Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = NtcA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 579 KiB  
Article
Molecular Epidemiology of Beak and Feather Disease Virus (BFDV), Avian Polyomavirus (APV-1), Psittacid Herpesvirus 1 (PsHV-1), and Avian Metapneumovirus (aMPV) in Birds Kept as Non-Traditional Companion Animals (NTCAs) in Italy
by Riccardo Baston, Claudia Maria Tucciarone, Alberto Caudullo, Francesca Poletto, Matteo Legnardi, Mattia Cecchinato, Michele Drigo, Giovanni Franzo and Diego Cattarossi
Animals 2025, 15(15), 2164; https://doi.org/10.3390/ani15152164 - 22 Jul 2025
Viewed by 354
Abstract
The non-traditional companion animal (NTCA) sector, particularly involving avian species, has significantly expanded in Italy, raising concerns over the spread of infectious diseases. These animals can harbor various pathogens and act as reservoirs, posing risks to native wildlife through legal or illegal trade, [...] Read more.
The non-traditional companion animal (NTCA) sector, particularly involving avian species, has significantly expanded in Italy, raising concerns over the spread of infectious diseases. These animals can harbor various pathogens and act as reservoirs, posing risks to native wildlife through legal or illegal trade, escapes, or intentional releases. However, the epidemiology of avian pathogens in NTCAs remains poorly understood and is typically investigated only in symptomatic individuals. In the present study, cloacal and choanal cleft swabs were collected from 319 ornamental and raptor birds across 19 families, pooled and tested for beak and feather disease virus (BFDV), avian polyomavirus (APV-1), psittacid herpesvirus 1 (PsHV-1), and avian metapneumovirus (aMPV). BFDV and APV-1 were detected in 13.79% and 2.19% of birds, respectively, with five co-infections. No cases of PsHV-1 or aMPV were found. Both viruses showed a higher prevalence than in previous Italian and most of international studies, with several non-psittacine species, including birds of prey, testing positive—some for the first time. Mixed-species settings and participation in public exhibitions were proven as significant infection risk factors. The study highlights the growing relevance of BFDV and APV-1 in non-commercial birds and recommends improved biosecurity and preventive screening to reduce disease spread and safeguard animal health. Full article
(This article belongs to the Special Issue Exotic Animal Medicine and Surgery—Recent Advances and Perspectives)
Show Figures

Figure 1

15 pages, 3381 KiB  
Article
Alpha Carbonic Anhydrase from Nitratiruptor tergarcus Engineered for Increased Activity and Thermostability
by Colleen Varaidzo Manyumwa, Chenxi Zhang, Carsten Jers and Ivan Mijakovic
Int. J. Mol. Sci. 2024, 25(11), 5853; https://doi.org/10.3390/ijms25115853 - 28 May 2024
Cited by 2 | Viewed by 1395
Abstract
The development of carbon capture and storage technologies has resulted in a rising interest in the use of carbonic anhydrases (CAs) for CO2 fixation at elevated temperatures. In this study, we chose to rationally engineer the α-CA (NtCA) from the thermophilic bacterium [...] Read more.
The development of carbon capture and storage technologies has resulted in a rising interest in the use of carbonic anhydrases (CAs) for CO2 fixation at elevated temperatures. In this study, we chose to rationally engineer the α-CA (NtCA) from the thermophilic bacterium Nitratiruptor tergarcus, which has been previously suggested to be thermostable by in silico studies. Using a combination of analyses with the DEEPDDG software and available structural knowledge, we selected residues in three regions, namely, the catalytic pocket, the dimeric interface and the surface, in order to increase thermostability and CO2 hydration activity. A total of 13 specific mutations, affecting seven amino acids, were assessed. Single, double and quadruple mutants were produced in Escherichia coli and analyzed. The best-performing mutations that led to improvements in both activity and stability were D168K, a surface mutation, and R210L, a mutation in the dimeric interface. Apart from these, most mutants showed improved thermostability, with mutants R210K and N88K_R210L showing substantial improvements in activity, up to 11-fold. Molecular dynamics simulations, focusing particularly on residue fluctuations, conformational changes and hydrogen bond analysis, elucidated the structural changes imposed by the mutations. Successful engineering of NtCA provided valuable lessons for further engineering of α-CAs. Full article
Show Figures

Figure 1

17 pages, 2284 KiB  
Article
Analysing the Cyanobacterial PipX Interaction Network Using NanoBiT Complementation in Synechococcus elongatus PCC7942
by Carmen Jerez, Antonio Llop, Paloma Salinas, Sirine Bibak, Karl Forchhammer and Asunción Contreras
Int. J. Mol. Sci. 2024, 25(9), 4702; https://doi.org/10.3390/ijms25094702 - 25 Apr 2024
Cited by 3 | Viewed by 2327
Abstract
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding [...] Read more.
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria. Full article
(This article belongs to the Special Issue Advances in Protein-Protein Interactions—2nd Edition)
Show Figures

Figure 1

15 pages, 1870 KiB  
Article
The Signal Transduction Protein PII Controls the Levels of the Cyanobacterial Protein PipX
by Antonio Llop, Lorena Tremiño, Raquel Cantos and Asunción Contreras
Microorganisms 2023, 11(10), 2379; https://doi.org/10.3390/microorganisms11102379 - 23 Sep 2023
Cited by 3 | Viewed by 1636
Abstract
Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer [...] Read more.
Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer of carbon/nitrogen/energy richness, and the transcriptional regulator NtcA, which controls a large regulon involved in nitrogen assimilation. PipX is also involved in translational regulation through interaction with the ribosome-assembly GTPase EngA. However, increases in the PipX/PII ratio are toxic, presumably due to the abnormally increased binding of PipX to other partner(s). Here, we present mutational and structural analyses of reported PipX-PII and PipX-NtcA complexes, leading to the identification of single amino acid changes that decrease or abolish PipX toxicity. Notably, 4 out of 11 mutations decreasing toxicity did not decrease PipX levels, suggesting that the targeted residues (F12, D23, L36, and R54) provide toxicity determinants. In addition, one of those four mutations (D23A) argued against the over-activation of NtcA as the cause of PipX toxicity. Most mutations at residues contacting PII decreased PipX levels, indicating that PipX stability would depend on its ability to bind to PII, a conclusion supported by the light-induced decrease of PipX levels in Synechococcus elongatus PCC7942 (hereafter S. elongatus). Full article
(This article belongs to the Special Issue Cell Signaling Transduction in Cyanobacteria)
Show Figures

Figure 1

20 pages, 4793 KiB  
Article
Drought Stress Affects the Reproductive Biology of Avena sterilis ssp. ludoviciana
by Mohammad Ali, Alwyn Williams, Michael Widderick, Mohammad Anamul Haque and Steve Adkins
Land 2023, 12(9), 1745; https://doi.org/10.3390/land12091745 - 8 Sep 2023
Cited by 2 | Viewed by 1988
Abstract
Avena sterilis ssp. ludoviciana (hereafter, A. ludoviciana) is considered the most difficult-to-control winter weed in the Northern Grains Region (NGR) of Australia. The abundance of this weed has increased after the adoption of the no-tillage conservation agriculture (NTCA) approach, which does not [...] Read more.
Avena sterilis ssp. ludoviciana (hereafter, A. ludoviciana) is considered the most difficult-to-control winter weed in the Northern Grains Region (NGR) of Australia. The abundance of this weed has increased after the adoption of the no-tillage conservation agriculture (NTCA) approach, which does not bury seeds deep in the soil profile. In addition, the increasing frequency and intensity of drought stress events during the late winter to early spring period in the NGR may modify this weed’s persistence mechanisms, which may further impact crop production. The present study focused on plant maturity time and seed production, dormancy, and longevity of four NGR A. ludoviciana biotypes in relation to the severity of drought stress over 2 consecutive years. Plants of all four A. ludoviciana biotypes were grown under 100% plant available water capacity (PAWC) until panicle initiation. At panicle initiation, very mild (80% PAWC), mild (60% PAWC), moderate (40% PAWC), and severe (20% PAWC) drought stresses were imposed on plants and continued through to maturity; an additional subset of plants were maintained at 100% PAWC through to maturity (control). Plants exposed to severe drought stress matured 24 days earlier than control plants, and produced 34% fewer filled seeds, with seeds having a 42% lower mass, 70% less dormancy, and shorter predicted longevity of at least 2 years compared to the seeds produced on control plants. All reproductive traits were less affected when the severity of the drought stress was decreased. The increasing frequency of drought stress in combination with the widely adopted practice of NTCA favours seeds of A. ludoviciana to undergo rapid germination in the following autumn/winter NGR planting season. However, effective control of A. ludoviciana remains a challenge in the NGR due to this weed’s genetic variability with respect to its response toward the seasonal variability of the NGR. Full article
(This article belongs to the Special Issue Sustainable Land Management, Climate Change and Food Security)
Show Figures

Figure 1

14 pages, 1964 KiB  
Article
Veterinary Education and Training on Non-Traditional Companion Animals, Exotic, Zoo, and Wild Animals: Concepts Review and Challenging Perspective on Zoological Medicine
by Jaime Espinosa García-San Román, Óscar Quesada-Canales, Manuel Arbelo Hernández, Soraya Déniz Suárez and Ayoze Castro-Alonso
Vet. Sci. 2023, 10(5), 357; https://doi.org/10.3390/vetsci10050357 - 17 May 2023
Cited by 12 | Viewed by 4667
Abstract
The role of veterinarians is becoming more significant and necessary to support the welfare and health not only of non-traditional companion animals and wildlife animals, but also of humans and the environment. The importance of the One Health/One World concept and its social [...] Read more.
The role of veterinarians is becoming more significant and necessary to support the welfare and health not only of non-traditional companion animals and wildlife animals, but also of humans and the environment. The importance of the One Health/One World concept and its social impact is increasing significantly, accompanied by the notoriety of new emerging and reemerging zoonoses. This paper aims to review and anchor the main concepts and professional applications of zoological medicine, which has been extensively discussed and adapted in recent decades. In addition, we analyse the main social demands, training, and educational needs and the perception of veterinary professionals relating to this specialised veterinary discipline. Our final goal is to reinforce the use of the term zoological medicine and contribute to highlight the need to foster and underpin specific educational policies and programs on this matter in the veterinary curricula. Zoological medicine should be the appropriate and agreed-upon term in the academic language concerning the veterinary medicine of pets, wild, or zoo species, excluding traditional domestic animals, and integrating the principles of ecology and conservation, applied to both natural and artificial environments. This discipline has suffered an intense evolution covering applications in private clinics, zoos, bioparks, and wildlife. All this implies current and future challenges for the veterinary profession that can only be addressed with greater and better attention from multiple perspectives, especially the education and training of professionals to improve and specialise in their professional scope of services. Full article
(This article belongs to the Special Issue Veterinary Medical Education: Challenges and Perspectives)
Show Figures

Figure 1

23 pages, 985 KiB  
Article
Multi-Agent-Based Traffic Prediction and Traffic Classification for Autonomic Network Management Systems for Future Networks
by Sisay Tadesse Arzo, Zeinab Akhavan, Mona Esmaeili, Michael Devetsikiotis and Fabrizio Granelli
Future Internet 2022, 14(8), 230; https://doi.org/10.3390/fi14080230 - 28 Jul 2022
Cited by 9 | Viewed by 3937
Abstract
Recently, a multi-agent based network automation architecture has been proposed. The architecture is named multi-agent based network automation of the network management system (MANA-NMS). The architectural framework introduced atomized network functions (ANFs). ANFs should be autonomous, atomic, and intelligent agents. Such agents should [...] Read more.
Recently, a multi-agent based network automation architecture has been proposed. The architecture is named multi-agent based network automation of the network management system (MANA-NMS). The architectural framework introduced atomized network functions (ANFs). ANFs should be autonomous, atomic, and intelligent agents. Such agents should be implemented as an independent decision element, using machine/deep learning (ML/DL) as an internal cognitive and reasoning part. Using these atomic and intelligent agents as a building block, a MANA-NMS can be composed using the appropriate functions. As a continuation toward implementation of the architecture MANA-NMS, this paper presents a network traffic prediction agent (NTPA) and a network traffic classification agent (NTCA) for a network traffic management system. First, an NTPA is designed and implemented using DL algorithms, i.e., long short-term memory (LSTM), gated recurrent unit (GRU), multilayer perceptrons (MLPs), and convolutional neural network (CNN) algorithms as a reasoning and cognitive part of the agent. Similarly, an NTCA is designed using decision tree (DT), K-nearest neighbors (K-NN), support vector machine (SVM), and naive Bayes (NB) as a cognitive component in the agent design. We then measure the NTPA prediction accuracy, training latency, prediction latency, and computational resource consumption. The results indicate that the LSTM-based NTPA outperforms compared to GRU, MLP, and CNN-based NTPA in terms of prediction accuracy, and prediction latency. We also evaluate the accuracy of the classifier, training latency, classification latency, and computational resource consumption of NTCA using the ML models. The performance evaluation shows that the DT-based NTCA performs the best. Full article
(This article belongs to the Special Issue Self-Driving Networks (SelfDN) and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 4828 KiB  
Article
A Hypothesis on How the Azolla Symbiosis Mitigates Nitrous Oxide Based on In Silico Analyses
by Dilantha Gunawardana and Venura Herath
J 2022, 5(1), 166-185; https://doi.org/10.3390/j5010013 - 4 Mar 2022
Cited by 1 | Viewed by 3423
Abstract
Nitrous oxide is a long-lived greenhouse gas that exists for 114 years in the atmosphere and is 298-fold more potent than carbon dioxide in its global warming potential. Two recent studies showcased the utility of Azolla plants for a lesser footprint in nitrous [...] Read more.
Nitrous oxide is a long-lived greenhouse gas that exists for 114 years in the atmosphere and is 298-fold more potent than carbon dioxide in its global warming potential. Two recent studies showcased the utility of Azolla plants for a lesser footprint in nitrous oxide production from urea and other supplements to the irrigated ecosystem, which mandates exploration since there is still no clear solution to nitrous oxide in paddy fields or in other ecosystems. Here, we propose a solution based on the evolution of a single cytochrome oxidase subunit II protein (WP_013192178.1) from the cyanobiont Trichormus azollae that we hypothesize to be able to quench nitrous oxide. First, we draw attention to a domain in the candidate protein that is emerging as a sensory periplasmic Y_Y_Y domain that is inferred to bind nitrous oxide. Secondly, we draw the phylogeny of the candidate protein showcasing the poor bootstrap support of its position in the wider clade showcasing its deviation from the core function. Thirdly, we show that the NtcA protein, the apical N-effecting transcription factor, can putatively bind to a promoter sequence of the gene coding for the candidate protein (WP_013192178.1), suggesting a function associated with heterocysts and N-metabolism. Our fourth point involves a string of histidines at the C-terminal extremity of the WP_013192178.1 protein that is missing on all other T. azollae cytochrome oxidase subunit II counterparts, suggesting that such histidines are perhaps involved in forming a Cu center. As the fifth point, we showcase a unique glycine-183 in a lengthy linker region containing multiple glycines that is absent in all proximal Nostocales cyanobacteria, which we predict to be a DNA binding residue. We propose a mechanism of action for the WP_013192178.1 protein based on our in silico analyses. In total, we hypothesize the incomplete and rapid conversion of a likely heterocystous cytochrome oxidase subunit II protein to an emerging nitrous oxide sensing/quenching subunit based on bioinformatics analyses and past literature, which can have repercussions to climate change and consequently, future human life. Full article
Show Figures

Figure 1

8 pages, 680 KiB  
Review
Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) in Non-Traumatic Cardiac Arrest: A Narrative Review of Known and Potential Physiological Effects
by Carlo Alberto Mazzoli, Valentina Chiarini, Carlo Coniglio, Cristian Lupi, Marco Tartaglione, Lorenzo Gamberini, Federico Semeraro and Giovanni Gordini
J. Clin. Med. 2022, 11(3), 742; https://doi.org/10.3390/jcm11030742 - 29 Jan 2022
Cited by 18 | Viewed by 11384
Abstract
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is widely used in acute trauma care worldwide and has recently been proposed as an adjunct to standard treatments during cardiopulmonary resuscitation in patients with non-traumatic cardiac arrest (NTCA). Several case series have been published [...] Read more.
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is widely used in acute trauma care worldwide and has recently been proposed as an adjunct to standard treatments during cardiopulmonary resuscitation in patients with non-traumatic cardiac arrest (NTCA). Several case series have been published highlighting promising results, and further trials are starting. REBOA during CPR increases cerebral and coronary perfusion pressure by increasing the afterload of the left ventricle, thus improving the chances of ROSC and decreasing hypoperfusion to the brain. In addition, it may facilitate the termination of malignant arrhythmias by stimulating baroreceptor reflex. Aortic occlusion could mitigate the detrimental neurological effects of adrenaline, not only by increasing cerebral perfusion but also reducing the blood dilution of the drug, allowing the use of lower doses. Finally, the use of a catheter could allow more precise hemodynamic monitoring during CPR and a faster transition to ECPR. In conclusion, REBOA in NTCA is a feasible technique also in the prehospital setting, and its use deserves further studies, especially in terms of survival and good neurological outcome, particularly in resource-limited settings. Full article
Show Figures

Figure 1

10 pages, 4284 KiB  
Communication
High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays
by Jijie Zhao, Huan Liu, Lier Deng, Minyu Bai, Fei Xie, Shuai Wen and Weiguo Liu
Sensors 2021, 21(18), 6146; https://doi.org/10.3390/s21186146 - 13 Sep 2021
Cited by 15 | Viewed by 3652
Abstract
Light loss is one of the main factors affecting the quantum efficiency of photodetectors. Many researchers have attempted to use various methods to improve the quantum efficiency of silicon-based photodetectors. Herein, we designed highly anti-reflective silicon nanometer truncated cone arrays (Si NTCAs) as [...] Read more.
Light loss is one of the main factors affecting the quantum efficiency of photodetectors. Many researchers have attempted to use various methods to improve the quantum efficiency of silicon-based photodetectors. Herein, we designed highly anti-reflective silicon nanometer truncated cone arrays (Si NTCAs) as a light-trapping layer in combination with graphene to construct a high-performance graphene/Si NTCAs photodetector. This heterojunction structure overcomes the weak light absorption and severe surface recombination in traditional silicon-based photodetectors. At the same time, graphene can be used both as a broad-spectrum absorption layer and as a transparent electrode to improve the response speed of heterojunction devices. Due to these two mechanisms, this photodetector had a high quantum efficiency of 97% at a wavelength of 780 nm and a short rise/fall time of 60/105µs. This device design promotes the development of silicon-based photodetectors and provides new possibilities for integrated photoelectric systems. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

38 pages, 16094 KiB  
Article
β-N-Methylamino-L-Alanine (BMAA) Causes Severe Stress in Nostoc sp. PCC 7120 Cells under Diazotrophic Conditions: A Proteomic Study
by Olga A. Koksharova, Ivan O. Butenko, Olga V. Pobeguts, Nina A. Safronova and Vadim M. Govorun
Toxins 2021, 13(5), 325; https://doi.org/10.3390/toxins13050325 - 30 Apr 2021
Cited by 11 | Viewed by 5012
Abstract
Non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms’ ability to synthesize BMAA could indicate the importance of this molecule in the interactions between [...] Read more.
Non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is synthesized by cyanobacteria, diatoms, and dinoflagellates, and is known to be a causative agent of human neurodegenerative diseases. Different phytoplankton organisms’ ability to synthesize BMAA could indicate the importance of this molecule in the interactions between microalgae in nature. We were interested in the following: what kinds of mechanisms underline BMAA’s action on cyanobacterial cells in different nitrogen supply conditions. Herein, we present a proteomic analysis of filamentous cyanobacteria Nostoc sp. PCC 7120 cells that underwent BMAA treatment in diazotrophic conditions. In diazotrophic growth conditions, to survive, cyanobacteria can use only biological nitrogen fixation to obtain nitrogen for life. Note that nitrogen fixation is an energy-consuming process. In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by using LC-MS/MS spectrometry. Among them, 123 proteins belonging to different functional categories were selected—due to their notable expression differences—for further functional analysis and discussion. The presented proteomic data evidences that BMAA treatment leads to very strong (up to 80%) downregulation of α (NifD) and β (NifK) subunits of molybdenum-iron protein, which is known to be a part of nitrogenase. This enzyme is responsible for catalyzing nitrogen fixation. The genes nifD and nifK are under transcriptional control of a global nitrogen regulator NtcA. In this study, we have found that BMAA impacts in a total of 22 proteins that are under the control of NtcA. Moreover, BMAA downregulates 18 proteins that belong to photosystems I or II and light-harvesting complexes; BMAA treatment under diazotrophic conditions also downregulates five subunits of ATP synthase and enzyme NAD(P)H-quinone oxidoreductase. Therefore, we can conclude that the disbalance in energy and metabolite amounts leads to severe intracellular stress that induces the upregulation of stress-activated proteins, such as starvation-inducible DNA-binding protein, four SOS-response enzymes, and DNA repair enzymes, nine stress-response enzymes, and four proteases. The presented data provide new leads into the ecological impact of BMAA on microalgal communities that can be used in future investigations. Full article
(This article belongs to the Special Issue Multi-Omics Study of Marine Toxins)
Show Figures

Figure 1

24 pages, 2706 KiB  
Article
Proteomic Insights into Starvation of Nitrogen-Replete Cells of Nostoc sp. PCC 7120 under β-N-Methylamino-L-Alanine (BMAA) Treatment
by Olga A. Koksharova, Ivan O. Butenko, Olga V. Pobeguts, Nina A. Safronova and Vadim M. Govorun
Toxins 2020, 12(6), 372; https://doi.org/10.3390/toxins12060372 - 4 Jun 2020
Cited by 13 | Viewed by 4081
Abstract
All cyanobacteria produce a neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and [...] Read more.
All cyanobacteria produce a neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA). However, the biological function of BMAA in the regulation of cyanobacteria metabolism still remains undetermined. It is known that BMAA suppresses the formation of heterocysts in diazotrophic cyanobacteria under nitrogen starvation conditions, and BMAA induces the formation of heterocyst-like cells under nitrogen excess conditions, by causing the expression of heterocyst-specific genes that are usually “silent” under nitrogen-replete conditions, as if these bacteria receive a nitrogen deficiency intracellular molecular signal. In order to find out the molecular mechanisms underlying this unexpected BMAA effect, we studied the proteome of cyanobacterium Nostoc sp. PCC 7120 grown under BMAA treatment in nitrogen-replete medium. Experiments were performed in two experimental settings: (1) in control samples consisted of cells grown without the BMAA treatment and (2) the treated samples consisted of cells grown with addition of an aqueous solution of BMAA (20 µM). In total, 1567 different proteins of Nostoc sp. PCC 7120 were identified by LC-MS/MS spectrometry. Among them, 80 proteins belonging to different functional categories were chosen for further functional analysis and interpretation of obtained proteomic data. Here, we provide the evidence that a pleiotropic regulatory effect of BMAA on the proteome of cyanobacterium was largely different under conditions of nitrogen-excess compared to its effect under nitrogen starvation conditions (that was studied in our previous work). The most significant difference in proteome expression between the BMAA-treated and untreated samples under different growth conditions was detected in key regulatory protein PII (GlnB). BMAA downregulates protein PII in nitrogen-starved cells and upregulates this protein in nitrogen-replete conditions. PII protein is a key signal transduction protein and the change in its regulation leads to the change of many other regulatory proteins, including different transcriptional factors, enzymes and transporters. Complex changes in key metabolic and regulatory proteins (RbcL, RbcS, Rca, CmpA, GltS, NodM, thioredoxin 1, RpbD, ClpP, MinD, RecA, etc.), detected in this experimental study, could be a reason for the appearance of the “starvation” state in nitrogen-replete conditions in the presence of BMAA. In addition, 15 proteins identified in this study are encoded by genes, which are under the control of NtcA—a global transcriptional regulator—one of the main protein partners and transcriptional regulators of PII protein. Thereby, this proteomic study gives a possible explanation of cyanobacterium starvation under nitrogen-replete conditions and BMAA treatment. It allows to take a closer look at the regulation of cyanobacteria metabolism affected by this cyanotoxin. Full article
(This article belongs to the Special Issue Biological Role of Cyanotoxins: Experimental and In-Field Evidence)
Show Figures

Graphical abstract

16 pages, 2777 KiB  
Review
Distinctive Features of PipX, a Unique Signaling Protein of Cyanobacteria
by Jose I. Labella, Raquel Cantos, Paloma Salinas, Javier Espinosa and Asunción Contreras
Life 2020, 10(6), 79; https://doi.org/10.3390/life10060079 - 28 May 2020
Cited by 15 | Viewed by 4607
Abstract
PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA, two key regulators involved in the integration of signals of the nitrogen/carbon and energy status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria. [...] Read more.
PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA, two key regulators involved in the integration of signals of the nitrogen/carbon and energy status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria. PipX provides a mechanistic link between PII, the most widely distributed signaling protein, and NtcA, a global transcriptional regulator of cyanobacteria. PII, required for cell survival unless PipX is inactivated or down-regulated, functions by protein–protein interactions with transcriptional regulators, transporters, and enzymes. In addition, PipX appears to be involved in a wider signaling network, supported by the following observations: (i) PII–PipX complexes interact with PlmA, an as yet poorly characterized transcriptional regulator also restricted to cyanobacteria; (ii) the pipX gene is functionally connected with pipY, a gene encoding a universally conserved pyridoxal phosphate binding protein (PLPBP) involved in vitamin B6 and amino acid homeostasis, whose loss-of-function mutations cause B6-dependent epilepsy in humans, and (iii) pipX is part of a relatively robust, six-node synteny network that includes pipY and four additional genes that might also be functionally connected with pipX. In this overview, we propose that the study of the protein–protein interaction and synteny networks involving PipX would contribute to understanding the peculiarities and idiosyncrasy of signaling pathways that are conserved in cyanobacteria. Full article
(This article belongs to the Special Issue Cellular and Molecular Strategies in Cyanobacterial Survival)
Show Figures

Figure 1

16 pages, 2958 KiB  
Article
The Nitrogen Stress-Repressed sRNA NsrR1 Regulates Expression of all1871, a Gene Required for Diazotrophic Growth in Nostoc sp. PCC 7120
by Isidro Álvarez-Escribano, Manuel Brenes-Álvarez, Elvira Olmedo-Verd, Agustín Vioque and Alicia M. Muro-Pastor
Life 2020, 10(5), 54; https://doi.org/10.3390/life10050054 - 29 Apr 2020
Cited by 3 | Viewed by 3629
Abstract
Small regulatory RNAs (sRNAs) are post-transcriptional regulators of bacterial gene expression. In cyanobacteria, the responses to nitrogen availability, that are mostly controlled at the transcriptional level by NtcA, involve also at least two small RNAs, namely NsiR4 (nitrogen stress-induced RNA 4) and NsrR1 [...] Read more.
Small regulatory RNAs (sRNAs) are post-transcriptional regulators of bacterial gene expression. In cyanobacteria, the responses to nitrogen availability, that are mostly controlled at the transcriptional level by NtcA, involve also at least two small RNAs, namely NsiR4 (nitrogen stress-induced RNA 4) and NsrR1 (nitrogen stress-repressed RNA 1). Prediction of possible mRNA targets regulated by NsrR1 in Nostoc sp. PCC 7120 allowed, in addition to previously described nblA, the identification of all1871, a nitrogen-regulated gene encoding a protein of unknown function that we describe here as required for growth at the expense of atmospheric nitrogen (N2). We show that transcription of all1871 is induced upon nitrogen step-down independently of NtcA. All1871 accumulation is repressed by NsrR1 and its expression is stronger in heterocysts, specialized cells devoted to N2 fixation. We demonstrate specific interaction between NsrR1 and the 5′ untranslated region (UTR) of the all1871 mRNA, that leads to decreased expression of all1871. Because transcription of NsrR1 is partially repressed by NtcA, post-transcriptional regulation by NsrR1 would constitute an indirect way of NtcA-mediated regulation of all1871. Full article
(This article belongs to the Special Issue Cellular and Molecular Strategies in Cyanobacterial Survival)
Show Figures

Figure 1

14 pages, 4349 KiB  
Article
Influence of Glycine and Arginine on Cylindrospermopsin Production and aoa Gene Expression in Aphanizomenon ovalisporum
by Ángel Barón-Sola, Francisca Fernández del Campo and Soledad Sanz-Alférez
Toxins 2017, 9(11), 355; https://doi.org/10.3390/toxins9110355 - 1 Nov 2017
Cited by 4 | Viewed by 5163
Abstract
Arginine (Arg) and glycine (Gly) seem to be the only substrates accepted by the amidinotransferase that catalyze the first step of the synthesis pathway of the cyanotoxin cylindrospermopsin (CYN), leading to guanidinoacetate (GAA). Here, the effect of these amino acids on the production [...] Read more.
Arginine (Arg) and glycine (Gly) seem to be the only substrates accepted by the amidinotransferase that catalyze the first step of the synthesis pathway of the cyanotoxin cylindrospermopsin (CYN), leading to guanidinoacetate (GAA). Here, the effect of these amino acids on the production of CYN in cultures of the cylindrospermopsin-producing strain, Aphanizomenon ovalisporum UAM-MAO, has been studied. Arg clearly increased CYN content, the increment appearing triphasic along the culture. On the contrary, Gly caused a decrease of CYN, observable from the first day on. Interestingly, the transcript of the gene ntcA, key in nitrogen metabolism control, was also enhanced in the presence of Arg and/or Gly, the trend of the transcript oscillations being like that of aoa/cyr. The inhibitory effect of Gly in CYN production seems not to result from diminishing the activity of genes considered involved in CYN synthesis, since Gly, as Arg, enhance the transcription of genes aoaA-C and cyrJ. On the other hand, culture growth is affected by Arg and Gly in a similar way to CYN production, with Arg stimulating and Gly impairing it. Taken together, our data show that the influence of both Arg and Gly on CYN changes seems not to be due to a specific effect on the first step of CYN synthesis; it rather appears to be the result of changes in the physiological cell status. Full article
(This article belongs to the Special Issue Selected Papers from the 5th Iberoamerican Cyanotoxins Meeting)
Show Figures

Figure 1

Back to TopTop