Antioxidant, Photoprotective, and In Vitro Antiaging Assessment of Optimized Water/Oil Emulsions of Selenized Chickpea Glutelin with Rosehip Oil or Grapeseed Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Chemical Reagents
2.3. Germination Process
2.4. Glutelin Purification
2.5. Glutelin Characterization
2.5.1. Selenium Quantification
2.5.2. Protein Content
2.6. Total Fat and Fatty Acid Profile in Rosehip and Grape Seed Oils
2.7. Emulsion Preparation
2.8. Optimization Process
2.9. Determination of Antioxidant Capacity
2.9.1. Hydrophilic ORAC (ORAC-H)
2.9.2. ABTS
2.9.3. Lipophilic ORAC (ORAC-L)
2.10. Particle Size, Z Potential, and Polydispersity Index
2.11. Characterization of Cosmeceutical Properties of Optimized Emulsions
2.11.1. Cell Viability Assay
2.11.2. Cellular Antioxidant Activity
2.11.3. Nitric Oxide Inhibitory Activity
2.11.4. Anti-Photoaging Activity: ROS Production
2.11.5. Lipid Peroxidation Inhibitory Activity
2.11.6. Collagenase Inhibitory Activity
2.11.7. Elastase Inhibitory Activity
2.11.8. Hyaluronidase Inhibitory Activity
2.12. Experimental Design
3. Results and Discussion
3.1. Glutelin Characterization
3.2. Characterization of the Fatty Acid Profile in Grape and Rosehip Oil
| Fatty Acid | Grape Oil (g/100 g) | Rosehip Oil (g/100 g) |
|---|---|---|
| Cis-8,11,14 eicosatrienoic acid | 0.16 | 0.12 |
| Cis-11 eicosenoic acid | 0.39 | 0.26 |
| Linolenic acid | 2.39 | 0.86 |
| Arachidic acid | 0.28 | 0.41 |
| Linoleic acid | 56.93 | 53.04 |
| Cis-11 vaccenic acid | 1.33 | 0.58 |
| Oleic acid | 27.64 | 30.02 |
| Stearic acid | 3.42 | 1.81 |
| Heptadecanoic acid | <0.01 | 0.06 |
| Palmitoleic acid | 0.15 | 0.13 |
| Palmitic acid | 6.48 | 11.90 |
| Myristic acid | 0.05 | 0.03 |
| Tridecanoic acid | <0.01 | 0.11 |
| Saturated fat | 10.23 | 11.32 |
| Monounsaturated fat | 29.51 | 30.99 |
| Polyunsaturated fat | 59.48 | 53.99 |
| Total fat | 99.22 | 99.30 |
3.3. Optimization and Validation of Antioxidant Emulsions
3.4. Antioxidant Capacity of Optimal Emulsions
3.5. Physical Characterization of Optimized Emulsions
3.6. Anti-Inflammatory, Antioxidant, and Cosmeceutical Properties of Emulsions Optimized with and Without Selenium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfeifer, G.P. Mechanisms of UV-induced mutations and skin cancer. Genome Instab. Dis. 2020, 1, 99–113. [Google Scholar] [CrossRef]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. J. Inflamm. Res. 2022, 71, 817–831. [Google Scholar] [CrossRef]
- Sentkowska, A.; Pyrzyńska, K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 2022, 27, 2486. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An antioxidant with a critical role in anti-aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, S.; Liu, H. Antioxidant activity and inhibition of ultraviolet radiation-induced skin damage of selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate. Bioorg. Chem. 2020, 105, 104431. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, G.; De Nisco, M.; Alonso, C.; Gravina, C.; Piscopo, V.; Lemos, R.; Pedatella, S. Novel synthesized seleno-glycoconjugates as cosmeceutical ingredients: Antioxidant activity and in vitro skin permeation. Eur. J. Med. Chem. Rep. 2024, 12, 100240. [Google Scholar] [CrossRef]
- Hernández-Grijalva, M.I.; Serrano-Sandoval, S.N.; Gutiérrez-Uribe, J.A.; Serna-Saldivar, S.O.; Milán-Carrillo, J.; Antunes-Ricardo, M.; Guardado-Félix, D. Application of protein fractions from selenized sprouted chickpeas as emulsifying agents and evaluation of their antioxidant properties. Food Bioprod. Process. 2022, 136, 59–66. [Google Scholar] [CrossRef]
- Serrano-Sandoval, S.N.; Guardado-Félix, D.; Gutiérrez-Uribe, J.A. Changes in digestibility of proteins from chickpeas (Cicer arietinum L.) germinated in presence of selenium and antioxidant capacity of hydrolysates. Food Chem. 2019, 285, 290–295. [Google Scholar] [CrossRef]
- Serrano-Sandoval, S.N.; Jiménez-Rodríguez, A.; Hernández-Pérez, J.; Chavez-Santoscoy, R.A.; Guardado-Félix, D.; Antunes-Ricardo, M. Selenized chickpea sprouts hydrolysates as a potential anti-aging angredient. Molecules 2023, 28, 3402. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Santos, L.A. Potential valorization strategy of wine industry by-products and their application in cosmetics-case study: Grape pomace and grapeseed. Molecules 2022, 27, 969. [Google Scholar] [CrossRef]
- Popović-Djordjević, J.; Špirović-Trifunović, B.; Pećinar, I.; de Oliveira, L.F.C.; Krstić, Đ.; Mihajlović, D.; Simal-Gandara, J. Fatty acids in seed oil of wild and cultivated rosehip (Rosa canina L.) from different locations in Serbia. Ind Crops Prod. 2023, 191, 115797. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape seed oil compounds: Biological and chemical actions for health. Nutr. Metab. Insights 2016, 9, NMI.S32910. [Google Scholar] [CrossRef]
- Nogueira, M.A.; Cardoso, C.O.; Albuquerque, L.F.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Grape seed oil microemulsion for improved skin delivery of resveratrol. AAPS PharmSciTech 2025, 26, 148. [Google Scholar] [CrossRef]
- Oargă (Porumb), D.P.; Cornea-Cipcigan, M.; Nemeș, S.A.; Cordea, M.I. The effectiveness of a topical rosehip oil treatment on facial skin characteristics: A pilot study on wrinkles, UV spots reduction, erythema mitigation, and age-related signs. Cosmetics 2023, 12, 125. [Google Scholar] [CrossRef]
- Guardado-Félix, D.; Serna-Saldivar, S.O.; Cuevas-Rodríguez, E.O.; Jacobo-Velázquez, D.A.; Gutiérrez-Uribe, J.A. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food Chem. 2017, 226, 69–74. [Google Scholar] [CrossRef]
- Serrano-Sandoval, S.N.; Guardado-Félix, D.; Gutiérrez-Uribe, J.A. Deglycosylation of isoflavones in selenized germinated chickpea flours due to convection drying. LWT 2022, 153, 112417. [Google Scholar] [CrossRef]
- AOAC. AOAC Official Methods of Analysis; Association of Official Analytical Chemists; AOAC: Washington, DC, USA, 1992. [Google Scholar]
- De-la-Vara, S.R.; Domínguez, D.J. Métodos de superficie de respuesta; un estudio comparativo. Rev. Mat. Teor. Apl. 2002, 1, 47–65. [Google Scholar]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Development and Validation of Oxygen Radical Absorbance Capacity Assay for Lipophilic Antioxidants Using Randomly Methylated β-Cyclodextrin as the Solubility Enhancer. J. Agric. Food Chem. 2002, 50, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Nakyai, W.; Saraphanchotiwitthaya, A.; Viennet, C.; Humbert, P.; Viyoch, J. An in vitro model for fibroblast photoaging comparing single and repeated UVA irradiations. J. Photochem. Photobiol. 2017, 93, 1462–1471. [Google Scholar] [CrossRef]
- Hubert, J.; Angelis, A.; Aligiannis, N.; Rosalia, M.; Abedini, A.; Bakiri, A.; Renault, J.H. In vitro dermo-cosmetic evaluation of bark extracts from common temperate trees. Planta Med. 2016, 82, 1351–1358. [Google Scholar] [CrossRef]
- Abhijit, S.; Manjushree, D. Anti-hyaluronidase, anti-elastase activity of Garcinia indica. Int. J. Bot. 2010, 6, 299–303. [Google Scholar] [CrossRef]
- Mrština, T.; Praus, L.; Száková, J.; Kaplan, L.; Tlustoš, P. Foliar selenium biofortification of soybean: The potential for transformation of mineral selenium into organic forms. Front. Plant Sci. 2024, 15, 1379877. [Google Scholar] [CrossRef] [PubMed]
- Sita, K.; Sehgal, A.; Bhardwaj, A.; Bhandari, K.; Jha, U.; Vara Prasad, P.V.; Nayyar, H. Selenium supplementation to lentil (Lens culinaris Medik.) under combined heat and drought stress improves photosynthetic ability, antioxidant systems, reproductive function and yield traits. Plant Soil 2023, 486, 7–23. [Google Scholar] [CrossRef]
- Zhang, W.R.; Zhang, Q.R.; Zhou, Z.Y.; Zhang, Y.F.; Li, X.W.; Shen, H.Y.; Xiang, Q. Oxidative-inflammatory modulation of skin lipid metabolism by squalane, oleic acid, and linoleic acid. Cosmetics 2025, 12, 130. [Google Scholar] [CrossRef]
- Pashaei, M.; Hassanpour, H. Phenolic, amino acids, and fatty acids profiles and the nutritional properties in the fresh and dried fruits of black rosehip (Rosa pimpinellifolia L.). Sci. Rep. 2024, 14, 19665. [Google Scholar] [CrossRef]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-inflammatory and skin barrier repair effects of topical application of some plant oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef]
- Nzikou, J.M.; Matos, L.; Bouanga-Kalou, G.; Ndangui, C.B.; Pambou-Tobi, N.P.G.; Kimbonguila, A.; Desobry, S. Chemical composition on the seeds and oil of sesame (Sesamum indicum L.) grown in Congo-Brazzaville. Adv. J. Food Sci. Technol. 2010, 2, 22–27. [Google Scholar]
- Boelsma, E.; Hendriks, H.F.; Roza, L. Nutritional skin care: Health effects of micronutrients and fatty acids. Am. J. Clin. Nutr. 2021, 73, 853–864. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Y.; He, H. The role of linoleic acid in skin and hair health: A review. Int. J. Mol. Sci. 2024, 26, 246. [Google Scholar] [CrossRef]
- Tsiapali, O.I.; Ayfantopoulou, E.; Tzourouni, A.; Ofrydopoulou, A.; Letsiou, S.; Tsoupras, A. Unveiling the utilization of grape and winery by-products in cosmetics with health promoting properties. Appl. Sci. 2025, 15, 1007. [Google Scholar] [CrossRef]
- Michalak, M.; Błońska-Sikora, E.; Dobros, N.; Spałek, O.; Zielińska, A.; Paradowska, K. Bioactive compounds, antioxidant properties, and cosmetic applications of selected cold-pressed plant oils from seeds. Cosmetics 2024, 11, 153. [Google Scholar] [CrossRef]
- Candioti, L.V.; De Zan, M.M.; Cámara, M.S.; Goicoechea, H.C. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.; Casas, A.; Teixeira, J.A.; Novo Barros, A. Revealing the beauty potential of grape stems: Harnessing phenolic compounds for cosmetics. Int. J. Mol. Sci. 2023, 24, 11751. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.R.; Agrawal, Y.K. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res. 2011, 2, 81. [Google Scholar] [CrossRef]
- Shahabadi, N.; Zendehcheshm, S.; Khademi, F. Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins. Biotechnol. Rep. 2021, 30, e00615. [Google Scholar] [CrossRef]
- Abbas, H.S.; Abou Baker, D.H.; Ahmed, E.A. Cytotoxicity and antimicrobial efficiency of selenium nanoparticles biosynthesized by Spirulina platensis. Arch. Microbiol. 2021, 203, 523–532. [Google Scholar] [CrossRef]
- Harbeoui, H.; Dakhlaoui, S.; Wannes, W.A.; Bourgou, S.; Hammami, M.; Akhtar Khan, N.; Saidani Tounsi, M. Does unsaponifiable fraction of grape seed oil attenuate nitric oxide production, oxidant and cytotoxicity activities. J. Food Biochem. 2019, 43, e12940. [Google Scholar] [CrossRef]
- Saini, A.; Kaur, R.; Kumar, S.; Saini, R.K.; Kashyap, B.; Kumar, V. New horizon of rosehip seed oil: Extraction, characterization for its potential applications as a functional ingredient. Food Chem. 2023, 437, 137568. [Google Scholar] [CrossRef]
- Arora, P.; Shiveena, B.; Garg, M.; Kumari, S.; Goyal, A. Curative potency of medicinal plants in management of eczema: A conservative approach. Phytomed. Plus 2022, 2, 100256. [Google Scholar] [CrossRef]
- Emonet, N.; Leccia, M.T.; Favier, A.; Beani, J.C.; Richard, M.J. Thiols and selenium: Protective effect on human skin fibroblasts exposed to UVA radiation. J. Photochem. Photobiol. B 1997, 40, 84–90. [Google Scholar] [CrossRef]
- Chung, S.; Roy, A.K.; Webster, T.J. Selenium nanoparticle protection of fibroblast stress: Activation of ATF4 and Bcl-xL expression. Int. J. Nanomed. 2019, 2019, 9995–10007. [Google Scholar] [CrossRef]
- Kim, Y.M.; Jung, H.J.; Choi, J.S.; Nam, T.J. Anti-wrinkle effects of a tuna heart H2O fraction on Hs27 human fibroblasts. Int. J. Mol. Med. 2016, 37, 92–98. [Google Scholar] [CrossRef]
- Hetta, M. Hyaluronidase inhibitors as skin rejuvenating agents from natural source. Int. J. Phytocosmet. Nat. Ingred. 2020, 7, 4. [Google Scholar] [CrossRef]
- Kayath, H.; Dhawan, S.; Nanda, S. In-vitro estimation of photo-protective potential of rosehip seed oil and QbD based development of a nanoformulation. Curr. Nanomed. 2019, 9, 216–231. [Google Scholar] [CrossRef]
- Gabe, Y.; Takeda, K.; Tobiishi, M.; Kikuchi, S.; Tsuda, K.; Haryuu, Y.; Takahashi, Y. Evaluation of subclinical chronic sun damage in the skin via the detection of long-lasting ultraweak photon emission. Skin Res. Technol. 2021, 27, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Orian, L.; Flohé, L. Selenium-catalyzed reduction of hydroperoxides in chemistry and biology. Antioxidants 2021, 10, 1560. [Google Scholar] [CrossRef]
- Liu, K.; Du, R.; Chen, F. Antioxidant activities of Se-MPS: A selenopeptide identified from selenized brown rice protein hydrolysates. LWT 2019, 111, 555–560. [Google Scholar] [CrossRef]


| Se Content (µg/g Sample) | Protein Content (%) | |
|---|---|---|
| Non-Se-enriched glutelin | 0.62 ± 0.014 b | 95.80 ± 1.32 a |
| Se-enriched glutelin | 108.14 ± 4.80 a | 90.24 ± 1.16 b |
| Process Variables | Response Variables | |||||
|---|---|---|---|---|---|---|
| Optimization Rosehip Oil | Optimization Grape Oil | |||||
| Treatment 1 | Oil % 2 | Se-G % 2 | ORAC (μmol ET/mL) | ABTS (μmol ET/mL) | ORAC (μmol ET/mL) | ABTS (μmol ET/mL) |
| 1 | 10 | 1 | 1916.67 | 1548.63 | 1566.67 | 3040.87 |
| 2 | 10 | 4 | 4683.33 | 1997.89 | 4816.67 | 3928.82 |
| 3 | 40 | 1 | 1450.00 | 1189.22 | 1866.67 | 1969.70 |
| 4 | 40 | 4 | 2266.67 | 1601.48 | 1700.00 | 1603.24 |
| 5 | 3.7 | 2.5 | 4116.67 | 3847.78 | 4083.00 | 3259.34 |
| 6 | 46.2 | 2.5 | 2783.33 | 1014.80 | 2433.00 | 2406.62 |
| 7 | 25 | 0.37 | 1733.33 | 1548.63 | 600.00 | 1730.09 |
| 8 | 25 | 4.62 | 4583.33 | 1871.04 | 4550.33 | 3407.33 |
| 9 | 25 | 2.5 | 3866.67 | 2156.45 | 3375.00 | 2420.72 |
| 10 | 25 | 2.5 | 3700.00 | 2293.87 | 3416.67 | 2145.88 |
| 11 | 25 | 2.5 | 3866.67 | 2420.72 | 3166.67 | 2603.95 |
| 12 | 25 | 2.5 | 3833.33 | 2399.58 | 3316.67 | 2350.25 |
| 13 | 25 | 2.5 | 3766.67 | 2542.28 | 3375.00 | 2272.73 |
| Regression Parameter Coefficients | Response Variables | |||
|---|---|---|---|---|
| Optimization Rosehip Oil | Optimization Grape Oil | |||
| Parameter | ORAC (μmol ET/mL) Coded Values | ABTS (μmol ET/mL) Coded Values | ORAC (μmol ET/mL) Coded Values | ABTS (μmol ET/mL) Coded Values |
| Intercept | ||||
| β0 | 3806.67 | 2362.58 | 3806.67 | 2362.58 |
| Linear | ||||
| β1, Protein% (X1) | 951.73 **** | 164.68 NS | 951.73 **** | 164.68 NS |
| β2, Oil% (X2) | −596.12 ** | −392.38 **** | −596.12 ** | −392.38 **** |
| Quadratic | ||||
| β11, Protein% (X12) | −505.42 ** | −376.20 *** | −505.42 ** | −376.20 *** |
| β22, Oil% (X22) | −359.56 * | −302.42 ** | −359.56 * | −302.42 ** |
| Interaction | ||||
| β12, Protein% × Oil% (X1 × X2) | −487.50 * | −9.25 NS | −487.50 * | −9.25 NS |
| p-value for the model R2 R2 adjusted p-value for lack of fit CV (%) Adequate precision (PRESS) | >0.0012 0.92 0.86 0.0005 12.76 12.43 | >0.0087 0.84 0.74 0.047 13.95 6.65 | >0.0012 0.92 0.86 0.0005 12.76 12.43 | >0.0087 0.84 0.74 0.047 13.95 6.65 |
| Emulsions | ||||
|---|---|---|---|---|
| Se-GR | GR | Se-GG | GG | |
| Antioxidant capacity (μmol ET/mL) | ||||
| ABTS | 3810 ± 108 b | 2935 ± 93 c | 4397 ± 390 a | 2703 ± 219 c |
| ORAC-H | 4850 ± 274 a | 3825 ± 287 b | 5100 ± 216 a | 3800 ± 180 b |
| ORAC-L | 19,200 ± 871 a | 16,666 ± 816 b | 15,333 ± 305 b | 9466 ± 416 c |
| ORAC Total | 24,450 | 18,158 | 22,466 | 13,266 |
| Physical characterization | ||||
| Size (nm) | 593.07 ± 18.75 b | 522.63 ± 3.55 c | 610.77 ± 9.20 b | 668.20 ± 6.96 a |
| Zeta Potential (MV) | −30.73 ± 0.38 d | −20.67 ± 0.50 a | −24.37 ± 0.47 c | −22.93 ± 0.68 b |
| PDI (μm) | 0.30 ± 0.07 b | 0.25 ± 0.11 c | 0.41 ± 0.03 a | 0.42 ± 0.06 a |
| Se-GR | GR | Se-GG | GG | ||
|---|---|---|---|---|---|
| Inhibition of nitric oxide production (%) | 82.32 ± 9.93 a | 89.42 ± 7.24 a | 89.85 ± 2.50 a | 82.49 ± 0.97 a | |
| Antioxidant activity in HDFa cells (%) | 47.75 ± 2.89 a | 32.04 ± 2.54 c | 40.87 ± 2.16 b | 31.31 ± 0.66 c | |
| Collagenase inhibitory activity (%) | 94.86 ± 2.62 a | 82.33 ± 5.37 b | 78.42 ± 7.31 b | 66.87 ± 4.96 c | |
| Elastase inhibitory activity (%) | 25.30 ± 1.56 a | 17.83 ± 1.70 c | 24.37 ± 1.02 a | 21.43 ± 0.94 b | |
| Hyaluronidase inhibitory activity (%) | 72.38 ± 2.61 a | 49.36 ± 2.37 b | 51.85 ± 1.12 b | 41.96 ± 0.89 c | |
| Lipid peroxidation inhibition (%) | 45.13 ± 2.11 ab | 36.06 ± 2.51 c | 49.12 ± 3.44 a | 38.94 ± 1.56 bc | |
| Se-GR | GR | Se-GG | GG | Control + | |
| ROS Production (* RLU) | 15,307 ± 90.18 d | 16,331 ± 35.23 b | 15,867 ± 15.28 c | 16,210 ± 75.50 b | 17,361 ± 198.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milán-Noris, A.K.; Rábago-Monzón, Á.R.; Castro-Quintero, M.G.; Antunes-Ricardo, M.; Montoya-Rodríguez, Á.; Montes-Ávila, J.; Reyes-Moreno, C.; Guardado-Félix, D. Antioxidant, Photoprotective, and In Vitro Antiaging Assessment of Optimized Water/Oil Emulsions of Selenized Chickpea Glutelin with Rosehip Oil or Grapeseed Oil. Macromol 2025, 5, 59. https://doi.org/10.3390/macromol5040059
Milán-Noris AK, Rábago-Monzón ÁR, Castro-Quintero MG, Antunes-Ricardo M, Montoya-Rodríguez Á, Montes-Ávila J, Reyes-Moreno C, Guardado-Félix D. Antioxidant, Photoprotective, and In Vitro Antiaging Assessment of Optimized Water/Oil Emulsions of Selenized Chickpea Glutelin with Rosehip Oil or Grapeseed Oil. Macromol. 2025; 5(4):59. https://doi.org/10.3390/macromol5040059
Chicago/Turabian StyleMilán-Noris, Ada Keila, Ángel R. Rábago-Monzón, Maritza G. Castro-Quintero, Marilena Antunes-Ricardo, Álvaro Montoya-Rodríguez, Julio Montes-Ávila, Cuauhtémoc Reyes-Moreno, and Daniela Guardado-Félix. 2025. "Antioxidant, Photoprotective, and In Vitro Antiaging Assessment of Optimized Water/Oil Emulsions of Selenized Chickpea Glutelin with Rosehip Oil or Grapeseed Oil" Macromol 5, no. 4: 59. https://doi.org/10.3390/macromol5040059
APA StyleMilán-Noris, A. K., Rábago-Monzón, Á. R., Castro-Quintero, M. G., Antunes-Ricardo, M., Montoya-Rodríguez, Á., Montes-Ávila, J., Reyes-Moreno, C., & Guardado-Félix, D. (2025). Antioxidant, Photoprotective, and In Vitro Antiaging Assessment of Optimized Water/Oil Emulsions of Selenized Chickpea Glutelin with Rosehip Oil or Grapeseed Oil. Macromol, 5(4), 59. https://doi.org/10.3390/macromol5040059

