Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = Ni60/TC4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7440 KB  
Article
Magnetic Metal–Organic Framework: An Innovative Nanocomposite Adsorbent for the Removal of Emerging Drug Contaminants from Water
by Xueying Li, Asfandyar Shahab, Jinxiong Chen, Wei Li, Hua Zhang, Dunqiu Wang, Xinyu Tang, Mingxin Bin, Licheng Peng and Abubakr M. Idris
Water 2026, 18(3), 321; https://doi.org/10.3390/w18030321 - 28 Jan 2026
Viewed by 191
Abstract
The widespread use of antibiotics has taken a heavy toll on the environment, which cannot be ignored. Tetracycline antibiotics (TCs), as representative pharmaceutical contaminants, have emerged as a growing environmental concern due to their persistence and potential ecological risks. This study utilized 1,3,5-benzenetricarboxylic [...] Read more.
The widespread use of antibiotics has taken a heavy toll on the environment, which cannot be ignored. Tetracycline antibiotics (TCs), as representative pharmaceutical contaminants, have emerged as a growing environmental concern due to their persistence and potential ecological risks. This study utilized 1,3,5-benzenetricarboxylic acid (BTC) as a functionalizing reagent to synthesize magnetic nanoparticles NiFe2O4-COOH. These were then combined with Zr-MOF to create the magnetic adsorbent designated as NCF@Zr-MOF (where NCF represents carboxyl-functionalized nickel ferrite). Magnetic solid-phase extraction (MSPE) technology was employed to remove two representative tetracycline antibiotics, tetracycline (TC) and chlortetracycline (CTC) from the environment. The Langmuir model fitting revealed maximum adsorption reached 190.85 and 196.32 mg/g for TC and CTC, respectively, both of which conformed to the pseudo-second-order model during the adsorption process with spontaneous, heat-absorbing and entropy-increasing properties. Furthermore, following five cycles of adsorption and desorption, the removal rate for TCs was found to have decreased by 30%, yet the removal of CTCs remained at 95.32%. This adsorbent enables rapid separation via an external magnetic field. With its excellent stability and reusability, NCF@Zr-MOF shows great potential for removing antibiotics from water. Full article
Show Figures

Graphical abstract

14 pages, 11501 KB  
Article
The Microstructure and Mechanical Properties of a Dissimilar Rotary Friction Welded TC4 Titanium Alloy to 304SS Stainless Steel with Inconel 718 Alloy Interlayer
by Rui Tang and Chunquan Li
Processes 2026, 14(2), 183; https://doi.org/10.3390/pr14020183 - 6 Jan 2026
Viewed by 221
Abstract
This study investigates the microstructure and mechanical properties of a dissimilar joint formed by rotary friction welding, which joins TC4 titanium alloy to 304 stainless steel using an Inconel 718 interlayer. The welding parameters were as follows: a friction time of 9 s, [...] Read more.
This study investigates the microstructure and mechanical properties of a dissimilar joint formed by rotary friction welding, which joins TC4 titanium alloy to 304 stainless steel using an Inconel 718 interlayer. The welding parameters were as follows: a friction time of 9 s, a friction pressure of 160 MPa, an upset time of 2 s, a forging pressure of 250 MPa, and a rotational speed of 1400 rpm. Microstructural analysis revealed the formation of intermetallic compounds (IMCs), including Fe2Ti, Ni3Ti, NiCrFe, FeNi3, Ti2Ni, and FeNi, at the TC4/Inconel 718 interface, while Ni3Ti and FeNi3 IMCs were identified at the Inconel 718/304SS interface. The tensile tests demonstrated that the joint with the Inconel 718 interlayer (TC4/Inconel 718/304SS) achieved an ultimate tensile strength (UTS) of 717.73 MPa and an elongation of 13.05%. In contrast, the direct joint without the interlayer (TC4/304SS) exhibited a lower UTS of 631.58 MPa and a reduced elongation of 7.39%. Therefore, the introduction of the Inconel 718 interlayer significantly improved joint quality, increasing tensile strength by 13.64% and elongation by 76.59%. More importantly, the interlayer effectively inhibited the formation of brittle Ti-Fe intermetallic compounds, which are typically detrimental to joint performance. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

28 pages, 6014 KB  
Article
Probabilistic Modeling of Fatigue Life Prediction of Notched Specimens Combining Highly Stressed Volume and Theory of Critical Distance Approach
by Bin Li, Peng Liu, Yuan Cheng, Xiaodi Wang and Xuechong Ren
Metals 2025, 15(12), 1300; https://doi.org/10.3390/met15121300 - 26 Nov 2025
Viewed by 556
Abstract
Notch and size effects significantly influence the fatigue performance of engineering components, which is crucial for ensuring structural integrity. A novel probabilistic fatigue life prediction Kt-V-L model considering both the size and the notch effect, based on the theory of critical distance L [...] Read more.
Notch and size effects significantly influence the fatigue performance of engineering components, which is crucial for ensuring structural integrity. A novel probabilistic fatigue life prediction Kt-V-L model considering both the size and the notch effect, based on the theory of critical distance L (TCD) and the improved highly stressed volume V (HSV) method, is proposed in this study. The new definition more accurately characterizes fatigue damage and accumulation, overcoming the underestimation issues of traditional HSV methods under high-stress or low cycle fatigue (LCF) conditions. Specifically, the Weibull distribution is also proposed to characterize the material fatigue failure probability. The experimental data of 26Cr2Ni4MoV, En3B, and TC4 materials with varying notched sizes are utilized for the model validation and comparison. In addition, the predictive ability of the point method (Kt-V-L-PM) and line method (Kt-V-L-LM) under the novel proposed model was explored and evaluated. The predicted lives of 26Cr2Ni4MoV specimens fall within the ±2 scatter band of the Kt-V-L-LM, while the Kt-V-L-PM shows increasing deviation with larger notches due to its limited ability to capture stress gradients. For En3B and TC4, the predicted lives are within ± 2 life factors, verifying the model’s reliability and accuracy. Furthermore, fracture morphology analysis reveals the influence of notches on fatigue performance and elucidates the fracture failure mechanisms. Full article
Show Figures

Figure 1

16 pages, 2624 KB  
Article
Grain Size Engineering and Tuning of Magnetic Properties in Ultra-Thin NiMnGa Glass-Coated Microwires: Insights from Annealing Effects
by Mohamed Salaheldeen, Valentina Zhukova, Julian Gonzalez and Arcady Zhukov
Crystals 2025, 15(6), 565; https://doi.org/10.3390/cryst15060565 - 16 Jun 2025
Cited by 1 | Viewed by 787
Abstract
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, [...] Read more.
We studied the influence of annealing on the magnetic properties and microstructure of ultrathin (metallic nucleus diameter ≈ 5 μm, total diameter ≈ 19 μm) Heusler-type NiMnGa glass-coated microwires prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa microwires exhibit unexpectedly strong magnetic anisotropy, characterized by a coercivity exceeding 3 kOe at room temperature. Furthermore, their Curie temperature (Tc) lies above room temperature. Additionally, a spontaneous exchange bias of approximately 120 Oe is observed in the as-prepared sample at 100 K. Annealing the microwires leads to a decrease in coercivity, spontaneous exchange bias, and Tc values. Notably, the annealing process shifts the Tc of the samples closer to room temperature, making them more suitable for magnetic solid-state refrigeration applications. Moreover, the hysteresis observed in the temperature dependence of magnetization for the samples annealed for 1 h and 2 h, along with the magnetic softening observed at around 260 K, is attributed to a first-order phase transformation. The observed changes are discussed in the context of internal stress relaxation after annealing, the nanocrystalline structure of both the as-prepared and annealed samples, the recrystallization process, and the magnetic ordering of phases identified in the as-prepared sample and those appearing during recrystallization. The glass coating on microwires offers benefits like better flexibility and resistance to damage and corrosion. However, it is important to recognize that this coating can substantially alter the microwires’ magnetic characteristics. Consequently, precise control over the annealing process is vital to obtain the specific martensitic transformation needed. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

17 pages, 4325 KB  
Article
Geochemical Characteristics of the Minghuazhen Formation in the Cangdong Sag, Bohai Bay Basin: Implications for Provenance, Paleoclimate, and Hydrocarbon Exploration
by Jianzhou Yang, Yong Li, Jingjing Gong, Zhuang Duan, Shuqi Hu, Liling Tang, Wenli Su, Jianweng Gao, Zhenliang Wang, Lujun Lin, Keqiang Zhao and Shengping Gong
Sustainability 2025, 17(12), 5293; https://doi.org/10.3390/su17125293 - 8 Jun 2025
Viewed by 1060
Abstract
The Minghuazhen Formation in the Cangdong Sag of the Bohai Bay Basin is a key sedimentary unit for investigating regional provenance evolution, paleoclimate variations, and hydrocarbon potential in Eastern China. This study integrates mineralogical and geochemical analyses to explore sedimentary characteristics. Techniques include [...] Read more.
The Minghuazhen Formation in the Cangdong Sag of the Bohai Bay Basin is a key sedimentary unit for investigating regional provenance evolution, paleoclimate variations, and hydrocarbon potential in Eastern China. This study integrates mineralogical and geochemical analyses to explore sedimentary characteristics. Techniques include X-ray diffraction (XRD), major/trace element compositions, rare earth element (REE) distributions, and organic carbon content. XRD data and elemental ratios (e.g., Al/Ti, Zr/Sc) suggest a predominant felsic provenance, sourced from acidic magmatic rocks. The enrichment with light rare earth elements (LREE: La–Eu) and notable negative Eu anomalies in the REE patterns support the interpretation of a provenance from the Taihangshan and Yanshan Orogenic Belts. Geochemical proxies, such as the Chemical Index of Alteration (CIA) and trace element ratios (e.g., U/Th, V/Cr, Ni/Co), indicate a warm and humid depositional environment, characterized by predominantly oxic freshwater conditions. Organic geochemical parameters, including total organic carbon (TOC), total nitrogen (TN), and C/N ratios, suggest that organic matter primarily originates from aquatic algae and plankton, with C/N values predominantly below 10 and a strong correlation between TOC and TN. The weak correlation between TOC and total carbon (TC) indicates that the organic carbon is mainly biological in origin rather than carbonate-derived. Although the warm and humid climate promoted the production of organic matter, the prevailing oxic conditions hindered its preservation, resulting in a relatively low hydrocarbon generation potential within the Minghuazhen Formation of the Cangdong Sag. These findings provide new insights into the sedimentary evolution and hydrocarbon potential of the Bohai Bay Basin. Full article
Show Figures

Figure 1

18 pages, 6758 KB  
Article
Effect of Brazing Temperature and Holding Time on the Interfacial Microstructure and Properties of TC4-Brazed Joints with Ti-Zr-Cu-Ni Amorphous Filler
by Yibin Wu, Jie Li, Zexin Wang, Sheng Lu and Kun Liu
Materials 2025, 18(11), 2471; https://doi.org/10.3390/ma18112471 - 24 May 2025
Cited by 3 | Viewed by 1589
Abstract
A TC4 alloy was joined with Ti-Zr-Cu-Ni amorphous filler by vacuum brazing. The paper further explored how different brazing temperatures with a 20 min holding time, or varying holding times at a brazing temperature of 900 °C, impact the interface width, microstructure, composition [...] Read more.
A TC4 alloy was joined with Ti-Zr-Cu-Ni amorphous filler by vacuum brazing. The paper further explored how different brazing temperatures with a 20 min holding time, or varying holding times at a brazing temperature of 900 °C, impact the interface width, microstructure, composition distribution, microhardness, shear strength, and fracture surface of the brazed joints. The findings indicated that as the brazing temperature increased, the interface width became wider. Moreover, as the brazing temperature continued to rise, both the size of the Widmanstätten structure and the amount of the (Ti, Zr)2(Cu, Ni) brittle phase increased continuously, leading to the joint exhibiting harder and more brittle properties. As the temperature rose from 860 °C to 900 °C, the microhardness went up from 462.8 HV0.1 to 482.6 HV0.1. But when the temperature continued to increase (920 °C, 940 °C), the microhardness started to decrease, until it reached 392.6 HV0.1 at a holding time of 20 min. As the brazing temperature increased, the width of the joint interface expanded, and the shear strength continued to rise. When the brazing temperature rose to 940 °C, the shear strength increased to 223.9 MPa under a holding time of 20 min. With the prolongation of the holding time (from 10 min to 30 min), the Widmanstätten structure at the joint interface continuously grew towards the center. Additionally, the (Ti, Zr)2(Cu, Ni) phase and eutectic structure were separated by the Widmanstätten structure. The microhardness and shear strength reached their maximum values at 900 °C, and the shear strength was measured at 137.6 MPa. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

15 pages, 2841 KB  
Article
Development of New Dual-Purpose Environmental Strategies for Effective Antibiotic Degradation Using Red Mud-Based Fenton Oxidation Catalysts
by Yirong Zhao, Junxia Su, Bingqi Zhou, Fujie Li, Kang Mao, Muhammad Umair, Guopei Huang and Hua Zhang
Molecules 2025, 30(6), 1298; https://doi.org/10.3390/molecules30061298 - 14 Mar 2025
Cited by 2 | Viewed by 1280
Abstract
Mitigating antibiotic pollution is essential to combating antibiotic resistance, safeguarding ecosystems, ensuring food and water safety, and preserving the efficacy of antibiotics. Simultaneously, the comprehensive utilization of red mud is a key approach to reducing resource waste and ecological damage. This study investigates [...] Read more.
Mitigating antibiotic pollution is essential to combating antibiotic resistance, safeguarding ecosystems, ensuring food and water safety, and preserving the efficacy of antibiotics. Simultaneously, the comprehensive utilization of red mud is a key approach to reducing resource waste and ecological damage. This study investigates the use of iron components from red mud to prepare RM-nZVI/Ni for Fenton-like reactions, aimed at degrading antibiotics in water. By leveraging the inherent iron content in red mud, RM-nZVI/Ni was developed to achieve a dual-purpose environmental strategy: antibiotic degradation and solid waste resource recycling. The results demonstrate that 0.02 g/L of sulfamethoxazole (SMX) can be fully degraded within 15 min using 0.1 g/L of RM-nZVI/Ni and 6 mM of H2O2. Hydroxyl radicals (·OH) and Ni were identified as key contributors to SMX removal. Moreover, this system exhibits universality in degrading common antibiotics such as LFX, NFX, CIP, and TC. LC-MS analysis and DFT theoretical calculations indicate that the degradation byproducts are of lower toxicity or are non-toxic. Additionally, cost analysis suggests that RM-nZVI/Ni is a cost-effective and efficient catalyst. This research gives valuable insights into antibiotic degradation using red mud-based catalysts and offers guidance for expanding the high-value applications of red mud. Full article
Show Figures

Figure 1

31 pages, 3890 KB  
Review
A Review on the Magnetovolume Effect of the Full Heusler Alloys Ni2MnZ (Z = In, Sn, Sb)
by Takeshi Kanomata, Xiao Xu, Takuo Sakon, Yuki Nagata, Shin Imada, Toshihiro Omori, Ryosuke Kainuma, Tetsujiro Eto, Yoshiya Adachi, Takumi Kihara, Yasushi Amako, Masaaki Doi and Yoshiya Uwatoko
Metals 2025, 15(2), 215; https://doi.org/10.3390/met15020215 - 18 Feb 2025
Cited by 4 | Viewed by 2511
Abstract
The full Heusler alloys Ni2MnZ (Z = In, Sn, Sb) exhibit ferromagnetic properties with a Curie temperature (TC) above room temperature. The magnetic properties of Ni2MnZ (Z = In, Sn, Sb) were studied through a combination [...] Read more.
The full Heusler alloys Ni2MnZ (Z = In, Sn, Sb) exhibit ferromagnetic properties with a Curie temperature (TC) above room temperature. The magnetic properties of Ni2MnZ (Z = In, Sn, Sb) were studied through a combination of experiments and band calculations under ambient and elevated pressures. The main results of this study open up further prospects for controlling the magnetic properties of the multifunctional Heusler alloys Ni2Mn1+xZ1−x (Z = In, Sn, Sb) and their practical application. Full article
(This article belongs to the Section Metallic Functional Materials)
Show Figures

Figure 1

15 pages, 3433 KB  
Article
Comprehensively Understanding the Transformation of Paramagnetic Tetramer to Spin-Paired Dimer in an S = ½ Molecular Crystal
by Yin Qian, Yan Gao, Lei Xu, Reinhard K. Kremer, Jin Zhang and Xiao-Ming Ren
Magnetochemistry 2025, 11(2), 8; https://doi.org/10.3390/magnetochemistry11020008 - 24 Jan 2025
Cited by 1 | Viewed by 1708
Abstract
In this study, we comparatively analyzed the variable-temperature crystal structures for two isomorphous salts, [1-benzyl-4-aminopyridinium][M(mnt)2] (M = Ni or Cu; mnt2− = maleonitriledithiolate; labeled as APy-Ni or APy-Cu). Both salts crystallize in the triclinic P–1 space group at [...] Read more.
In this study, we comparatively analyzed the variable-temperature crystal structures for two isomorphous salts, [1-benzyl-4-aminopyridinium][M(mnt)2] (M = Ni or Cu; mnt2− = maleonitriledithiolate; labeled as APy-Ni or APy-Cu). Both salts crystallize in the triclinic P–1 space group at 296 K, comprising linear [M(mnt)2] (M = Ni or Cu) tetramers. A magnetostructural phase transition occurs at TC~190 K in S = ½ APy-Ni at ambient pressure, with a conversion of paramagnetic tetramers into nonmagnetic spin-paired dimers. The discontinuous alteration of cell parameters at TC signifies the characteristic of first-order phase transition in APy-Ni. No such transition appears in the nonmagnetic APy-Cu within the same temperature vicinity, demonstrating the magnetic interactions promoting the structural phase transition in APy-Ni, which is further reinforced through a comparison of the lattice formation energy between APy-Ni and APy-Cu. The phase transition may bear a resemblance to the mechanisms typically observed in spin-Peierls systems. We further explored the magnetic and phase transition properties of APy-Ni under varying pressures. Significantly, TC shows a linear increase with rising pressure within the range of 0.003–0.88 GPa, with a rate of 90 K GPa−1, manifesting that the applied pressure promotes the transition from tetramer to dimer. Full article
Show Figures

Figure 1

18 pages, 8584 KB  
Article
Effect of Ni and Nb Elements on Corrosion Resistance and Behavior of TC4 Alloy in Hydrochloric Acid
by Kaikai Xiao, Jinpeng Ge, Yongqiang Zhang, Jian Wang, Weizhong Feng, Xingyu Ou-Yang, Yang Yu, Wenjun Ye and Songxiao Hui
Materials 2025, 18(2), 246; https://doi.org/10.3390/ma18020246 - 8 Jan 2025
Cited by 3 | Viewed by 1105
Abstract
Due to the development of the petroleum industry, more severe mining conditions put forward higher corrosion resistance requirements for materials. In this paper, the corrosion resistance and corrosion behavior of four TC4-xNi-yNb (x, y = 0, 0.5) alloys were investigated in a 1 [...] Read more.
Due to the development of the petroleum industry, more severe mining conditions put forward higher corrosion resistance requirements for materials. In this paper, the corrosion resistance and corrosion behavior of four TC4-xNi-yNb (x, y = 0, 0.5) alloys were investigated in a 1 mol/L HCl solution through microscopic characterization, electrochemical tests and corrosion weight loss testing. The results demonstrated that the addition of Ni and Nb elements could improve the corrosion resistance of TC4 alloy to varying degrees. The addition of niobium formed niobium oxide in the passive film, while the addition of nickel thickened the passive film without formation of nickel oxides. The improvement of corrosion resistance of TC4 by nickel is more significant. Finally, a new highly corrosion resistant alloy TC4-0.5Ni-0.5Nb is preferred. Full article
Show Figures

Figure 1

19 pages, 10529 KB  
Article
One-Pot Synthesis and Enhanced Vis-NIR Photocatalytic Activity of NiTiO3/TiO2 Templated by Waste Tobacco Stem-Silks
by Weidong Yuan, Xiaohong Chen, Yi Zhao, Ying Fang, Han Zhang, Daomei Chen and Jiaqiang Wang
Nanomaterials 2025, 15(2), 80; https://doi.org/10.3390/nano15020080 - 7 Jan 2025
Cited by 2 | Viewed by 1470
Abstract
Synthesis of the photocatalysts with near-infrared light response usually involves upconversion materials or plasmon-assisted noble metals. Herein, NiTiO3/TiO2 was synthesized by using waste tobacco stem-silks as biotemplates and tetra-tert-butyl orthotitanate and nickel nitrate as precursors in a one-pot procedure. NiTiO [...] Read more.
Synthesis of the photocatalysts with near-infrared light response usually involves upconversion materials or plasmon-assisted noble metals. Herein, NiTiO3/TiO2 was synthesized by using waste tobacco stem-silks as biotemplates and tetra-tert-butyl orthotitanate and nickel nitrate as precursors in a one-pot procedure. NiTiO3(1.0)/TiO2(TSS) with a mass percent of Ni 1.0% exhibited very high visible-light photocatalytic efficiency in photodegradation of tetracycline hydrochloride (TC), which is 8.0 and 2.3 times higher than TiO2 prepared without templates and TiO2(TSS) prepared without Ni, respectively. Interestingly, NiTiO3(1.5)/TiO2(TSS) even exhibited good activity under NIR light (λ = 840~850 nm) without upconversion materials or plasmon-assisted noble metals, which is 2.8 and 2.2 times than TiO2 prepared without templates and TiO2(TSS), respectively. The boosting photocatalytic activity has been shown to be attributed to efficient charge separation and transfer across a direct Z-scheme heterojunction between NiTiO3 and TiO2 and enhanced light-harvesting ability of special flaky structure reduplicated from tobacco stem-silks. This reported strategy provides a new idea for the multifunctional utilization of waste tobacco stem-silks and the synthesis of novel photocatalysts for the potential application in wastewater treatment. Full article
(This article belongs to the Special Issue Porous Materials for Wastewater Treatment (2nd Edition))
Show Figures

Figure 1

11 pages, 4719 KB  
Article
TBC Development on Ti-6Al-4V for Aerospace Application
by Renata Jesuina Takahashi, João Marcos Kruszynski de Assis, Leonardo Henrique Fazan, Laura Angélica Ardila Rodríguez, Aline Gonçalves Capella and Danieli Aparecida Pereira Reis
Coatings 2025, 15(1), 47; https://doi.org/10.3390/coatings15010047 - 3 Jan 2025
Cited by 4 | Viewed by 2530
Abstract
The Ti-6Al-4V alloy is widely utilized in the aerospace industry for applications such as turbine blades, where it is valued for its mechanical strength at high temperatures, low specific gravity, and resistance to corrosion and oxidation. This alloy provides crucial protection against oxidation [...] Read more.
The Ti-6Al-4V alloy is widely utilized in the aerospace industry for applications such as turbine blades, where it is valued for its mechanical strength at high temperatures, low specific gravity, and resistance to corrosion and oxidation. This alloy provides crucial protection against oxidation and thermal damage. A thermal barrier coating (TBC) typically consists of a metallic substrate, a bond coating (BC), a thermally grown oxide (TGO), and a topcoat ceramic (TC). This study aimed to investigate laser parameters for forming a TBC with a NiCrAlY bond coating and a zirconia ceramic topcoat, which contains 16.0% equimolar yttria and niobia. The coatings were initially deposited in powder form and then irradiated using a CO2 laser. The parameters of laser power and beam scanning speed were evaluated using scanning electron microscopy and X-ray diffraction. The results indicated that the optimal laser scanning speed and power for achieving the best metallurgical bonding between the substrate/BC and the BC-TGO/TC layers were 70 mm/s at 100 W and 550 mm/s at 70 W, respectively. Laser-based layer formation has proven to be a promising technique for the application of TBC. Full article
Show Figures

Figure 1

22 pages, 1234 KB  
Review
Pathogenesis and Management Strategies in Radioiodine-Refractory Differentiated Thyroid Cancer: From Molecular Mechanisms Toward Therapeutic Approaches: A Comprehensive Review
by Iulia-Alexandra Voinea, Eugenia Petrova, Nicoleta Dumitru, Andra Cocoloș, Dumitru Ioachim, Andrei Liviu Goldstein and Adina Mariana Ghemigian
J. Clin. Med. 2024, 13(23), 7161; https://doi.org/10.3390/jcm13237161 - 26 Nov 2024
Cited by 5 | Viewed by 3532
Abstract
Thyroid cancer (TC) remains the most common cancer in endocrinology. Differentiated thyroid cancer (DTC), the most common type of TC, generally has a favorable outlook with conventional treatment, which typically includes surgery along with radioiodine (RAI) therapy and thyroid-stimulating hormone (TSH) suppression through [...] Read more.
Thyroid cancer (TC) remains the most common cancer in endocrinology. Differentiated thyroid cancer (DTC), the most common type of TC, generally has a favorable outlook with conventional treatment, which typically includes surgery along with radioiodine (RAI) therapy and thyroid-stimulating hormone (TSH) suppression through thyroid hormone therapy. However, a small subset of patients (less than 5%) develop resistance to RAI. This resistance occurs due to the loss of Na/I symporter (NIS) activity, which is crucial for iodine absorption in thyroid cells. The decline in NIS activity appears to be due to gene modifications, reconfigurations with irregular stimulation of signaling pathways such as MAPK and PI3K/Akt pathways. These molecular changes lead to a diminished ability of DTC cells to concentrate iodine, which makes RAI therapy ineffective. As a consequence, patients with radioiodine-refractory DTC require alternative treatments. Therapy with tyrosine kinase inhibitors (TKIs) has emerged as the primary treatment option to inhibit proliferation and growth of RAIR-DTC, targeting the pathways responsible for tumor progression. In this article, we analyze molecular processes responsible for RAI resistance and explore both conventional and emerging therapeutic strategies for managing RAIR-DTC, aiming to improve patient outcomes. Full article
Show Figures

Figure 1

14 pages, 3347 KB  
Article
Efficient Degradation of Tetracycline by Peroxymonosulfate Activated with Ni-Co Bimetallic Oxide Derived from Bimetallic Oxalate
by Qi Zhang, Mingling Yu, Hang Liu, Jin Tang, Xiaolong Yu, Haochuan Wu, Ling Jin and Jianteng Sun
Toxics 2024, 12(11), 816; https://doi.org/10.3390/toxics12110816 - 14 Nov 2024
Cited by 5 | Viewed by 1825
Abstract
In this work, NiCo2O4 was synthesized from bimetallic oxalate and utilized as a heterogeneous catalyst to active peroxymonosulfate (PMS) for the degradation of tetracycline (TC). The degradation efficiency of TC (30 mg/L) in the NiCo2O4 + PMS [...] Read more.
In this work, NiCo2O4 was synthesized from bimetallic oxalate and utilized as a heterogeneous catalyst to active peroxymonosulfate (PMS) for the degradation of tetracycline (TC). The degradation efficiency of TC (30 mg/L) in the NiCo2O4 + PMS system reached 92.4%, with NiCo2O4 exhibiting satisfactory reusability, stability, and applicability. Radical trapping test and electron paramagnetic resonance (EPR) results indicated that SO4•−, •OH, O2•−, and 1O2 were the dominating reactive oxygen species (ROS) for TC degradation in the NiCo2O4 + PMS system. Seven intermediates were identified, and their degradation pathways were proposed. Toxicity assessment using T.E.S.T software (its version is 5.1.1.0) revealed that the identified intermediates had lower toxicity compared to intact TC. A rice seed germination test further confirmed that the NiCo2O4 + PMS system effectively degraded TC into low-toxicity or non-toxic products. In conclusion, NiCo2O4 shows promise as a safe and efficient catalyst in advanced oxidation processes (AOPs) for the degradation of organic pollutants. Full article
Show Figures

Graphical abstract

15 pages, 2148 KB  
Article
Microstructural and Performance Analysis of (TiAl)95−xCu5Nix Coatings Prepared via Laser Surface Cladding on Ti–6Al–4V Substrates
by Wenchang Jia, Xiaojie Song, Yuming Zhu, Di Jiang, Minglei Liu, Yupeng Ji, Dazhou Zhou and Yi Wang
Materials 2024, 17(20), 5036; https://doi.org/10.3390/ma17205036 - 15 Oct 2024
Cited by 1 | Viewed by 1660
Abstract
In this study, the surface of (Ti-6Al-4V)TC4 alloy was modified via laser cladding. The elemental composition of the coating was (TiAl)95−xCu5Nix, with Ni as the variable (where x = 0, 3, 6, and 9 at.%). Multi-principal alloy [...] Read more.
In this study, the surface of (Ti-6Al-4V)TC4 alloy was modified via laser cladding. The elemental composition of the coating was (TiAl)95−xCu5Nix, with Ni as the variable (where x = 0, 3, 6, and 9 at.%). Multi-principal alloy coatings were successfully prepared, and their constituent phases, microstructures, and chemical compositions were thoroughly investigated. The hardness and wear resistance of the coatings were analyzed, and the compositions and interfacial characteristics of the different phases were examined via transmission electron microscopy. The analysis revealed that Ni formed a solid solution and a eutectic structure in the Ti(Al, Cu)2 phase. These findings provide valuable insights into the coating properties. Moreover, reciprocal dry sliding friction experiments were conducted to investigate the wear mechanism. The results revealed a significant increase in wear resistance owing to the formation of a Ni solid solution and changes in the coating structure. Additionally, tensile tests demonstrated that the tensile strength of the coatings initially increased and then decreased with varying Ni content. By combining these results with various analyses, we determined that the coating exhibited optimal properties at a Ni content of 6 at.%. Overall, this study comprehensively investigated the microstructure and phase transition behavior of these coatings through various analytical techniques. These findings provide valuable guidance for further optimizing both the preparation process and the performance of the coatings. The coatings exhibit excellent wear resistance and could inspire the design of more advanced protective surfaces. Full article
(This article belongs to the Special Issue Advances in Multicomponent Alloy Design, Simulation and Properties)
Show Figures

Figure 1

Back to TopTop