction mechanisms. WMS-TSP complexes were prepared via complexes to improve starch’s physical and functional properties. Native [...] Read more.
This study investigated the effects of tamarind seed polysaccharide (TSP) on the structural characteristics, digestibility, and emulsifying properties of waxy maize starch (WMS), as well as their interaction mechanisms. WMS-TSP complexes were prepared via complexes to improve starch’s physical and functional properties. Native WMS showed smooth spherical granules, while WMS-TSP samples formed freeze-drying-induced honeycomb structures (~200–250 μm). In vitro digestion indicated that WMS-TSP systems (5–15%) reduced RDS by 20.1–24.11% relative to native WMS (41% ± SD), suggesting a potential to attenuate postprandial glycemic responses. Fourier-transform infrared (FT-IR) spectroscopy revealed that TSP interacted with WMS mainly through non-covalent bonds such as hydrogen bonding, while influencing the degree of crystallinity without generating new crystalline polymorphs. In corn oil-based emulsions, the WMS-TSP composites showed strong viscoelastic behavior, with elevated storage (G′) and loss (G″) moduli, together with improved storage stability. These findings highlight the synergistic potential of WMS and TSP in enhancing the functionality of starch-based systems and provide insights into the role of polysaccharides in food structure and digestion regulation. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 2920 KB  
Article
Bifunctionalized Microspheres via Pickering Emulsion Polymerization for Removal of Diclofenac from Aqueous Solution
by Xiaoyi Gou, Zia Ahmad, Zaijin You and Zhou Ren
J. Compos. Sci. 2025, 9(12), 663; https://doi.org/10.3390/jcs9120663 - 2 Dec 2025
Viewed by 418
Abstract
The removal of water pollutants with high selectivity and efficiency is still a huge challenge owing to the complex composition of contaminated water. The preparation, modification of Pickering emulsion microspheres, and their application in the adsorption and removal of non-steroidal anti-inflammatory drugs (diclofenac) [...] Read more.
The removal of water pollutants with high selectivity and efficiency is still a huge challenge owing to the complex composition of contaminated water. The preparation, modification of Pickering emulsion microspheres, and their application in the adsorption and removal of non-steroidal anti-inflammatory drugs (diclofenac) in water were studied. Poly(2-(diethylamino)ethyl methacrylate-divinylbenzene), (P(DEAEMA-DVB)) microspheres were prepared by Pickering emulsion polymerization. The P(DEAEMA-DVB) polymer was modified with glycidyl trimethylammonium chloride (GTAC) and phenyl glycidyl ether (PGE) to prepare the adsorbent poly(quaternized and phenyl-functionalized) (P(QP-DVB)) with a substantial quantity of quaternary ammonium functional groups. The non-steroidal anti-inflammatory drugs in aqueous solution was mainly adsorbed by the anion exchange interaction with quaternary ammonium species. The adsorption kinetics coincided with the pseudo-second-order kinetic model, and the adsorption isotherm conformed to the Langmuir isotherm model. The optimized P(QP-DVB) particles exhibited well-defined spherical morphology and a uniform particle size distribution ranging from 15 to 30 µm. Nitrogen adsorption/desorption characterization revealed a high specific surface area of 674 m2 g−1 and a pore size distribution from 2 to 25 nm. In addition, the aforementioned microsphere underwent chemical regeneration and exhibits good reusability, thereby reducing both the economic costs and environmental impacts. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

16 pages, 4928 KB  
Article
Physical and Gastrointestinal Digestive Properties of Sodium Caseinate Emulsions Regulated by Four Different Polysaccharides
by Mengyao Kang, Denglin Luo, Lihua Zhang, Jiaxiang Zang, Lala Li and Wei Xu
Gels 2025, 11(12), 968; https://doi.org/10.3390/gels11120968 - 1 Dec 2025
Viewed by 296
Abstract
Polysaccharide intervention is an effective strategy to regulate properties of emulsions. In this study, xanthan gum (XG), konjac glucomannan (KGM), guar gum (GG), and inulin (IN) were selected to regulate physical and gastrointestinal digestive properties of sodium caseinate (CAS) oil-in-water (O/W) emulsions. The [...] Read more.
Polysaccharide intervention is an effective strategy to regulate properties of emulsions. In this study, xanthan gum (XG), konjac glucomannan (KGM), guar gum (GG), and inulin (IN) were selected to regulate physical and gastrointestinal digestive properties of sodium caseinate (CAS) oil-in-water (O/W) emulsions. The results indicate that IN could not improve CAS emulsion properties, while XG, KGM, and GG significantly reduced droplet size and improved emulsions’ stability. With the increase of the polysaccharide concentration, the G′ and G″ of the emulsions increased and the emulsions showed an obvious “solid-like” state, which effectively slowed down the “strain-thinning” phenomenon. The microstructure demonstrated that the polysaccharide chains are effectively connected with the surface membrane of droplets, which effectively improves interfacial membrane strength and inhibits droplet aggregation. In vitro digestion simulations proved that polysaccharides effectively modulate emulsion lipid release, providing an excellent lipid environment for curcumin absorption in the gastrointestinal tract. The order of the four polysaccharides in improving CAS emulsions was XG > KGM > GG > IN. This study dissects the differential regulation of physical and gastrointestinal digestive properties of emulsion by polysaccharides, providing theoretical support for functional emulsions for diverse requirements. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

13 pages, 2299 KB  
Article
SWCNT-Based Composite Films with High Mechanical Strength and Stretchability by Combining Inorganic-Blended Acrylic Emulsion for Various Thermoelectric Generators
by Yuto Nakazawa, Yoshiyuki Shinozaki, Hiroto Nakayama, Shuya Ochiai, Shugo Miyake and Masayuki Takashiri
Nanomaterials 2025, 15(23), 1817; https://doi.org/10.3390/nano15231817 - 1 Dec 2025
Viewed by 500
Abstract
Single-walled carbon nanotube (SWCNT) films are potential materials for thermoelectric generators (TEGs) owing to their flexibility and high thermoelectric performance near 300 K. However, they inherently exhibit low mechanical strength and high thermal conductivity. To address these limitations, SWCNT-based composite films were fabricated [...] Read more.
Single-walled carbon nanotube (SWCNT) films are potential materials for thermoelectric generators (TEGs) owing to their flexibility and high thermoelectric performance near 300 K. However, they inherently exhibit low mechanical strength and high thermal conductivity. To address these limitations, SWCNT-based composite films were fabricated by combining SWCNTs with varying amounts of an inorganic-blended acrylic emulsion additive. The resulting SWCNT-based composite films exhibited significantly improved mechanical properties, with breaking strain and tensile strength values approximately thirty and two times higher, respectively, than those of the additive-free SWCNT film. Thermal conductivity decreased from 7.3 W/(m·K) for the additive-free SWCNT film to 2.1 W/(m·K) for the SWCNT-based composite films. Two types of TEGs were fabricated using the composite films: (1) the water-floating TEG, which generated a temperature difference through evaporative cooling; and (2) the standard TEG, which generated a temperature difference when vertically mounted on a heater. The output voltage of the first type of TEGs decreased as the additive amount increased, owing to reduced evaporative cooling. However, the second type of TEGs increased the output voltage by adding the appropriate amount of additive owing to the film’s low thermal conductivity. These findings are significantly helpful in using TEGs with appropriate designs and placements. Full article
(This article belongs to the Special Issue Nanomaterials for Stretchable and Wearable Devices)
Show Figures

Graphical abstract

18 pages, 3358 KB  
Article
Green Synthesis of Silica Nanoparticles from Sugarcane Bagasse Ash for Stable Pickering Oil-in-Water Emulsions
by Daniel Jaramillo-Vélez, Mariana Ochoa-Castaño, Andrea Flórez-Caro, Luis David Botero, Esteban Ureña-Benavides, Raúl Adolfo Valencia-Cardona, Jorge Andrés Velásquez-Cock and Catalina Gómez-Hoyos
Molecules 2025, 30(22), 4464; https://doi.org/10.3390/molecules30224464 - 19 Nov 2025
Viewed by 878
Abstract
The present study explores novel alternatives for the exploitation of sugarcane bagasse ash by obtaining and modifying SiO2 nanoparticles through a green synthesis method. The hydrophilic nature of the nanoparticles was modified using oleic acid. The nanoparticles were characterized using FTIR, FESEM, [...] Read more.
The present study explores novel alternatives for the exploitation of sugarcane bagasse ash by obtaining and modifying SiO2 nanoparticles through a green synthesis method. The hydrophilic nature of the nanoparticles was modified using oleic acid. The nanoparticles were characterized using FTIR, FESEM, and DLS, and their performance in the stabilization of Pickering emulsions was also studied. FESEM micrographs of the nanoparticles revealed an irregular and agglomerated structure. EDS confirmed that their main components are oxygen and silicon, and ATR-FTIR spectra demonstrated that oleic acid effectively modified the nanoparticles. Subsequently, O/W Pickering emulsions were fabricated by combining rotor–stator homogenization and probe ultra-sonication, using dodecane and liquid paraffin as model oil phases and SiO2 NPs as stabilizers. Static light scattering measurements showed that the emulsions exhibited polydispersity, while photographic monitoring confirmed that their physical stability was affected by the concentrations of oleic acid and nanoparticles: concentrations of up to 20.0 wt% and 1.0 wt%, respectively, produced emulsions that remained stable for 7 to 15 days. This study identifies the behavior and challenges associated with novel pathways for the valorization of sugarcane bagasse ash. The stabilization of Pickering emulsions using the obtained SiO2 NPs highlights their potential in pharmaceutical, cosmetic, and food applications. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants: Extraction and Application)
Show Figures

Graphical abstract

Back to TopTop