Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = Nb5Si3 silicide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6297 KiB  
Article
Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition
by Yunzi Liu, Xiaoxiao Li, Shuaidan Lu, Jialiang Zhou, Shangkun Wu, Shengfeng Lin and Long Wang
Materials 2025, 18(15), 3465; https://doi.org/10.3390/ma18153465 - 24 Jul 2025
Viewed by 198
Abstract
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix ( [...] Read more.
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix (x = 0, 0.25, and 0.5) RHEAs were characterized using scanning electron microscopy (SEM), universal testing, microhardness testing, and tribological equipment. Experimental results manifested that Si addition induces the formation of the (Nb,Ta)5Si3 phase, and the volume fraction of the silicide phase increases with higher Si content, which significantly improves the alloy’s strength and hardness but deteriorates its plasticity. Enhanced wear resistance with Si addition is attributed to improved hardness and oxidation resistance. Tribological tests confirm that Si3N4 counterfaces are optimal for evaluating RHEA wear mechanisms. This work can provide guidance for the fabrication of RHEAs with excellent performance. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

12 pages, 14079 KiB  
Article
Preparation of High-Entropy Silicide Coating on Tantalum Substrate by Silicon Infiltration Method and Its Antioxidant Performance
by Xinli Liu, Dexiang Tian, Jiali Mao, Gang Zhao and Dezhi Wang
Coatings 2025, 15(4), 476; https://doi.org/10.3390/coatings15040476 - 17 Apr 2025
Viewed by 413
Abstract
High-entropy silicide (MeSi2) coating was prepared by the slurry method and silicon infiltration method using Mo, Cr, Ta, Nb, W, and Si elemental powders as raw materials. The coating consisted of four layers, including a porous MeSi2 layer, a (CrTa)Si [...] Read more.
High-entropy silicide (MeSi2) coating was prepared by the slurry method and silicon infiltration method using Mo, Cr, Ta, Nb, W, and Si elemental powders as raw materials. The coating consisted of four layers, including a porous MeSi2 layer, a (CrTa)Si layer, a TaSi2 layer, and a Ta5Si3 layer from outside to inside. At 600 °C, Si was preferentially oxidized to form SiO2 oxide film. The mass gain rate of the coating was 0.2 mg/cm2 over a period of 100 h oxidation, eliminating the phenomenon of low-temperature pulverization. At 1200 °C, MeSi2 coating had a protection time of 20 h. During the oxidation process, the coating generated metal oxides, forming a thin SiO2 oxide film. TaSi2 and Ta5Si3 gradually transformed into Ta2O5, and the coating eventually failed. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

17 pages, 11748 KiB  
Article
Study on the Oxidation Behavior of TiB2-CeO2-Modified (Nb,Mo,Cr,W)Si2 Coating on the Surface of Niobium Alloy
by Xiaojun Zhou, Lairong Xiao, Yitao Zha, Jiawei Xu, Jiashu Fang, Guanzhi Deng, Shaofu Xu, Sainan Liu, Xiaojun Zhao and Zhenyang Cai
Materials 2024, 17(21), 5244; https://doi.org/10.3390/ma17215244 - 28 Oct 2024
Viewed by 962
Abstract
A novel TiB2-CeO2-modified (Nb,Mo,Cr,W)Si2 coating was prepared on a Nb-5W-2Mo-1Zr alloy substrate using two-step slurry sintering and halide-activated pack cementation to address the limitations of a single NbSi2 coating in meeting the service requirements of niobium alloys [...] Read more.
A novel TiB2-CeO2-modified (Nb,Mo,Cr,W)Si2 coating was prepared on a Nb-5W-2Mo-1Zr alloy substrate using two-step slurry sintering and halide-activated pack cementation to address the limitations of a single NbSi2 coating in meeting the service requirements of niobium alloys at elevated temperatures. At 1700 °C, the static oxidation life of the coating exceeded 20 h, thus indicating excellent high-temperature oxidation resistance. This was due to the formation of a TiO2-SiO2-Cr2O3 composite oxide film on the coating surface, which, due to low oxygen permeability, effectively prevented the inward infiltration of oxygen. Additionally, the dense structure of the composite coating further enhanced this protective effect. The composite coating was able to withstand over 1600 thermal shock cycles from room temperature to 1700 °C, and its excellent thermal shock performance could be attributed to the formation of MoSi2, CrSi2, and WSi2 from elements such as Mo, Cr, and W, which were added during modification. In addition to adjusting the difference in thermal expansion coefficients between the layers of composite coatings to reduce the thermal stress generated by thermal shock cycles, the formation of silicide compounds also improved the overall fracture toughness of the coating and thereby improved its thermal shock resistance. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

42 pages, 9688 KiB  
Article
Microstructure and Properties of Complex Concentrated C14–MCr2 Laves, A15–M3X and D8m M5Si3 Intermetallics in a Refractory Complex Concentrated Alloy
by Nik Tankov, Claire Utton and Panos Tsakiropoulos
Alloys 2024, 3(3), 190-231; https://doi.org/10.3390/alloys3030012 - 2 Sep 2024
Viewed by 3176
Abstract
Abstract: The refractory complex concentrated alloy (RCCA) 5Al–5Cr–5Ge–1Hf–6Mo–33Nb–19Si–20Ti–5Sn–1W (at.%) was studied in the as-cast and heat-treated conditions. The partitioning of solutes in the as-cast and heat-treated microstructures and relationships between solutes, between solutes and the parameters VEC and Δχ, and between these parameters, [...] Read more.
Abstract: The refractory complex concentrated alloy (RCCA) 5Al–5Cr–5Ge–1Hf–6Mo–33Nb–19Si–20Ti–5Sn–1W (at.%) was studied in the as-cast and heat-treated conditions. The partitioning of solutes in the as-cast and heat-treated microstructures and relationships between solutes, between solutes and the parameters VEC and Δχ, and between these parameters, most of which are reported for the first time for metallic UHTMs, were shown to be important for the properties of the stable phases A15–Nb3X and the D8m βNb5Si3. The nano-hardness and Young’s modulus of the A15–Nb3X and the D8m βNb5Si3 of the heat-treated alloy were measured using nanoindentation and changes in these properties per solute addition were discussed. The aforementioned relationships, the VEC versus Δχ maps and the VEC, Δχ, time, or VEC, Δχ, Young’s modulus or VEC, Δχ, nano-hardness diagrams of the phases in the as-cast and heat-treated alloy, and the properties of the two phases demonstrated the importance of synergy and entanglement of solutes, parameters and phases in the microstructure and properties of the RCCA. The significance of the new data and the synergy and entanglement of solutes and phases for the design of metallic ultra-high temperature materials were discussed. Full article
Show Figures

Figure 1

10 pages, 5494 KiB  
Article
Microstructure and Mechanical Properties of the Powder Metallurgy Nb-16Si-24Ti-2Al-2Cr Alloy
by Feng Wen, Wentao Liu, Ao Fu, Qianli Huang, Jian Wang, Yuankui Cao, Jingwen Qiu and Bin Liu
Materials 2024, 17(16), 4155; https://doi.org/10.3390/ma17164155 - 22 Aug 2024
Viewed by 881
Abstract
The Nb-16Si-24Ti-2Al-2Cr alloy was prepared by plasma rotating electrode process (PREP) technology and the hot-pressing (HP) method, and the effects of sintering temperature on the microstructure, mechanical properties and fracture behavior were investigated. The HP alloys sintered at temperatures below 1400 °C are [...] Read more.
The Nb-16Si-24Ti-2Al-2Cr alloy was prepared by plasma rotating electrode process (PREP) technology and the hot-pressing (HP) method, and the effects of sintering temperature on the microstructure, mechanical properties and fracture behavior were investigated. The HP alloys sintered at temperatures below 1400 °C are composed of Nbss (Nb solid solution), Nb3Si and Nb5Si3 phases. When the sintering temperature reaches 1450 °C, the Nb3Si phase is completely decomposed into Nbss and Nb5Si3 phases. Meanwhile, the microstructure coarsens significantly. Compared with the cast alloy, the HP alloy shows better mechanical properties. The fracture toughness of the alloy sintered at 1400 °C reaches 20.2 MPa·m1/2, which exceeds the application threshold. The main reason for the highest fracture toughness is attributed to the decomposition of large-sized brittle Nb3Si phase and the formation of a fine microstructure, which greatly increases the number of phase interfaces and improves the chance of crack deflection. In addition, the reduction in the size and content of silicides also reduces their plastic constraints on the ductile Nbss phase. Full article
Show Figures

Figure 1

37 pages, 19071 KiB  
Article
On the Microstructure and Properties of Complex Concentrated bcc Solid Solution and Tetragonal D8m M5Si3 Silicide Phases in a Refractory Complex Concentrated Alloy
by Nik Tankov, Claire Utton and Panos Tsakiropoulos
Alloys 2024, 3(1), 59-95; https://doi.org/10.3390/alloys3010005 - 7 Mar 2024
Cited by 1 | Viewed by 3246
Abstract
In this work, the refractory complex concentrated alloy (RCCA) 3.5Al–4Cr–6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was studied in the as cast and heat treated conditions (100 h or 200 h at 1500 °C). There was strong macrosegregation of Si in the 0.6 kg button/ingot of the cast [...] Read more.
In this work, the refractory complex concentrated alloy (RCCA) 3.5Al–4Cr–6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was studied in the as cast and heat treated conditions (100 h or 200 h at 1500 °C). There was strong macrosegregation of Si in the 0.6 kg button/ingot of the cast alloy, in which A2 solid solution, D8m βNb5Si3, C14-NbCr2 Laves phase and Tiss and a ternary eutectic of the A2, D8m and C14 phases were formed. The partitioning of Ti in the as cast and heat treated microstructure and its relationships with other solutes was shown to be important for the properties of the A2 solid solution and the D8m βNb5Si3, which were the stable phases at 1500 °C. The near surface microstructure of the alloy was contaminated with oxygen after heat treatment under flowing Ar. For the aforementioned phases, it was shown, for the first time, that there are relationships between solutes, between solutes and the parameters VEC, Δχ and δ, between the said parameters, and between parameters and phase properties. For the contaminated with oxygen solid solution and silicide, trends in relationships between solutes, between solutes and oxygen content and between the aforementioned parameters and oxygen content also were shown for the first time. The nano-hardness and Young’s modulus of the A2 solid solution and the D8m βNb5Si3 of the as cast and heat-treated alloy were measured using nanoindentation. Changes of nano-hardness and Young’s modulus of the A2 solid solution and D8m βNb5Si3 per solute addition for this multiphase RCCA were discussed. The nano-hardness and Young’s modulus of the solid solution and the βNb5Si3, respectively, were 9.5 ± 0.2 GPa and 177.4 ± 5.5 GPa, and 17.55 ± 0.5 GPa and 250.27 ± 6.3 GPa after 200 h at 1500 °C. The aforementioned relationships and properties of the two phases demonstrated the importance of synergy and entanglement of solutes, parameters and phases in the microstructure and properties of the RCCA. Implications of synergy and entanglement for the design of metallic ultra-high temperature materials were emphasised. Full article
(This article belongs to the Collection Feature Paper Collection of Advanced Research on Alloys)
Show Figures

Figure 1

15 pages, 3266 KiB  
Article
Structure and High-Temperature Oxidation Performance of Si-Co Diffusion Coatings Prepared on a TiAl-Nb Alloy
by Jin Tian, Conghui Zhang, Wei Lv, Xuan Li and Wei Tian
Coatings 2023, 13(8), 1427; https://doi.org/10.3390/coatings13081427 - 14 Aug 2023
Cited by 1 | Viewed by 1552
Abstract
Si-Co diffusion coatings were prepared on a Y-modified TiAl-Nb alloy using the pack cementation process. The structures of the coatings prepared at different temperatures (1050, 1080, and 1120 °C) and pack Co contents (5, 10, and 20 wt.%) were comparatively studied. The coatings [...] Read more.
Si-Co diffusion coatings were prepared on a Y-modified TiAl-Nb alloy using the pack cementation process. The structures of the coatings prepared at different temperatures (1050, 1080, and 1120 °C) and pack Co contents (5, 10, and 20 wt.%) were comparatively studied. The coatings possessed the typical structure of a (Ti,X)Si2+Ti5Si4 (X represents Nb and Al elements) outer layer with a Co-rich superficial zone, a Ti5Si4+Ti5Si3 middle layer, and a TiAl2 inner layer. Increasing the co-deposition temperature in the range of 1050–1120 °C led to a larger coating thickness but a more-porous coating structure, while increasing the pack Co contents in the range of 5–20 wt.% caused a lower coating growth rate. The formation of the Si-Co diffusion coating followed an orderly process of depositing Si first and then Co. The Si-Co diffusion coating had much better anti-oxidation performance than both the TiAl-Nb substrate and pure silicide coating. After undergoing oxidation at 1000 °C for 100 h, the oxidation parabolic rate of the Si-Co diffusion coating was approximately 6.16 × 10−3 mg2/cm4h1, which was lower than those of the TiAl-Nb substrate by about two orders of magnitude and pure silicide coating by about one order of magnitude. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

13 pages, 9384 KiB  
Article
Evolution on the Microstructure and Mechanical Properties of a New Multicomponent Near-Alpha Titanium Alloy after Rolling and Heat Treatments
by Jingyu Han, Zhilei Xiang, Xiaozhao Ma, Zongyi Zhou, Jingcun Huang, Jihao Li, Andong Wang, Gaoliang Shen and Ziyong Chen
Metals 2023, 13(7), 1231; https://doi.org/10.3390/met13071231 - 4 Jul 2023
Cited by 4 | Viewed by 2000
Abstract
Near-alpha titanium alloys are widely used in aeroengine blades due to their excellent specific strength and mechanical properties. The mechanical properties of near-α titanium alloys are closely related to the evolution of the microstructure and precipitates. In this paper, the microstructure and mechanical [...] Read more.
Near-alpha titanium alloys are widely used in aeroengine blades due to their excellent specific strength and mechanical properties. The mechanical properties of near-α titanium alloys are closely related to the evolution of the microstructure and precipitates. In this paper, the microstructure and mechanical properties of a new type of multi-component near-α titanium alloy sheet after rolling, 700 °C aging, and 800 °C aging were studied. The results show that the strength of the alloy after aging at 700 °C increases from 1156 MPa to 1304 MPa, respectively, but decreases to 1246 MPa with the aging temperature increasing. The ductility of the alloy aged at 700 °C is lower than that of the rolled state, but the ductility increases slightly with the aging temperature increasing. The effect of aging heat treatment on the microstructure and precipitation behavior of alloy plates has been studied and compared with alloys before aging. After heat treatment, the content of primary α decreases from 25% to 5%, respectively. Two kinds of silicide precipitate at different positions, with the large-size spherical silicide being (Ti, Zr, Nb)5Si3, and the small-size fusiform silicide being (Ti, Zr, Nb)6Si3, respectively. Ti3Al was precipitated in the primary α phase, during the aging process. The silicides exhibit the strengthening effect on the alloy, but the effect weakens when the silicides grow up. The loss in ductility is mainly attributed to the precipitation of the α2 phase after aging treatment. However, ductility is improved after applying higher aging temperatures as the size of the α2 phase becomes smaller, and the distribution of them tends to become dispersed. Full article
Show Figures

Figure 1

22 pages, 26600 KiB  
Article
Effect of Y Content on Precipitation Behavior, Oxidation and Mechanical Properties of As-Cast High-Temperature Titanium Alloys
by Jiafeng Shen, Binguo Fu, Yufeng Wang, Tianshun Dong, Jingkun Li, Guolu Li and Jinhai Liu
Materials 2023, 16(13), 4784; https://doi.org/10.3390/ma16134784 - 2 Jul 2023
Cited by 6 | Viewed by 2480
Abstract
To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were [...] Read more.
To improve the heat resistance of titanium alloys, the effects of Y content on the precipitation behavior, oxidation resistance and high-temperature mechanical properties of as-cast Ti-5Al-2.75Sn-3Zr-1.5Mo-0.45Si-1W-2Nb-xY (x = 0.1, 0.2, 0.4) alloys were systematically investigated. The microstructures, phase evolution and oxidation scales were characterized by XRD, Laser Raman, XPS, SEM and TEM. The properties were studied by cyclic oxidation as well as room- and high-temperature tensile testing. The results show that the microstructures of the alloys are of the widmanstätten structure with typical basket weave features, and the prior β grain size and α lamellar spacing are refined with the increase of Y content. The precipitates in the alloys mainly include Y2O3 and (TiZr)6Si3 silicide phases. The Y2O3 phase has specific orientation relationships with the α-Ti phase: (002)Y2O3 // (1¯1¯20)α-Ti, [110]Y2O3 // [4¯401]α-Ti. (TiZr)6Si3 has an orientation relationship with the β-Ti phase: (022¯1¯)(TiZr)6Si3 // (011)β-Ti, [1¯21¯6](TiZr)6Si3 // [044¯]β-Ti. The 0.1 wt.% Y composition alloy has the best high-temperature oxidation resistance at different temperatures. The oxidation behaviors of the alloys follow the linear-parabolic law, and the oxidation products of the alloys are composed of rutile-TiO2, anatase-TiO2, Y2O3 and Al2O3. The room-temperature and 700 °C UTS of the alloys decreases first and then increases with the increase of Y content; the 0.1 wt.% Y composition alloy has the best room-temperature mechanical properties with a UTS of 1012 MPa and elongation of 1.0%. The 700 °C UTS and elongation of the alloy with 0.1 wt.% Y is 694 MPa and 9.8%, showing an optimal comprehensive performance. The UTS and elongation of the alloys at 750 °C increase first and then decrease with the increase of Y content. The optimal UTS and elongation of the alloy is 556 MPa and 10.1% obtained in 0.2 wt.% Y composition alloy. The cleavage and dimples fractures are the primary fracture mode for the room- and high-temperature tensile fracture, respectively. Full article
Show Figures

Figure 1

31 pages, 5583 KiB  
Article
On the Nb5Si3 Silicide in Metallic Ultra-High Temperature Materials
by Panos Tsakiropoulos
Metals 2023, 13(6), 1023; https://doi.org/10.3390/met13061023 - 26 May 2023
Cited by 4 | Viewed by 2165
Abstract
Refractory metal (RM) M5Si3 silicides are desirable intermetallics in metallic ultra-high temperature materials (UHTMs), owing to their creep properties and high Si content that benefits oxidation resistance. Of particular interest is the alloyed Nb5Si3 that forms in [...] Read more.
Refractory metal (RM) M5Si3 silicides are desirable intermetallics in metallic ultra-high temperature materials (UHTMs), owing to their creep properties and high Si content that benefits oxidation resistance. Of particular interest is the alloyed Nb5Si3 that forms in metallic UHTMs with Nb and Si addition. The choice of alloying elements and type of Nb5Si3 that is critical for achieving a balance of properties or meeting a property goal in a metallic UHTM is considered in this paper. Specifically, the different types of alloyed “normal” Nb5Si3 and Ti-rich Nb5Si3, namely “conventional”, “complex concentrated” (CC) or “high entropy” (HE) silicide, in metallic UHTMs with Nb and Si addition were studied. Advanced metallic UHTMs with additions of RMs, transition metals (TMs), Ge, Sn or Ge + Sn and with/without Al and with different Ti, Al, Cr, Si or Sn concentrations were investigated, considering that the motivation of this work was to support the design and development of metallic-UHTMs. The study of the alloyed silicides was based on the Nb/(Ti + Hf) ratio, which is key regarding creep, the parameters VEC and Δχ and relationships between them. The effect of alloying additions on the stability of “conventional”, CC or HE silicide was discussed. The creep and hardness of alloyed Nb5Si3 was considered. Relationships that link “conventional”, CC or HE bcc solid solution and Nb5Si3 in the alloy design methodology NICE (Niobium Intermetallic Composite Elaboration) were presented. For a given temperature and stress, the steady state creep rate of the alloyed silicide, in which TMs substituted Nb, and Al and B substituted Si, depended on its parameters VEC and Δχ and its Nb/(Ti + Hf) ratio, and increased with decreasing parameter and ratio value, compared with the unalloyed Nb5Si3. Types of alloyed Nb5Si3 with VEC and Δχ values closest to those of the unalloyed Nb5Si3 were identified in maps of alloyed Nb5Si3. Good agreement was shown between the calculated hardness and chemical composition of Nb5Si3 and experimental results. Full article
Show Figures

Figure 1

22 pages, 2214 KiB  
Article
Decision Science Driven Selection of High-Temperature Conventional Ti Alloys for Aeroengines
by Ramachandra Canumalla and Tanjore V. Jayaraman
Aerospace 2023, 10(3), 211; https://doi.org/10.3390/aerospace10030211 - 24 Feb 2023
Cited by 5 | Viewed by 2073
Abstract
Near-α Ti alloys find themselves in advanced aeroengines for applications of up to 600 °C, mainly as compressor components owing to their superior combination of ambient- and elevated-temperature mechanical properties and oxidation resistance. We evaluated, ranked, and selected near-α Ti alloys [...] Read more.
Near-α Ti alloys find themselves in advanced aeroengines for applications of up to 600 °C, mainly as compressor components owing to their superior combination of ambient- and elevated-temperature mechanical properties and oxidation resistance. We evaluated, ranked, and selected near-α Ti alloys in the current literature for high-temperature applications in aeroengines driven by decision science by integrating multiple attribute decision making (MADM) and principal component analysis (PCA). A combination of 12 MADM methods ranked a list of 105 alloy variants based on the thermomechanical processing (TMP) conditions of 19 distinct near-α Ti alloys. PCA consolidated the ranks from various MADMs and identified top-ranked alloys for the intended applications as: Ti-6.7Al-1.9Sn-3.9Zr-4.6Mo-0.96W-0.23Si, Ti-4.8Al-2.2Sn-4.1Zr-2Mo-1.1Ge, Ti-6.6Al-1.75Sn-4.12Zr-1.91Mo-0.32W-0.1Si, Ti-4.9Al-2.3Sn-4.1Zr-2Mo-0.1Si-0.8Ge, Ti-4.8Al-2.3Sn-4.2Zr-2Mo, Ti-6.5Al-3Sn-4Hf-0.2Nb-0.4Mo-0.4Si-0.1B, Ti-5.8Al-4Sn-3.5Zr-0.7Mo-0.35Si-0.7Nb-0.06C, and Ti-6Al-3.5Sn-4.5Zr-2.0Ta-0.7Nb-0.5Mo-0.4Si. The alloys have the following metallurgical characteristics: bimodal matrix, aluminum equivalent preferably ~8, and nanocrystalline precipitates of Ti3Al, germanides, or silicides. The analyses, driven by decision science, make metallurgical sense and provide guidelines for developing next-generation commercial near-α Ti alloys. The investigation not only suggests potential replacement or substitute for existing alloys but also provides directions for improvement and development of titanium alloys over the current ones to push out some of the heavier alloys and thus help reduce the engine’s weight to gain advantage. Full article
(This article belongs to the Topic Microstructure and Properties in Metals and Alloys)
Show Figures

Figure 1

43 pages, 94001 KiB  
Article
The Effect of Fe Addition in the RM(Nb)IC Alloy Nb–30Ti–10Si–2Al–5Cr–3Fe–5Sn–2Hf (at.%) on Its Microstructure, Complex Concentrated and High Entropy Phases, Pest Oxidation, Strength and Contamination with Oxygen, and a Comparison with Other RM(Nb)ICs, Refractory Complex Concentrated Alloys (RCCAs) and Refractory High Entropy Alloys (RHEAs)
by Nikos Vellios and Panos Tsakiropoulos
Materials 2022, 15(17), 5815; https://doi.org/10.3390/ma15175815 - 23 Aug 2022
Cited by 4 | Viewed by 1964
Abstract
In this work, the RM(Nb)IC alloy Nb–30Ti–10Si–5Cr–5Sn–3Fe–2Al–2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb–24Ti–18Si–5Cr–5Fe–5Sn [...] Read more.
In this work, the RM(Nb)IC alloy Nb–30Ti–10Si–5Cr–5Sn–3Fe–2Al–2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb–24Ti–18Si–5Cr–5Fe–5Sn (NV5)—and with RCCAs and RHEAs. The addition of Fe (a) stabilised Nbss; A15–Nb3X (X = Al, Si and Sn) and Nb3Si; metastable Nb3Si-m’ and Nb5Si3 silicides; (b) supported the formation of eutectic Nbss + Nb5Si3; (c) suppressed pest oxidation at all three temperatures and (d) stabilised a Cr- and Fe-rich phase instead of a C14–Nb(Cr,Fe)2 Laves phase. Complex concentrated (or compositionally complex) and/or high entropy phases co-existed with “conventional” phases in all conditions and after oxidation at 800 °C. In NV2, the macrosegregation of Si decreased but liquation occurred at T >1200 °C. A solid solution free of Si and rich in Cr and Ti was stable after the heat treatments. The relationships between solutes in the various phases, between solutes and alloy parameters and between alloy hardness or specific strength and the alloy parameters were established (parameters δ, Δχ and VEC). The oxidation of NV2 at 700 °C was better than the other Sn-containing RM(Nb)ICs with/without Fe addition, even better than RM(Nb)IC alloys with lower vol.% Nbss. At 800 °C, the mass change of NV2 was slightly higher than that of NV5, and at 900 °C, both alloys showed scale spallation. At 800 °C, both alloys formed a more or less continuous layer of A15–Nb3X below the oxide scale, but in NV5, this compound was Sn-rich and severely oxidised. At 800 °C, in the diffusion zone (DZ) and the bulk of NV2, Nbss was more severely contaminated with oxygen than Nb5Si3, and the contamination of A15–Nb3X was in-between these phases. The contamination of all three phases was more severe in the DZ. The contamination of all three phases in the bulk of NV5 was more severe compared with NV2. The specific strength of NV2 was comparable with that of RCCAs and RHEAs, and its oxidation at all three temperatures was significantly better than RHEAs and RCCAs. Full article
(This article belongs to the Special Issue Compositional Complex Alloys: From Amorphous to High-Entropy)
Show Figures

Figure 1

66 pages, 91614 KiB  
Article
A Study of the Effects of Hf and Sn on the Microstructure, Hardness and Oxidation of Nb-18Si Silicide-Based Alloys-RM(Nb)ICs with Ti Addition and Comparison with Refractory Complex Concentrated Alloys (RCCAs)
by Eleftherios Zacharis, Claire Utton and Panos Tsakiropoulos
Materials 2022, 15(13), 4596; https://doi.org/10.3390/ma15134596 - 30 Jun 2022
Cited by 7 | Viewed by 2417
Abstract
In this paper, we present a systematic study of the as-cast and heat-treated microstructures of three refractory metal intermetallic composites based on Nb (i.e., RM(Nb)ICs), namely the alloys EZ2, EZ5, and EZ6, and one RM(Nb)IC/RCCA (refractory complex concentrated alloy), namely the alloy EZ8. [...] Read more.
In this paper, we present a systematic study of the as-cast and heat-treated microstructures of three refractory metal intermetallic composites based on Nb (i.e., RM(Nb)ICs), namely the alloys EZ2, EZ5, and EZ6, and one RM(Nb)IC/RCCA (refractory complex concentrated alloy), namely the alloy EZ8. We also examine the hardness and phases of these alloys. The nominal compositions (at.%) of the alloys were Nb-24Ti-18Si-5Hf-5Sn (EZ2), Nb-24Ti-18Si-5Al-5Hf-5Sn (EZ5), Nb-24Ti-18Si-5Cr-5Hf-5Sn (EZ6), and Nb-24Ti-18Si-5Al-5Cr-5Hf-5Sn (EZ8). All four alloys had density less than 7.3 g/cm3. The Nbss was stable in EZ2 and EZ6 and the C14-NbCr2 Laves phase in EZ6 and EZ8. In all four alloys, the A15-Nb3X (X = Al,Si,Sn) and the tetragonal and hexagonal Nb5Si3 were stable. Eutectics of Nbss + Nb5Si3 and Nbss + C14-NbCr2 formed in the cast alloys without and with Cr addition, respectively. In all four alloys, Nb3Si was not formed. In the heat-treated alloys EZ5 and EZ8, A15-Nb3X precipitated in the Nb5Si3 grains. The chemical compositions of Nbss + C14-NbCr2 eutectics and some Nb5Si3 silicides and lamellar microstructures corresponded to high-entropy or complex concentrated phases (compositionally complex phases). Microstructures and properties were considered from the perspective of the alloy design methodology NICE. The vol.% Nbss increased with increasing ΔχNbss. The hardness of the alloys respectively increased and decreased with increasing vol.% of A15-Nb3X and Nbss. The hardness of the A15-Nb3X increased with its parameter Δχ, and the hardness of the Nbss increased with its parameters δ and Δχ. The room-temperature-specific strength of the alloys was in the range 271.7 to 416.5 MPa cm3g−1. The effect of the synergy of Hf and Sn, or Hf and B, or Hf and Ge on the macrosegregation of solutes, microstructures, and properties of RM(Nb)ICs/RCCAs from this study and others is compared. Phase transformations involving compositionally complex phases are discussed. Full article
(This article belongs to the Special Issue Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

16 pages, 7455 KiB  
Article
Chemical Composition, Microstructure, Tensile and Creep Behavior of Ti60 Alloy Fabricated via Electron Beam Directed Energy Deposition
by Guodong Zhang, Wei Liu, Peng Zhang, Huaping Xiong, Jianshi Gao, Huai Yu and Hong Yuan
Materials 2022, 15(9), 3109; https://doi.org/10.3390/ma15093109 - 25 Apr 2022
Cited by 12 | Viewed by 2910
Abstract
Electron beam directed energy deposition (EB-DED) is a promising manufacturing process for the fabrication of large-scale, fully dense and near net shape metallic components. However, limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α high-temperature titanium [...] Read more.
Electron beam directed energy deposition (EB-DED) is a promising manufacturing process for the fabrication of large-scale, fully dense and near net shape metallic components. However, limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α high-temperature titanium alloy Ti60 (Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si) was fabricated via EB-DED. The chemical composition, microstructure, tensile property (at room temperature and 600 °C), and creep behavior of the fabricated alloy were investigated and compared with those of the conventional wrought lamellar and bimodal counterparts. Results indicated that the average evaporation loss of Al and Sn was 10.28% and 5.01%, respectively. The microstructure of the as-built alloy was characterized by coarse columnar grains, lamellar α, and the precipitated elliptical silicides at the α/β interfaces. In terms of tensile properties, the vertical specimens exhibited lower strength but higher ductility than the horizontal specimens at both room temperature and 600 °C. Furthermore, the tensile creep strain of the EB-DED Ti60 alloy measured at 600 °C and 150 MPa for 100 h under as-built and post-deposition STA conditions was less than 0.15%, which meets the standard requirements for the wrought Ti60 alloy. The creep resistance of the EB-DED Ti60 alloy was superior to that of its wrought bimodal counterpart. Full article
Show Figures

Figure 1

11 pages, 11255 KiB  
Article
Microstructures and Properties of the Low-Density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 High-Entropy Alloys
by Yasong Li, Peter K. Liaw and Yong Zhang
Metals 2022, 12(3), 496; https://doi.org/10.3390/met12030496 - 15 Mar 2022
Cited by 29 | Viewed by 4158
Abstract
Low-density materials show promising prospects for industrial application in engineering, and have remained a research hotspot. The ingots of Al15Zr40Ti28Nb12Cr5, Al15Zr40Ti28Nb12Mo5 and Al15 [...] Read more.
Low-density materials show promising prospects for industrial application in engineering, and have remained a research hotspot. The ingots of Al15Zr40Ti28Nb12Cr5, Al15Zr40Ti28Nb12Mo5 and Al15Zr40Ti28Nb12Si5 high-entropy alloys were prepared using an arc melting method. With the addition of the Cr, Mo, and Si, the phase structures of these alloys changed to a dual phase. The Cr and Mo promote the formation of the B2 phase, while the Si promotes the formation of a large amount of the silicides. The compression yield strengths of these alloys are ~1.36 GPa, ~1.27 GPa, and ~1.35 GPa, respectively. The addition of Si and Cr significantly reduces the compression ductility, and the Al15Zr40Ti28Nb12SiMo5 high-entropy alloy exhibits excellent comprehensive mechanical properties. This work investigated the influence of Cr, Mo, and Si on the phase structures and properties of the low-density Al-Zr-Ti-Nb high-entropy alloys, providing theoretical and scientific support for the development of advanced low-density alloys. Full article
(This article belongs to the Special Issue Amorphous and High-Entropy Alloy Coatings)
Show Figures

Figure 1

Back to TopTop