Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Newtonian gravitational parameter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 337 KB  
Article
A Spacetime Metric for the 4 + 1 Formalism
by Martin Land
Sci 2025, 7(3), 86; https://doi.org/10.3390/sci7030086 - 1 Jul 2025
Viewed by 754
Abstract
In his foundational work on classical and quantum electrodynamics, Stueckelberg introduced an external evolution parameter, τ, in order to overcome difficulties associated with the problem of time in relativity. Stueckelberg particle trajectories are described by the evolution of spacetime events under the [...] Read more.
In his foundational work on classical and quantum electrodynamics, Stueckelberg introduced an external evolution parameter, τ, in order to overcome difficulties associated with the problem of time in relativity. Stueckelberg particle trajectories are described by the evolution of spacetime events under the monotonic advance of τ, the basis for the Feynman–Stueckelberg interpretation of particle–antiparticle interactions. An event is a solution to τ-parameterized equations of motion, which, under simple conditions, including the elimination of pair processes, can be reparameterized by the proper time of motion. The 4+1 formalism in general relativity (GR) extends this framework to provide field equations for a τ-dependent local metric γμν(x,τ) induced by these Stueckelberg trajectories, leading to τ-parameterized geodesic equations in an evolving spacetime. As in standard GR, the linearized theory for weak fields leads to a wave equation for the local metric induced by a given matter source. While previous attempts to solve the wave equation have produced a metric with the expected features, the resulting geodesic equations for a test particle lead to unreasonable trajectories. In this paper, we discuss the difficulties associated with the wave equation and set up the more general ADM-like 4+1 evolution equations, providing an initial value problem for the metric induced by a given source. As in the familiar 3+1 formalism, the metric can be found as a perturbation to an exact solution for the metric induced by a known source. Here, we propose a metric, ansatz, with certain expected properties; obtain the source that induces this metric; and use them as the initial conditions in an initial value problem for a general metric posed as a perturbation to the ansatz. We show that the ansatz metric, its associated source, and the geodesic equations for a test particle behave as required for such a model, recovering Newtonian gravitation in the nonrelativistic limit. We then pose the initial value problem to obtain more general solutions as perturbations of the ansatz. Full article
19 pages, 417 KB  
Article
Statistical Strong Lensing as a Test of Conformal Gravity
by Li-Xue Yue and Da-Ming Chen
Universe 2025, 11(6), 178; https://doi.org/10.3390/universe11060178 - 31 May 2025
Cited by 1 | Viewed by 1385
Abstract
As an alternative gravitational theory to General Relativity (GR), Conformal Gravity (CG) can be verified through astronomical observations. Currently, Mannheim and Kazanas have provided vacuum solutions for cosmological and local gravitational systems, and these solutions may resolve the dark matter and dark energy [...] Read more.
As an alternative gravitational theory to General Relativity (GR), Conformal Gravity (CG) can be verified through astronomical observations. Currently, Mannheim and Kazanas have provided vacuum solutions for cosmological and local gravitational systems, and these solutions may resolve the dark matter and dark energy issues encountered in GR, making them particularly valuable. For static, spherically symmetric systems, CG predicts an additional linear potential generated by luminous matter in addition to the conventional Newtonian potential. This extra potential is expected to account for the observations of galaxies and galaxy clusters without the need of dark matter. It is characterized by the parameter γ*, which corresponds to the linear potential generated by the unit of the solar mass, and it is thus a universal constant. The value of γ* was determined by fitting the rotation curve data of spiral galaxies. These predictions of CG should also be verified by the observations of strong gravitational lensing. To date, in the existing literature, the observations of strong lensing employed to test CG have been limited to a few galaxy clusters. It has been found that the value of γ* estimated from strong lensing is several orders of magnitude greater than that obtained from fitting rotation curves. In this study, building upon the previous research, we tested CG via strong lensing statistics. We used a well-defined sample that consisted of both galaxies and galaxy clusters. This allowed us to test CG through statistical strong lensing in a way similar to the conventional approach in GR. As anticipated, our results were consistent with previous studies, namely that the fitted γ* is much larger than that from rotation curves. Intriguingly, we further discovered that, in order to fit the strong lensing data of another sample, the value of γ* cannot be a constant, as is required in CG. Instead, we derived a formula for γ* as a function of the stellar mass M* of the galaxies or galaxy clusters. It was found that γ* decreases as M* increases. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

8 pages, 326 KB  
Article
The Impact of the Eccentricity on the Collapse of an Ellipsoid into a Black Hole
by Aisen G. Nikiforov, Anton N. Baushev and Maxim V. Barkov
Universe 2025, 11(3), 95; https://doi.org/10.3390/universe11030095 - 12 Mar 2025
Viewed by 736
Abstract
We consider the gravitational collapse of a homogeneous pressureless ellipsoid. We have shown that the minimal size r that the ellipsoid can reach during collapse depends on its initial eccentricity e0 as re0ν, where [...] Read more.
We consider the gravitational collapse of a homogeneous pressureless ellipsoid. We have shown that the minimal size r that the ellipsoid can reach during collapse depends on its initial eccentricity e0 as re0ν, where ν15/8, and this dependence is very universal. We have estimated the parameters (in particular, the initial eccentricity) of a homogeneous pressureless ellipsoid, whereat it collapses directly into a black hole. Our consideration is purely Newtonian, but we present a discussion suggesting that the results obtained within the framework of general relativity are unlikely to be significantly different. Full article
(This article belongs to the Section Cosmology)
Show Figures

Figure 1

25 pages, 943 KB  
Article
A Survey of Dynamical and Gravitational Lensing Tests in Scale Invariance: The Fall of Dark Matter?
by André Maeder and Frédéric Courbin
Symmetry 2024, 16(11), 1420; https://doi.org/10.3390/sym16111420 - 24 Oct 2024
Cited by 1 | Viewed by 2403
Abstract
We first briefly review the adventure of scale invariance in physics, from Galileo Galilei, Weyl, Einstein, and Feynman to the revival by Dirac (1973) and Canuto et al. (1977). In the way that the geometry of space–time can be described by the coefficients [...] Read more.
We first briefly review the adventure of scale invariance in physics, from Galileo Galilei, Weyl, Einstein, and Feynman to the revival by Dirac (1973) and Canuto et al. (1977). In the way that the geometry of space–time can be described by the coefficients gμν, a gauging condition given by a scale factor λ(xμ) is needed to express the scaling. In general relativity (GR), λ=1. The “Large Number Hypothesis” was taken by Dirac and by Canuto et al. to fix λ. The condition that the macroscopic empty space is scale-invariant was further preferred (Maeder 2017a), the resulting gauge is also supported by an action principle. Cosmological equations and a modified Newton equation were then derived. In short, except in extremely low density regions, the scale-invariant effects are largely dominated by Newtonian effects. However, their cumulative effects may still play a significant role in cosmic evolution. The theory contains no “adjustment parameter”. In this work, we gather concrete observational evidence that scale-invariant effects are present and measurable in astronomical objects spanning a vast range of masses (0.5 M< M <1014M) and an equally impressive range of spatial scales (0.01 pc < r < 1 Gpc). Scale invariance accounts for the observed excess in velocity in galaxy clusters with respect to the visible mass, the relatively flat/small slope of rotation curves in local galaxies, the observed steep rotation curves of high-redshift galaxies, and the excess of velocity in wide binary stars with separations above 3000 kau found in Gaia DR3. Last but not least, we investigate the effect of scale invariance on gravitational lensing. We show that scale invariance does not affect the geodesics of light rays as they pass in the vicinity of a massive galaxy. However, scale-invariant effects do change the inferred mass-to-light ratio of lens galaxies as compared to GR. As a result, the discrepancies seen in GR between the total lensing mass of galaxies and their stellar mass from photometry may be accounted for. This holds true both for lenses at high redshift like JWST-ER1 and at low redshift like in the SLACS sample. Of note is that none of the above observational tests require dark matter or any adjustable parameter to tweak the theory at any given mass or spatial scale. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 587 KB  
Article
Constraints on Graviton Mass from Schwarzschild Precession in the Orbits of S-Stars around the Galactic Center
by Predrag Jovanović, Vesna Borka Jovanović, Duško Borka and Alexander F. Zakharov
Symmetry 2024, 16(4), 397; https://doi.org/10.3390/sym16040397 - 28 Mar 2024
Cited by 8 | Viewed by 3131
Abstract
In this paper we use a modification of the Newtonian gravitational potential with a non-linear Yukawa-like correction, as it was proposed by C. Will earlier to obtain new bounds on graviton mass from the observed orbits of S-stars around the Galactic Center (GC). [...] Read more.
In this paper we use a modification of the Newtonian gravitational potential with a non-linear Yukawa-like correction, as it was proposed by C. Will earlier to obtain new bounds on graviton mass from the observed orbits of S-stars around the Galactic Center (GC). This phenomenological potential differs from the gravitational potential obtained in the weak field limit of Yukawa gravity, which we used in our previous studies. We also assumed that the orbital precession of S-stars is close to the prediction of General Relativity (GR) for Schwarzschild precession, but with a possible small discrepancy from it. This assumption is motivated by the fact that the GRAVITY Collaboration in 2020 and in 2022 detected Schwarzschild precession in the S2 star orbit around the Supermassive Black Hole (SMBH) at the GC. Using this approach, we were able to constrain parameter λ of the potential and, assuming that it represents the graviton Compton wavelength, we also found the corresponding upper bound of graviton mass. The obtained results were then compared with our previous estimates, as well as with the estimates of other authors. Full article
(This article belongs to the Special Issue Selected Papers on Nonlinear Dynamics)
Show Figures

Figure 1

19 pages, 2260 KB  
Article
Quantum Dynamics of Cavity–Bose–Einstein Condensates in a Gravitational Field
by Zhen Li, Wang-Jun Lu and Ya-Feng Jiao
Photonics 2024, 11(3), 205; https://doi.org/10.3390/photonics11030205 - 24 Feb 2024
Viewed by 3058
Abstract
We theoretically studied the quantum dynamics of a cavity–Bose–Einstein condensate (BEC) system in a gravitational field, which is composed of a Fabry–Pérot cavity and a BEC. We also show how to deterministically generate the transient macroscopic quantum superposition states (MQSSs) of the cavity [...] Read more.
We theoretically studied the quantum dynamics of a cavity–Bose–Einstein condensate (BEC) system in a gravitational field, which is composed of a Fabry–Pérot cavity and a BEC. We also show how to deterministically generate the transient macroscopic quantum superposition states (MQSSs) of the cavity by the use of optomechanical coupling between the cavity field and the BEC. The quantum dynamics of the cavity–BEC system specifically include phase space trajectory dynamics, system excitation number dynamics, quantum entanglement dynamics, and quantum coherence dynamics. We found that the system performs increasingly complex trajectories for larger values of the Newtonian gravity parameter. Moreover, the number of phonon excitations of the system can be increased by coupling the cavity–BEC system to Newtonian gravity, which is analogous to an external direct current drive. The scattering of atoms inside the BEC affects the periodicity of the quantum dynamics of the system. We demonstrate a curious complementarity relation between the quantum entanglement and quantum coherence of cavity–BEC systems and found that the complementarity property can be sustained to some extent, despite being in the presence of the cavity decay. This phenomenon also goes some way to show that quantum entanglement and quantum coherence can be referred to together as quantum resources. Full article
Show Figures

Figure 1

38 pages, 3836 KB  
Article
Geometric Origin of the Galaxies’ Dark Side
by Leonardo Modesto, Tian Zhou and Qiang Li
Universe 2024, 10(1), 19; https://doi.org/10.3390/universe10010019 - 29 Dec 2023
Cited by 6 | Viewed by 1765
Abstract
We show that Einstein’s conformal gravity can explain, simply, and on the geometric ground, galactic rotation curves, without the need to introduce any modification in both the gravitational as well as in the matter sector of the theory. The geometry of each galaxy [...] Read more.
We show that Einstein’s conformal gravity can explain, simply, and on the geometric ground, galactic rotation curves, without the need to introduce any modification in both the gravitational as well as in the matter sector of the theory. The geometry of each galaxy is described by a metric obtained, making a singular rescaling of Schwarzschild’s spacetime. The new exact solution, asymptotically anti-de Sitter, manifests an unattainable singularity at infinity that cannot be reached in finite proper time; namely, the spacetime is geodetically complete. It deserves to be noticed that, in this paper, we have a different opinion from the usual one. Indeed, instead of making the metric singularity-free, we make it apparently but harmlessly even more singular than Schwarzschild’s. Finally, it is crucial to point out that Weyl’s conformal symmetry is spontaneously broken into the new singular vacuum rather than the asymptotically flat Schwarzschild’s one. The metric is unique according to the null energy condition, the zero acceleration for photons in the Newtonian regime, and the homogeneity of the Universe at large scales. Once the matter is conformally coupled to gravity, the orbital velocity for a probe star in the galaxy turns out to be asymptotically constant consistent with the observations and the Tully–Fisher relation. Therefore, we compare our model with a sample of 175 galaxies and show that our velocity profile very well interpolates the galactic rotation curves after a proper choice of the only free parameter in the metric. The mass-to-luminosity ratios of galaxies turn out to be close to 1, consistent with the absence of dark matter. Full article
(This article belongs to the Special Issue Advances and Limitations of Modified Gravity)
Show Figures

Figure 1

17 pages, 1612 KB  
Article
The Formulation of Scaling Expansion in an Euler-Poisson Dark-Fluid Model
by Balázs Endre Szigeti, Imre Ferenc Barna and Gergely Gábor Barnaföldi
Universe 2023, 9(10), 431; https://doi.org/10.3390/universe9100431 - 27 Sep 2023
Cited by 1 | Viewed by 1980
Abstract
We present a dark fluid model described as a non-viscous, non-relativistic, rotating, and self-gravitating fluid. We assume that the system has spherical symmetry and that the matter can be described by the polytropic equation of state. The induced coupled nonlinear partial differential system [...] Read more.
We present a dark fluid model described as a non-viscous, non-relativistic, rotating, and self-gravitating fluid. We assume that the system has spherical symmetry and that the matter can be described by the polytropic equation of state. The induced coupled nonlinear partial differential system of equations was solved using a self-similar time-dependent ansatz introduced by L. Sedov and G.I. Taylor. These kinds of solutions were successfully used to describe blast waves induced by an explosion following the Guderley–Landau–Stanyukovich problem. We show that the result of our quasi-analytic solutions are fully consistent with the Newtonian cosmological framework. We analyzed relevant quantities from the model, namely, the evolution of the Hubble parameter and the density parameter ratio, finding that our solutions can be applied to describe normal-to-dark energy on the cosmological scale. Full article
(This article belongs to the Special Issue Zimányi School – Heavy Ion Physics)
Show Figures

Figure 1

6 pages, 1091 KB  
Proceeding Paper
On the Field Strength of Vacuum Energy and the Emergence of Mass
by Mohammed B. Al-Fadhli
Phys. Sci. Forum 2023, 7(1), 50; https://doi.org/10.3390/ECU2023-14104 - 3 Mar 2023
Viewed by 4235
Abstract
Large inconsistencies in the outcome of precise measurements of Newtonian gravitational ‘constant’ were identified throughout more than three hundred experiments conducted up to date. This paper illustrates the dependency of the Newtonian gravitational parameter on the curvature of the background and the associated [...] Read more.
Large inconsistencies in the outcome of precise measurements of Newtonian gravitational ‘constant’ were identified throughout more than three hundred experiments conducted up to date. This paper illustrates the dependency of the Newtonian gravitational parameter on the curvature of the background and the associated field strength of vacuum energy. Additionally, the derived interaction field equations show that boundary interactions and spin-spin correlations of vacuum and conventional energy densities contribute to the emergence of mass. Experimental conditions are recommended to achieve consistent outcomes of the parameter precision measurements, which can directly falsify or provide confirmations to the presented field equations. Full article
(This article belongs to the Proceedings of The 2nd Electronic Conference on Universe)
Show Figures

Figure 1

19 pages, 2470 KB  
Article
Numerical Investigation of Natural Convention to a Pseudoplastic Fluid in a Long Channel using a Semi-Implicit Scheme
by Tiri Chinyoka
Appl. Sci. 2023, 13(5), 3224; https://doi.org/10.3390/app13053224 - 2 Mar 2023
Cited by 2 | Viewed by 1978
Abstract
We develop and computationally analyze a mathematical model for natural convection to a non-Newtonian fluid in a long and thin channel. The channel is bounded by antisymmetric heated and cooled walls and encloses a non-Newtonian pseudoplastic fluid. The flow and heat transfer characteristics [...] Read more.
We develop and computationally analyze a mathematical model for natural convection to a non-Newtonian fluid in a long and thin channel. The channel is bounded by antisymmetric heated and cooled walls and encloses a non-Newtonian pseudoplastic fluid. The flow and heat transfer characteristics are investigated subject to the prevailing buoyancy forces resulting from the combined natural convection and gravitational effects. An efficient and accurate semi-implicit finite difference algorithm is implemented in time and space to analyse the model equations. In the case when the fluid flow and heat transfer are sustained for a long enough time to allow for steady states to develop, the model equations would reduce to a boundary value problem. Even in such cases, we demonstrate that, by recasting the problem as an initial boundary value problem, our numerical algorithms would still converge in time to the relevant, steady-state solutions of the original boundary value problem. We also demonstrate the dependence of solutions on the embedded parameters at a steady state. Full article
(This article belongs to the Special Issue Advances in Heat Transfer of Non-Newtonian Fluids)
Show Figures

Figure 1

7 pages, 314 KB  
Communication
Might the 2PN Perihelion Precession of Mercury Become Measurable in the Next Future?
by Lorenzo Iorio
Universe 2023, 9(1), 37; https://doi.org/10.3390/universe9010037 - 4 Jan 2023
Cited by 2 | Viewed by 2289
Abstract
The Hermean average perihelion rate ω˙2PN, calculated to the second post-Newtonian (2PN) order with the Gauss perturbing equations and the osculating Keplerian orbital elements, ranges from 18 to 4 microarcseconds per century μascty1 [...] Read more.
The Hermean average perihelion rate ω˙2PN, calculated to the second post-Newtonian (2PN) order with the Gauss perturbing equations and the osculating Keplerian orbital elements, ranges from 18 to 4 microarcseconds per century μascty1, depending on the true anomaly at epoch f0. It is the sum of four contributions: one of them is the direct consequence of the 2PN acceleration entering the equations of motion, while the other three are indirect effects of the 1PN component of the Sun’s gravitational field. An evaluation of the merely formal uncertainty of the experimental Mercury’s perihelion rate ω˙exp recently published by the present author, based on 51 years of radiotechnical data processed with the EPM2017 planetary ephemerides by the astronomers E.V. Pitjeva and N.P. Pitjev, is σω˙exp8μascty1, corresponding to a relative accuracy of 2×107 for the combination 2+2γβ/3 of the PPN parameters β and γ scaling the well known 1PN perihelion precession. In fact, the realistic uncertainty may be up to ≃10–50 times larger, despite reprocessing the now available raw data of the former MESSENGER mission with a recently improved solar corona model should ameliorate our knowledge of the Hermean orbit. The BepiColombo spacecraft, currently en route to Mercury, might reach a 107 accuracy level in constraining β and γ in an extended mission, despite 106 seems more likely according to most of the simulations currently available in the literature. Thus, it might be that in the not-too-distant future, it will be necessary to include the 2PN acceleration in the Solar System’s dynamics as well. Full article
Show Figures

Figure 1

13 pages, 870 KB  
Article
How to Strengthen Constraints on Non-Newtonian Gravity from Measuring the Lateral Casimir Force
by Galina L. Klimchitskaya and Vladimir M. Mostepanenko
Universe 2023, 9(1), 34; https://doi.org/10.3390/universe9010034 - 3 Jan 2023
Cited by 3 | Viewed by 2319
Abstract
It has been known that in the nanometer interaction range the available experimental data do not exclude the Yukawa-type corrections to Newton’s gravitational law, which exceed the Newtonian gravitational force by many orders of magnitude. The strongest constraints on the parameters of Yukawa-type [...] Read more.
It has been known that in the nanometer interaction range the available experimental data do not exclude the Yukawa-type corrections to Newton’s gravitational law, which exceed the Newtonian gravitational force by many orders of magnitude. The strongest constraints on the parameters of Yukawa-type interaction in this interaction range follow from the experiments on neutron scattering and from measurements of the lateral and normal Casimir forces between corrugated surfaces. In this work, we demonstrate that by optimizing the experimental configuration at the expense of the higher corrugation amplitudes and smaller periods of corrugations it is possible to considerably strengthen the currently available constraints within the wide interaction range from 4.5 to 37 nm. We show that the maximum strengthening by more than a factor of 40 is reachable for the interaction range of 19 nm. Full article
(This article belongs to the Special Issue Advances in Cosmology and Subatomic Particle Physics)
Show Figures

Figure 1

9 pages, 1519 KB  
Article
Computation of the Deuteron Mass and Force Unification via the Rotating Lepton Model
by Constantinos G. Vayenas, Dimitrios Grigoriou, Dionysios Tsousis, Konstantinos Parisis and Elias C. Aifantis
Axioms 2022, 11(11), 657; https://doi.org/10.3390/axioms11110657 - 20 Nov 2022
Cited by 2 | Viewed by 3170
Abstract
The rotating lepton model (RLM), which is a 2D Bohr-type model of three gravitating rotating neutrinos, combining Newton’s gravitational law, special relativity, and the de Broglie equation of quantum mechanics, and which has already been used to model successfully quarks and the strong [...] Read more.
The rotating lepton model (RLM), which is a 2D Bohr-type model of three gravitating rotating neutrinos, combining Newton’s gravitational law, special relativity, and the de Broglie equation of quantum mechanics, and which has already been used to model successfully quarks and the strong force in several hadrons, has been extended to 3D and to six rotating neutrinos located at the vertices of a normal triangular octahedron in order to compute the Lorentz factors, gamma, of the six neutrinos and, thus, to compute the total energy and mass of the deuteron, which is the lightest nucleus. The computation includes no adjustable parameters, and the computed deuteron mass agrees within 0.05% with the experimental mass value. This very good agreement suggests that, similarly to the strong force in hadrons, the nuclear force in nuclei can also be modeled as relativistic gravity. This implies that, via the combination of special relativity and quantum mechanics, the Newtonian gravity gets unified with the strong force, including the residual strong force. Full article
(This article belongs to the Special Issue Applied Mathematics and Mechanics)
Show Figures

Figure 1

20 pages, 382 KB  
Article
Nonlocal Gravity: Modification of Newtonian Gravitational Force in the Solar System
by Mahmood Roshan and Bahram Mashhoon
Universe 2022, 8(9), 470; https://doi.org/10.3390/universe8090470 - 8 Sep 2022
Cited by 7 | Viewed by 2709
Abstract
Nonlocal gravity (NLG) is a classical nonlocal generalization of Einstein’s theory of gravitation developed in close analogy with the nonlocal electrodynamics of media. It appears that the nonlocal aspect of the universal gravitational interaction could simulate dark matter. Within the Newtonian regime of [...] Read more.
Nonlocal gravity (NLG) is a classical nonlocal generalization of Einstein’s theory of gravitation developed in close analogy with the nonlocal electrodynamics of media. It appears that the nonlocal aspect of the universal gravitational interaction could simulate dark matter. Within the Newtonian regime of NLG, we investigate the deviation of the gravitational force from the Newtonian inverse square law as a consequence of the existence of the effective dark matter. In particular, we work out the magnitude of this deviation in the solar system out to 100 astronomical units. Moreover, we give an improved lower limit for the short-range parameter of the reciprocal kernel of NLG. Full article
(This article belongs to the Special Issue Modified Gravity and Dark Matter at the Scale of Galaxies)
Show Figures

Figure A1

16 pages, 6171 KB  
Article
Numerical Study of the Flow and Thermomagnetic Convection Heat Transfer of a Power Law Non-Newtonian Ferrofluid within a Circular Cavity with a Permanent Magnet
by Nidhal Ben Khedher, Mohammad Shahabadi, Abed Saif Alghawli, Christopher Neil Hulme and Seyed Abdollah Mansouri Mehryan
Mathematics 2022, 10(15), 2612; https://doi.org/10.3390/math10152612 - 26 Jul 2022
Cited by 2 | Viewed by 2183
Abstract
The aim of this study is to analyze the thermo-magnetic-gravitational convection of a non-Newtonian power law ferrofluid within a circular cavity. The ferrofluid is exposed to the magnetic field of a permanent magnet. The finite element method is employed to solve the non-dimensional [...] Read more.
The aim of this study is to analyze the thermo-magnetic-gravitational convection of a non-Newtonian power law ferrofluid within a circular cavity. The ferrofluid is exposed to the magnetic field of a permanent magnet. The finite element method is employed to solve the non-dimensional controlling equations. A grid sensitivity analysis and the validation of the used method are conducted. The effect of alterable parameters, including the power law index, 0.7 ≤ n ≤ 1.3, gravitational Rayleigh number, 104 ≤ RaT ≤ 106, magnetic Rayleigh number, 105 ≤ RaM ≤ 108, the location of the hot and cold surfaces, 0 ≤ λ ≤ π/2, and the length of the magnet normalized with respect to the diameter of the cavity, 0.1 ≤ L ≤ 0.65, on the flow and heat transfer characteristics are explored. The results show that the heat transfer rate increases at the end of both arcs compared to the central region because of buoyancy effects, and it is greater close to the hot arc. The location of the arcs does not affect the heat transfer rate considerably. An increase in the magnetic Rayleigh number contributes to stronger circulation of the flow inside and higher heat transfer. When the Kelvin force is the only one imposed on the flow, it enhances the heat transfer for magnets of length 0.2 ≤ L ≤ 0.3. Full article
(This article belongs to the Special Issue Numerical Model and Methods for Magnetic Fluids)
Show Figures

Figure 1

Back to TopTop