Nonlocal Gravity: Modification of Newtonian Gravitational Force in the Solar System
Abstract
:1. Introduction
1.1. Nonlocal Newtonian Gravity
1.2. Gravitational Force in NLG
2. NLG Force in the Solar System
2.1. Spherically Symmetric Distribution of Matter
2.2. Alternative Formula for
2.3. for a Spherical Source of Constant Density
3. NLG: Planetary Orbits in the Solar System
Precession of the Runge–Lenz Vector
4. Improved Lower Bound for
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. ρD (r) for a Spherical Constant Density Object
Appendix A.1. q = q1
Appendix A.2. q = q2
References
- Poisson, S. Mémoire sur la théorie du magnétisme en mouvement. Mém. Acad. Sci. France 1823, 6, 441–570. [Google Scholar]
- Liouville, J. Solution nouvelle d’un problème d’Analyse relatif aux phénomènes thermo-mécaniques. J. Math. 1837, 2, 439–456. [Google Scholar]
- Hopkinson, J. Residual Charge of the Leyden Jar.—Dielectric Properties of different Glasses. Phil. Trans. R. Soc. Lond. 1877, 167, 599–626. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Pergamon: Oxford, UK, 1960. [Google Scholar]
- Hehl, F.W.; Obukhov, Y.N. Foundations of Classical Electrodynamics: Charge, Flux, and Metric; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Hehl, F.W.; Mashhoon, B. Nonlocal Gravity Simulates Dark Matter. Phys. Lett. B 2009, 673, 279–282. [Google Scholar] [CrossRef]
- Hehl, F.W.; Mashhoon, B. Formal framework for a nonlocal generalization of Einstein’s theory of gravitation. Phys. Rev. D 2009, 79, 064028. [Google Scholar] [CrossRef]
- Mashhoon, B. Nonlocal Gravity; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Cho, Y.M. Einstein Lagrangian as the translational Yang-Mills Lagrangian. Phys. Rev. D 1976, 14, 2521–2525. [Google Scholar] [CrossRef]
- Bini, D.; Mashhoon, B. Nonlocal gravity: Conformally flat spacetimes. Int. J. Geom. Meth. Mod. Phys. 2016, 13, 1650081. [Google Scholar] [CrossRef]
- Mashhoon, B.; Hehl, F.W. Nonlocal Gravitomagnetism. Universe 2019, 5, 195. [Google Scholar] [CrossRef]
- Tohline, J.E. Does gravity exhibit a 1/r force on the scale of galaxies? Ann. N. Y. Acad. Sci. 1984, 422, 390. [Google Scholar] [CrossRef]
- Kuhn, J.R.; Kruglyak, L. Non-Newtonian forces and the invisible mass problem. Astrophys. J. 1987, 313, 1–12. [Google Scholar] [CrossRef]
- Bekenstein, J.D. The missing light puzzle: A hint about gravity? In Second Canadian Conference on General Relativity and Relativistic Astrophysics; Coley, A., Dyer, C., Tupper, T., Eds.; World Scientific: Singapore, 1988; pp. 68–104. [Google Scholar]
- Roshan, M.; Mashhoon, B. Dynamical Friction in Nonlocal Gravity. Astrophys. J. 2021, 922, 9. [Google Scholar] [CrossRef]
- Roshan, M.; Mashhoon, B. Dynamical Friction and Tidal Interactions. Astrophys. J. 2022, 926, 44. [Google Scholar] [CrossRef]
- Roshan, M.; Mashhoon, B. Characteristics of Effective Dark Matter in Nonlocal Gravity. Astrophys. J. 2022, 934, 9. [Google Scholar] [CrossRef]
- Chicone, C.; Mashhoon, B. Nonlocal Gravity: Modified Poisson’s Equation. J. Math. Phys. 2012, 53, 042501. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; National Bureau of Standards: Washington, DC, USA, 1964. [Google Scholar]
- de Salas, P.F.; Widmark, A. Dark matter local density determination: Recent observations and future prospects. Rept. Prog. Phys. 2021, 84, 104901. [Google Scholar] [CrossRef]
- Dai, D.C.; Starkman, G.; Stojkovic, D. Milky Way and M31 rotation curves: ΛCDM versus MOND. Phys. Rev. D 2022, 105, 104067. [Google Scholar] [CrossRef]
- Adelberger, E.G.; Heckel, B.R.; Nelson, A.E. Tests of the gravitational inverse square law. Ann. Rev. Nucl. Part Sci. 2003, 53, 77–121. [Google Scholar] [CrossRef]
- Tan, W.H.; Yang, S.Q.; Shao, C.G.; Li, J.; Du, A.B.; Zhan, B.F.; Wang, Q.L.; Luo, P.S.; Tu, L.C.; Luo, J. New Test of the Gravitational Inverse-Square Law at the Submillimeter Range with Dual Modulation and Compensation. Phys. Rev. Lett. 2016, 116, 131101. [Google Scholar] [CrossRef]
- Tan, W.H.; Du, A.B.; Dong, W.C.; Yang, S.Q.; Shao, C.G.; Guan, S.G.; Wang, Q.L.; Zhan, B.F.; Luo, P.S.; Tu, L.C.; et al. Improvement for Testing the Gravitational Inverse-Square Law at the Submillimeter Range. Phys. Rev. Lett. 2020, 124, 051301. [Google Scholar] [CrossRef]
- Lee, J.G.; Adelberger, E.G.; Cook, T.S.; Fleischer, S.M.; Heckel, B.R. New Test of the Gravitational 1/r2 Law at Separations down to 52 μm. Phys. Rev. Lett. 2020, 124, 101101. [Google Scholar] [CrossRef]
- Baeza-Ballesteros, J.; Donini, A.; Nadal-Gisbert, S. Dynamical measurements of deviations from Newton’s 1/r2 law. Eur. Phys. J. C 2022, 82, 154. [Google Scholar] [CrossRef]
- Du, A.B.; Tan, W.H.; Dong, W.C.; Huang, H.; Zhu, L.; Tan, Y.J.; Shao, C.G.; Yang, S.Q.; Luo, J. A new design for testing the gravitational inverse-square law at the sub-millimeter range with a 32-fold symmetric attractor. Class. Quantum Gravity 2022, 39, 105008. [Google Scholar] [CrossRef]
- de Paula Netto, T.; Modesto, L.; Shapiro, I.L. Universal leading quantum correction to the Newton potential. Eur. Phys. J. C 2022, 82, 160. [Google Scholar] [CrossRef]
- Dai, D.C. Variance of Newtonian constant from local gravitational acceleration measurements. Phys. Rev. D 2021, 103, 064059. [Google Scholar] [CrossRef]
- Bhagvati, S.; Desai, S. Search for variability in Newton’s constant using local gravitational acceleration measurements. Class. Quantum Gravity 2022, 39, 017001. [Google Scholar] [CrossRef]
- Buscaino, B.; DeBra, D.; Graham, P.W.; Gratta, G.; Wiser, T.D. Testing long-distance modifications of gravity to 100 astronomical units. Phys. Rev. D 2015, 92, 104048. [Google Scholar] [CrossRef]
- Feldman, M.R.; Anderson, J.D.; Schubert, G.; Trimble, V.; Kopeikin, S.; Lämmerzahl, C. Deep space experiment to measure G. Class. Quantum Gravity 2016, 33, 125013. [Google Scholar] [CrossRef]
- Bergé, J.; Baudis, L.; Brax, P.; Chiow, S.W.; Christophe, B.; Doré, O.; Fayet, P.; Hees, A.; Jetzer, P.; Lämmerzahl, C.; et al. The local dark sector: Probing gravitation’s low-acceleration frontier and dark matter in the Solar System neighborhood. Exper. Astron. 2021, 51, 1737–1766. [Google Scholar] [CrossRef]
- Zwick, L.; Soyuer, D.; Bucko, J. Prospects for a local detection of dark matter with future missions to Uranus and Neptune. LPI Contrib. 2022, 2686, 4007. [Google Scholar] [CrossRef]
- Belbruno, E.; Green, J. When Leaving the Solar System: Dark Matter Makes a Difference. Mon. Not. Roy. Astron. Soc. 2022, 510, 5154–5163. [Google Scholar] [CrossRef]
- Rahvar, S.; Mashhoon, B. Observational Tests of Nonlocal Gravity: Galaxy Rotation Curves and Clusters of Galaxies. Phys. Rev. D 2014, 89, 104011. [Google Scholar] [CrossRef]
- Chicone, C.; Mashhoon, B. Nonlocal Gravity in the Solar System. Class. Quantum Gravity 2016, 33, 075005. [Google Scholar] [CrossRef]
- Danby, J.M.A. Fundamentals of Celestial Mechanics, 2nd ed.; Willmann-Bell: Richmond, VA, USA, 1988. [Google Scholar]
- Iorio, L. Gravitational Anomalies in the Solar System? Int. J. Mod. Phys. D 2015, 24, 1530015. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond. Astron. J. 2019, 157, 220. [Google Scholar] [CrossRef]
- Park, S.; Dodelson, S. Structure formation in a nonlocally modified gravity model. Phys. Rev. D 2013, 87, 024003. [Google Scholar] [CrossRef]
- Woodard, R.P. Nonlocal Models of Cosmic Acceleration. Found. Phys. 2014, 44, 213–233. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roshan, M.; Mashhoon, B. Nonlocal Gravity: Modification of Newtonian Gravitational Force in the Solar System. Universe 2022, 8, 470. https://doi.org/10.3390/universe8090470
Roshan M, Mashhoon B. Nonlocal Gravity: Modification of Newtonian Gravitational Force in the Solar System. Universe. 2022; 8(9):470. https://doi.org/10.3390/universe8090470
Chicago/Turabian StyleRoshan, Mahmood, and Bahram Mashhoon. 2022. "Nonlocal Gravity: Modification of Newtonian Gravitational Force in the Solar System" Universe 8, no. 9: 470. https://doi.org/10.3390/universe8090470
APA StyleRoshan, M., & Mashhoon, B. (2022). Nonlocal Gravity: Modification of Newtonian Gravitational Force in the Solar System. Universe, 8(9), 470. https://doi.org/10.3390/universe8090470