Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = NiSn nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7071 KiB  
Article
S- and N-Co-Doped Carbon-Nanoplate-Encased Ni Nanoparticles Derived from Dual-Ligand-Assembled Ni-MOFs as Efficient Electrocatalysts for the Oxygen Evolution Reaction
by Huijuan Han, Yalei Zhang, Chunrui Zhou, Haixin Yun, Yiwen Kang, Kexin Du, Jianying Wang, Shujun Chao and Jichao Wang
Molecules 2025, 30(4), 820; https://doi.org/10.3390/molecules30040820 - 10 Feb 2025
Viewed by 722
Abstract
To achieve the “double carbon” goal, it is urgent to reform the energy system. The oxygen evolution reaction (OER) is a vital semi-reaction for many new energy-storage and conversion devices. Metal nanoparticles embedded in heteroatom-doped carbon materials prepared by the pyrolyzing of metal–organic [...] Read more.
To achieve the “double carbon” goal, it is urgent to reform the energy system. The oxygen evolution reaction (OER) is a vital semi-reaction for many new energy-storage and conversion devices. Metal nanoparticles embedded in heteroatom-doped carbon materials prepared by the pyrolyzing of metal–organic frameworks (MOFs) have been a key route to obtain high-performance electrochemical catalysts. Herein, a nanocatalyst embedding Ni nanoparticles into S- and N-co-doped carbon nanoplate (Ni NPs@SN-CNP) has been synthesized by pyrolysis of a Ni-MOF precursor. The prepared Ni NPs@SN-CNP exhibits superior oxygen evolution performance with an overpotential of 256 mV to attain 10 mA cm−2 and a low Tafel slope value of 95 mV dec−1. Moreover, a self-assembled overall-water-splitting cell with Ni NPs@SN-CNP/NF||Pt-C/NF achieves a low potential of 1.56 V at 10 mA cm−2 and a high cycling stability for at least 10 h. The improvement in this performance is benefit from its large surface area, unique morphology, and the nanostructure of the electrocatalyst. This study presents a novel and simple approach to designing high-performance OER catalysts. Full article
Show Figures

Figure 1

15 pages, 5693 KiB  
Article
Thermomigration Microstructure and Properties of Ni Nanoparticle-Reinforced Sn58Bi Composite Solder/Cu Solder Joint
by Yuchun Fan, Keke Zhang, Weiming Chen, Jinna Wu and Yonglei Wang
Metals 2024, 14(12), 1420; https://doi.org/10.3390/met14121420 - 11 Dec 2024
Cited by 1 | Viewed by 1019
Abstract
A Sn58Bi composite solder reinforced by Ni nanoparticles was prepared using a mechanical mixing technique, and the thermomigration microstructure and properties of the solder joints were studied. The findings indicate that incorporating an appropriate quantity of Ni nanoparticles can enhance the microstructure of [...] Read more.
A Sn58Bi composite solder reinforced by Ni nanoparticles was prepared using a mechanical mixing technique, and the thermomigration microstructure and properties of the solder joints were studied. The findings indicate that incorporating an appropriate quantity of Ni nanoparticles can enhance the microstructure of the composite solder and mitigate the coarsening of Bi-phase segregation. At 0.75 weight percent Ni nanoparticle content, the composite solder’s tensile strength is 59.7 MPa and its elongation is 54.6%, both of which are noticeably greater than those of the base solder. When the thermal loading time is 576 h, the shear strength of the composite solder joint is 25.5 MPa, which is 30.1% higher than that of the base solder joint. This study reveals that the shear fracture path shifts from the boundary region between the solder seam and the IMC layer to the IMC layer itself. Concurrently, the fracture mode evolves from a mix of brittle–ductile fracture, characterized by quasi-cleavage, to a predominantly brittle fracture, marked by numerous “rock candy-like” cross-sectional features and secondary cracking. Adding Ni nanoparticles to the Sn58Bi composite solder/Cu solder junction can significantly extend its service life. Full article
Show Figures

Figure 1

29 pages, 8478 KiB  
Article
Effects of Incorporating TiO2 Aggregates on the Growth, Anticorrosion, and Antibacterial Properties of Electrodeposited Multifunctional Coatings Based on Sn-Ni Materials
by Hanna Pianka, Valeria P. Boufal, Olga Alisiyonok, Maxim Vlasov, Alexander Chernik, Yanpeng Xue and Abdelhafed Taleb
Coatings 2024, 14(11), 1344; https://doi.org/10.3390/coatings14111344 - 22 Oct 2024
Viewed by 1107
Abstract
Multifunctional coatings based on Sn-Ni materials with and without titanium oxide nanoparticles (TiO2NPs) incorporation were prepared using the electrochemical deposition technique at 70 °C. TiO2NPs were dispersed in the electrolyte bath, and their influence on the surface texture, crystalline [...] Read more.
Multifunctional coatings based on Sn-Ni materials with and without titanium oxide nanoparticles (TiO2NPs) incorporation were prepared using the electrochemical deposition technique at 70 °C. TiO2NPs were dispersed in the electrolyte bath, and their influence on the surface texture, crystalline phase, and properties was investigated. Various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX) were used to characterize the prepared coatings. The formation mechanism of the deposited coatings has been demonstrated to be consistent with the electrochemical behavior of instantaneous growth, and the three-dimensional growth is controlled by diffusion phenomena. The anticorrosion effectiveness of the coatings was assessed using potentiodynamic polarization curves and electrochemical impedance spectroscopy in an artificial sweat medium, while the bactericidal activity of the composite coatings (the ability to induce cell death) was evaluated in accordance with the ISO 27447:2019 test. The influence of TiO2NPs at a low concentration of 1 g/L on the composition, structure, and properties of the deposited coatings was demonstrated. Particular attention was paid to the relationship between the anticorrosive and bactericidal properties of the coatings and their structure composition and wetting properties. The synergistic effect of chemical composition and surface-wetting properties has been demonstrated to enhance the anticorrosive and bactericidal properties of the prepared coatings. Full article
Show Figures

Figure 1

15 pages, 4342 KiB  
Article
Development of a Screening Platform for Optimizing Chemical Nanosensor Materials
by Larissa Egger, Lisbeth Reiner, Florentyna Sosada-Ludwikowska, Anton Köck, Hendrik Schlicke, Sören Becker, Öznur Tokmak, Jan Steffen Niehaus, Alexander Blümel, Karl Popovic and Martin Tscherner
Sensors 2024, 24(17), 5565; https://doi.org/10.3390/s24175565 - 28 Aug 2024
Cited by 1 | Viewed by 1284
Abstract
Chemical sensors, relying on changes in the electrical conductance of a gas-sensitive material due to the surrounding gas, typically react with multiple target gases and the resulting response is not specific for a certain analyte species. The purpose of this study was the [...] Read more.
Chemical sensors, relying on changes in the electrical conductance of a gas-sensitive material due to the surrounding gas, typically react with multiple target gases and the resulting response is not specific for a certain analyte species. The purpose of this study was the development of a multi-sensor platform for systematic screening of gas-sensitive nanomaterials. We have developed a specific Si-based platform chip, which integrates a total of 16 sensor structures. Along with a newly developed measurement setup, this multi-sensor platform enables simultaneous performance characterization of up to 16 different sensor materials in parallel in an automated gas measurement setup. In this study, we chose the well-established ultrathin SnO2 films as base material. In order to screen the sensor performance towards type and areal density of nanoparticles on the SnO2 films, the films are functionalized by ESJET printing Au-, NiPt-, and Pd-nanoparticle solutions with five different concentrations. The functionalized sensors have been tested toward the target gases: carbon monoxide and a specific hydrogen carbon gas mixture of acetylene, ethane, ethne, and propene. The measurements have been performed in three different humidity conditions (25%, 50% and 75% r.h.). We have found that all investigated types of NPs (except Pd) increase the responses of the sensors towards CO and HCmix and reach a maximum for an NP type specific concentration. Full article
Show Figures

Figure 1

46 pages, 6832 KiB  
Review
A Comprehensive Review of Bimetallic Nanoparticle–Graphene Oxide and Bimetallic Nanoparticle–Metal–Organic Framework Nanocomposites as Photo-, Electro-, and Photoelectrocatalysts for Hydrogen Evolution Reaction
by Mogwasha Dapheny Makhafola, Sheriff Aweda Balogun and Kwena Desmond Modibane
Energies 2024, 17(7), 1646; https://doi.org/10.3390/en17071646 - 29 Mar 2024
Cited by 14 | Viewed by 3347
Abstract
This review extensively discusses current developments in bimetallic nanoparticle–GO and bimetallic nanoparticle–MOF nanocomposites as potential catalysts for HER, along with their different synthesis methodologies, structural characteristics, and catalytic mechanisms. The photoelectrocatalytic performance of these catalysts was also compared based on parameters such as [...] Read more.
This review extensively discusses current developments in bimetallic nanoparticle–GO and bimetallic nanoparticle–MOF nanocomposites as potential catalysts for HER, along with their different synthesis methodologies, structural characteristics, and catalytic mechanisms. The photoelectrocatalytic performance of these catalysts was also compared based on parameters such as Tafel slope, current density, onset potential, turnover frequency, hydrogen yield, activation energy, stability, and durability. The review shows that the commonly used metal alloys in the bimetallic nanoparticle–GO-based catalysts for HERs include Pt-based alloys (e.g., PtNi, PtCo, PtCu, PtAu, PtSn), Pd-based alloys (e.g., PdAu, PdAg, PdPt) or other combinations, such as AuNi, AuRu, etc., while the most used electrolyte sources are H2SO4 and KOH. For the bimetallic nanoparticle MOF-based catalysts, Pt-based alloys (e.g., PtNi, PtCu), Pd-based alloys (e.g., PdAg, PdCu, PdCr), and Ni-based alloys (e.g., NiMo, NiTi, NiAg, NiCo) took the lead, with KOH being the most frequently used electrolyte source. Lastly, the review addresses challenges and prospects, highlighting opportunities for further optimization and technological integration of the catalysts as promising alternative photo/electrocatalysts for future hydrogen production and storage. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

23 pages, 15684 KiB  
Article
Effects of Direct and Pulse Plating on the Co-Deposition of Sn–Ni/TiO2 Composite Coatings
by Eleni Rosolymou, Antonis Karantonis and Evangelia A. Pavlatou
Materials 2024, 17(2), 392; https://doi.org/10.3390/ma17020392 - 12 Jan 2024
Cited by 2 | Viewed by 1559
Abstract
Sn–Ni alloy matrix coatings co-deposited with TiO2 nanoparticles (Evonik P25) were produced utilizing direct (DC) and pulse electrodeposition (PC) from a tin–nickel chloride-fluoride electrolyte with a loading of TiO2 nanoparticles equal to 20 g/L. The structural and morphological characteristics of the [...] Read more.
Sn–Ni alloy matrix coatings co-deposited with TiO2 nanoparticles (Evonik P25) were produced utilizing direct (DC) and pulse electrodeposition (PC) from a tin–nickel chloride-fluoride electrolyte with a loading of TiO2 nanoparticles equal to 20 g/L. The structural and morphological characteristics of the resultant composite coatings were correlated with the compositional modifications that occurred within the alloy matrix and expressed via a) TiO2 co-deposition rate and b) composition of the matrix; this was due to the application of different current types (DC or PC electrodeposition), and different current density values. The results demonstrated that under DC electrodeposition, the current density exhibited a more significant impact on the composition of the alloy matrix than on the incorporation rate of the TiO2 nanoparticles. Additionally, PC electrodeposition favored the incorporation rate of TiO2 nanoparticles only when applying a low peak current density (Jp = 1 Adm−2). All of the composite coatings exhibited the characteristic cauliflower-like structure, and were characterized as nano-crystalline. The composites’ surface roughness demonstrated a significant influence from the TiO2 incorporation rate. However, in terms of microhardness, higher co-deposition rates of embedded TiO2 nanoparticles within the alloy matrix were associated with decreased microhardness values. The best wear performance was achieved for the composite produced utilizing DC electrodeposition at J = 1 Adm−2, which also demonstrated the best photocatalytic behavior under UV irradiation. The corrosion study of the composite coatings revealed that they exhibit passivation, even at elevated anodic potentials. Full article
Show Figures

Figure 1

17 pages, 5341 KiB  
Article
Influence of Ni and Sn Perovskite NiSn(OH)6 Nanoparticles on Energy Storage Applications
by G. Velmurugan, R. Ganapathi Raman, D. Prakash, Ikhyun Kim, Jhelai Sahadevan and P. Sivaprakash
Nanomaterials 2023, 13(9), 1523; https://doi.org/10.3390/nano13091523 - 30 Apr 2023
Cited by 13 | Viewed by 2933
Abstract
New NiSn(OH)6 hexahydroxide nanoparticles were synthesised through a co-precipitation method using various concentrations of Ni2+ and Sn4+ ions (e.g., 1:0, 0:1, 1:2, 1:1, and 2:1; namely, N, S, NS-3, NS-2, and NS-1) with an ammonia solution. The perovskite NiSn(OH)6 [...] Read more.
New NiSn(OH)6 hexahydroxide nanoparticles were synthesised through a co-precipitation method using various concentrations of Ni2+ and Sn4+ ions (e.g., 1:0, 0:1, 1:2, 1:1, and 2:1; namely, N, S, NS-3, NS-2, and NS-1) with an ammonia solution. The perovskite NiSn(OH)6 was confirmed from powder X-ray diffraction and molecule interactions due to different binding environments of Ni, Sn, O, and water molecules observed from an FT-IR analysis. An electronic transition was detected from tin (Sn 3d) and nickel (Ni 2p) to oxygen (O 2p) from UV-Vis/IR spectroscopy. Photo luminescence spectroscopy (PL) identified that the emission observed at 400–800 nm in the visible region was caused by oxygen vacancies due to various oxidation states of Ni and Sn metals. A spherical nanoparticle morphology was observed from FE-SEM; this was due to the combination of Ni2+ and Sn4+ increasing the size and porosity of the nanoparticle. The elemental (Ni and Sn) distribution and binding energy of the nanoparticle were confirmed by EDAX and XPS analyses. Among the prepared various nanoparticles, NS-2 showed a maximum specific capacitance of 607 Fg−1 at 1 Ag−1 and 56% capacitance retention (338 Fg−1 and 5 Ag−1), even when increasing the current density five times, and excellent cycle stability due to combining Ni2+ with Sn4+, which improved the ionic and electrical conductivity. EIS provided evidence for NS-2’s low charge transfer resistance compared with other prepared samples. Moreover, the NS-2//AC (activated carbon) asymmetric supercapacitor exhibited the highest energy density and high-power density along with excellent cycle stability, making it the ideal material for real-time applications. Full article
Show Figures

Graphical abstract

13 pages, 2663 KiB  
Article
Differential Pulse Voltammetric Detection of Acetaminophen Using Nickel Phthalocyanine/CeO2-Modified ITO Electrodes
by Emiliano C. Gomes, Camila L. Ribeiro, Vianney O. Santos and Leonardo G. Paterno
Chemosensors 2023, 11(3), 154; https://doi.org/10.3390/chemosensors11030154 - 23 Feb 2023
Cited by 5 | Viewed by 2573
Abstract
The present contribution reports a novel electrode based on an ITO substrate surface-modified with a nanofilm of nickel tetrasulfonated phthalocyanine (NiTsPc) with cerium oxide nanoparticles (CeO2) for the effective differential pulse voltammetric detection of acetaminophen, which is a contaminant of emerging [...] Read more.
The present contribution reports a novel electrode based on an ITO substrate surface-modified with a nanofilm of nickel tetrasulfonated phthalocyanine (NiTsPc) with cerium oxide nanoparticles (CeO2) for the effective differential pulse voltammetric detection of acetaminophen, which is a contaminant of emerging concern (CEC). The optimized ITO/NiTsPc/CeO2 electrode responds linearly (r2 > 0.99) to acetaminophen in the range of 0.4 to 11.2 µM, with a limit of detection (S/N = 3) of 54.7 nM. This response is reproducible for fourteen consecutive runs (RSD = 10.97%) and insensitive to the presence of interfering CECs (amoxicillin, atenolol, caffeine, diclofenac, ethinyl estradiol, and ibuprofen) at the same concentration. The electrode can be used to detect acetaminophen in tap water, synthetic urine, and pharmaceutical tablets, in which it performs similarly to UV-Vis spectroscopy at a 95% confidence level. Full article
(This article belongs to the Special Issue Voltammperometric Sensors)
Show Figures

Figure 1

17 pages, 5821 KiB  
Article
Effect of Al2O3 and NiO Nanoparticle Additions on the Structure and Corrosion Behavior of Sn—4% Zn Alloy Coating Carbon Steel
by Ghada A. Alshammri, Naglaa Fathy, Shereen Mohammed Al-Shomar, Alhulw H. Alshammari, El-Sayed M. Sherif and Mohamed Ramadan
Sustainability 2023, 15(3), 2511; https://doi.org/10.3390/su15032511 - 31 Jan 2023
Cited by 7 | Viewed by 2361
Abstract
The application of a higher corrosion resistance coating modified with nano additions can effectively decrease or prevent corrosion from occurring. In the present work, a novel method is successfully developed for the modification of carbon steel surfaces aiming for high corrosion resistance using [...] Read more.
The application of a higher corrosion resistance coating modified with nano additions can effectively decrease or prevent corrosion from occurring. In the present work, a novel method is successfully developed for the modification of carbon steel surfaces aiming for high corrosion resistance using Sn—4% Zn alloy/nanoparticle composite (NiO+ Al2O3) coating. Sn—4% Zn alloy/nanoparticle composite (NiO+ Al2O3) coatings were deposed on carbon steel using a direct tinning process that involved a power mixture of Sn—4% Zn alloy along with a flux mixture. Regular coating and interface structures were achieved by individual Al2O3 and both NiO and Al2O3 nanoparticle combined additions in the Sn-Zn coating. The maximum coating thickness of 70 ± 1.8 µm was achieved for Al2O3 nanoparticles in the Sn-Zn coating. Interfacial intermetallic layer thickness decreased with all used nanoparticle additions in individual and hybrid conditions. The minimum intermetallic layer thickness of about 2.29 ± 0.28 µm was achieved for Al2O3 nanoparticles in the Sn—Zn coating. Polarization and impedance measurements were used to investigate the influence of the incorporated Al2O3, NiO, and hybrid Al2O3/NiO nanoparticles on the passivation of the low-carbon steel (LCS) corrosion and the coated Sn—Zn LCS in sodium chloride solution. It was found that the presence of Al2O3, NiO, and Al2O3/NiO nanoparticles remarkably improved the corrosion resistance. The corrosion measurements confirmed that the corrosion resistance of the coated Sn-Zn carbon steel was increased in the presence of these nanoparticles in the following order: Al2O3/NiO > NiO > Al2O3. Full article
Show Figures

Figure 1

15 pages, 3009 KiB  
Article
ZGSO Spinel Nanoparticles with Dual Emission of NIR Persistent Luminescence for Anti-Counterfeiting Applications
by Guanyu Cai, Teresa Delgado, Cyrille Richard and Bruno Viana
Materials 2023, 16(3), 1132; https://doi.org/10.3390/ma16031132 - 28 Jan 2023
Cited by 40 | Viewed by 4480
Abstract
The property of persistent luminescence shows great potential for anti-counterfeiting technology and imaging by taking advantage of a background-free signal. Current anti-counterfeiting technologies face the challenge of low security and the inconvenience of being limited to visible light emission, as emitters in the [...] Read more.
The property of persistent luminescence shows great potential for anti-counterfeiting technology and imaging by taking advantage of a background-free signal. Current anti-counterfeiting technologies face the challenge of low security and the inconvenience of being limited to visible light emission, as emitters in the NIR optical windows are required for such applications. Here, we report the preparation of a series of Zn1+xGa2−2xSnxO4 nanoparticles (ZGSO NPs) with persistent luminescence in the first and second near-infrared window to overcome these challenges. ZGSO NPs, doped with transition-metal (Cr3+ and/or Ni2+) and in some cases co-doped with rare-earth (Er3+) ions, were successfully prepared using an improved solid-state method with a subsequent milling process to reach sub-200 nm size particles. X-ray diffraction and absorption spectroscopy were used for the analysis of the structure and local crystal field around the dopant ions at different Sn4+/Ga3+ ratios. The size of the NPs was ~150 nm, measured by DLS. Doped ZGSO NPs exhibited intense photoluminescence in the range from red, NIR-I to NIR-II, and even NIR-III, under UV radiation, and showed persistent luminescence at 700 nm (NIR-I) and 1300 nm (NIR-II) after excitation removal. Hence, these NPs were evaluated for multi-level anti-counterfeiting technology. Full article
(This article belongs to the Special Issue Advanced Luminescent Materials and Devices)
Show Figures

Figure 1

16 pages, 611 KiB  
Article
Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis
by Ei Ei Khine and George Kaptay
Materials 2023, 16(2), 776; https://doi.org/10.3390/ma16020776 - 12 Jan 2023
Cited by 1 | Viewed by 2582
Abstract
Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash—dry—calcine the latter. However, the complete list of metal oxide NPs is missing with which this [...] Read more.
Several metal oxide nanoparticles (NPs) were already obtained by mixing NaOH solution with chloride solution of the corresponding metal to form metal hydroxide or oxide precipitates and wash—dry—calcine the latter. However, the complete list of metal oxide NPs is missing with which this technology works well. The aim of this study was to fill this knowledge gap and to provide a full list of possible metals for which this technology probably works well. Our methodology was chemical thermodynamics, analyzing solubilities of metal chlorides, metal oxides and metal hydroxides in water and also standard molar Gibbs energy changes accompanying the following: (i) the reaction between metal chlorides and NaOH; (ii) the dissociation reaction of metal hydroxides into metal oxide and water vapor and (iii) the reaction between metal oxides and gaseous carbon dioxide to form metal carbonates. The major result of this paper is that the following metal-oxide NPs can be produced by the above technology from the corresponding metal chlorides: Al2O3, BeO, CaO, CdO, CoO, CuO, FeO, Fe2O3, In2O3, La2O3, MgO, MnO, Nd2O3, NiO, Pr2O3, Sb2O3, Sm2O3, SnO, Y2O3 and ZnO. From the analysis of the literature, the following nine nano-oxides have been already obtained experimentally with this technology: CaO, CdO, Co3O4, CuO, Fe2O3, NiO, MgO, SnO2 and ZnO (note: Co3O4 and SnO2 were obtained under oxidizing conditions during calcination in air). Thus, it is predicted here that the following nano-oxides can be potentially synthesized with this technology in the future: Al2O3, BeO, In2O3, La2O3, MnO, Nd2O3, Pr2O3, Sb2O3, Sm2O3 and Y2O3. The secondary result is that among the above 20 nano-oxides, the following five nano-oxides are able to capture carbon dioxide from air at least down to 42 ppm residual CO2-content, i.e., decreasing the current level of 420 ppm of CO2 in the Earth’s atmosphere at least tenfold: CaO, MnO, MgO, CdO, CoO. The tertiary result is that by mixing the AuCl3 solution with NaOH solution, Au nano-particles will precipitate without forming Au-oxide NPs. The results are significant for the synthesis of metal nano-oxide particles and for capturing carbon dioxide from air. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

11 pages, 9695 KiB  
Article
Diffusion Barrier Properties of the Intermetallic Compound Layers Formed in the Pt Nanoparticles Alloyed Sn-58Bi Solder Joints Reacted with ENIG and ENEPIG Surface Finishes
by Hyeokgi Choi, Chang-Lae Kim and Yoonchul Sohn
Materials 2022, 15(23), 8419; https://doi.org/10.3390/ma15238419 - 26 Nov 2022
Cited by 8 | Viewed by 3020
Abstract
Pt-nanoparticle (NP)-alloyed Sn-58Bi solders were reacted with electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG) surface finishes. We investigated formation of intermetallic compounds (IMCs) and their diffusion barrier properties at reaction interfaces as functions of Pt NP content in the composite [...] Read more.
Pt-nanoparticle (NP)-alloyed Sn-58Bi solders were reacted with electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG) surface finishes. We investigated formation of intermetallic compounds (IMCs) and their diffusion barrier properties at reaction interfaces as functions of Pt NP content in the composite solders and duration of solid-state aging at 100 °C. At Sn-58Bi-xPt/ENIG interfaces, typical Ni3Sn4/Ni3P(P-rich layer) microstructure was formed. With the large consumption of the Ni-P layer, the Ni-P and Cu layers were intermixed and Cu atoms spread over the composite solder after 500 h of aging. By contrast, a (Pd,Ni)Sn4/thin Ni3Sn4 microstructure was observed at the Sn-58Bi-xPt/ENEPIG interfaces. The (Pd,Ni)Sn4 IMC effectively suppressed the consumption of the Ni-P layer and Ni3Sn4 growth, functioning as a good diffusion barrier. Therefore, the Sn-58Bi-xPt/ENEPIG joint survived 500 h of aging without microstructural degradation. Based on the experimental results and analysis of this study, Sn-58Bi-0.05Pt/ENEPIG is suggested as the optimum combination for future low-temperature soldering systems. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Solders)
Show Figures

Graphical abstract

2 pages, 186 KiB  
Abstract
Efficient Screening of Hybrid Nanomaterials for Optimizing Chemical Sensor Devices
by Larissa Egger, Lisbeth Reiner, Florentyna Sosada-Ludwikowska, Anton Köck, Jan Steffen Niehaus, Sören Becker, Öznur Tokmak, Hendrik Schlicke, Alexander Blümel, Karl Popovic and Martin Tscherner
Eng. Proc. 2022, 21(1), 30; https://doi.org/10.3390/engproc2022021030 - 26 Aug 2022
Cited by 1 | Viewed by 1154
Abstract
Chemical sensors based on metal oxides (MOx) are one of the most promising gas sensing devices due to their high sensitivity to numerous gases, fast response, miniaturization, and simple production. The detection principle of these sensors is a conductivity change of the MOx-sensing [...] Read more.
Chemical sensors based on metal oxides (MOx) are one of the most promising gas sensing devices due to their high sensitivity to numerous gases, fast response, miniaturization, and simple production. The detection principle of these sensors is a conductivity change of the MOx-sensing material due to the chemical reactions of gases with surface molecules. Cross sensitivities and interference to humidity, however, are still significant drawbacks of these sensors. The functionalization of MOx-sensing films with catalytic nanoparticles (NP) is a highly promising technology for optimizing sensor performance. The huge variety of potential MOx–NP combinations requires efficient screening technologies to find proper hybrid material mixtures which enable the controlled adjustment of the sensor response to specific target gases. This is of high importance for the realization of a multi-gas sensor device capable of the clear discrimination of single gas components from a gas mixture. In this work we introduce our approach for the efficient screening of hybrid MOx–NP material combinations. We have developed a specific Si-platform chip along with a gas measurement setup which enables the simultaneous characterization of 16 chemical sensor structures in parallel. The Si-chips feature an array of Ti/Pt electrodes for contacting ultrathin MOx-sensing films, which are deposited by spray pyrolysis, and structured by photolithography to a size of 50 × 100 µm2. On these platform chips we tested three different MOx (SnO2, ZnO, and CuO) before and after functionalization with mono- and bimetallic NPs (such as Au, Pt, Pd, and NiPt) on several test gases (CO, HCmix, toluene, CO2). Measurements were performed in a background gas of synthetic air at different relative humidity levels (25–75%) and at different operating temperatures up to 350 °C. We present the sensing performance results of various MOx-NP combinations, exhibiting an optimized response to specific target gases. Full article
(This article belongs to the Proceedings of The 9th International Symposium on Sensor Science)
8 pages, 2022 KiB  
Article
Wettability of Metals by Water
by Laszlo Somlyai-Sipos and Peter Baumli
Metals 2022, 12(8), 1274; https://doi.org/10.3390/met12081274 - 28 Jul 2022
Cited by 33 | Viewed by 8562
Abstract
The wetting behavior of water on metal surfaces is important for a wide range of industries, for example, in the metallurgical industry during the preparation of metallic nanoparticles or electrochemical or electroless coating preparation from aqueous solutions, as well as in the construction [...] Read more.
The wetting behavior of water on metal surfaces is important for a wide range of industries, for example, in the metallurgical industry during the preparation of metallic nanoparticles or electrochemical or electroless coating preparation from aqueous solutions, as well as in the construction industry (e.g., self-cleaning metal surfaces) and in the oil industry, in the case of water–oil separation or corrosion problems. Wettability in water/metal systems has been investigated in the literature; nevertheless, contradictions can be found in the results. Some papers have reported perfect wettability even in water/noble metal systems, while other researchers state that water cannot spread well on the surface of metals, and the contact angle is predicted at around 60°. The purpose of this paper is to resolve this contradiction and find correlations to predict the contact angle for a variety of metals. In our research, the wetting behavior of distilled water on the freshly polished surface of Ag, Au, Cu, Fe, Nb, Ni, Sn, Ti, and W substrates was investigated by the sessile drop method. The contact angle of the water on the metal was determined by KSV software. The contact angle of water is identified as being between 50° and 80°. We found that the contact angle of water on metals decreases linearly with increasing the atomic radius of the substrate. Using our new equation, the contact angle of water was identified on all of the metals in the periodic table. From the measured contact angle values, the adhesion energy of the distilled water/metal substrate interface was also determined and a correlation with the free electron density parameter of substrates was determined. Full article
(This article belongs to the Special Issue Nanostructured Metallic Coatings)
Show Figures

Figure 1

46 pages, 93339 KiB  
Review
Green Synthesis of Metal Oxides Semiconductors for Gas Sensing Applications
by Mehran Dadkhah and Jean-Marc Tulliani
Sensors 2022, 22(13), 4669; https://doi.org/10.3390/s22134669 - 21 Jun 2022
Cited by 62 | Viewed by 7829
Abstract
During recent decades, metal oxide semiconductors (MOS) have sparked more attention in various applications and industries due to their excellent sensing characteristics, thermal stability, abundance, and ease of synthesis. They are reliable and accurate for measuring and monitoring environmentally important toxic gases, such [...] Read more.
During recent decades, metal oxide semiconductors (MOS) have sparked more attention in various applications and industries due to their excellent sensing characteristics, thermal stability, abundance, and ease of synthesis. They are reliable and accurate for measuring and monitoring environmentally important toxic gases, such as NO2, NO, N2O, H2S, CO, NH3, CH4, SO2, and CO2. Compared to other sensing technologies, MOS sensors are lightweight, relatively inexpensive, robust, and have high material sensitivity with fast response times. Green nanotechnology is a developing branch of nanotechnology and aims to decrease the negative effects of the production and application of nanomaterials. For this purpose, organic solvents and chemical reagents are not used to prepare metal nanoparticles. On the contrary, the synthesis of metal or metal oxide nanoparticles is done by microorganisms, either from plant extracts or fungi, yeast, algae, and bacteria. Thus, this review aims at illustrating the possible green synthesis of different metal oxides such as ZnO, TiO2, CeO2, SnO2, In2O3, CuO, NiO, WO3, and Fe3O4, as well as metallic nanoparticles doping. Full article
Show Figures

Figure 1

Back to TopTop