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Abstract: Low-density materials show promising prospects for industrial application in engineering,
and have remained a research hotspot. The ingots of Al15Zr40Ti28Nb12Cr5, Al15Zr40Ti28Nb12Mo5

and Al15Zr40Ti28Nb12Si5 high-entropy alloys were prepared using an arc melting method. With the
addition of the Cr, Mo, and Si, the phase structures of these alloys changed to a dual phase. The
Cr and Mo promote the formation of the B2 phase, while the Si promotes the formation of a large
amount of the silicides. The compression yield strengths of these alloys are ~1.36 GPa, ~1.27 GPa,
and ~1.35 GPa, respectively. The addition of Si and Cr significantly reduces the compression ductility,
and the Al15Zr40Ti28Nb12SiMo5 high-entropy alloy exhibits excellent comprehensive mechanical
properties. This work investigated the influence of Cr, Mo, and Si on the phase structures and
properties of the low-density Al-Zr-Ti-Nb high-entropy alloys, providing theoretical and scientific
support for the development of advanced low-density alloys.

Keywords: low-density; high-entropy alloys; microstructures; properties; phase structures

1. Introduction

Low-density design plays a crucial role in the development and progression of the
next-generation structural materials with high-performance, efficiency gains and envi-
ronmental friendliness. High-entropy alloys (HEAs) or multi-component alloys (MCPAs)
have revolutionized the design strategy of the traditional alloy, and attracted considerable
attention due to their attractive comprehensive mechanical properties [1–6]. Nowadays,
a wide variety of HEAs are available, including face-centered-cubic (FCC) HEAs with
excellent ductility [7–12], body-centered-cubic (BCC) HEAs with high strength [13–18],
and hexagonal-close-packed structure (HCP) HEAs combined with rare-earth alloy el-
ements [19–21], or transformation-induced-plasticity (TRIP) [22]. These investigations
demonstrate the great research prospects of HEAs. However, more work still needs to be
done to achieve advanced HEAs with higher strengths.

BCC HEAs display a relatively high intrinsic yield strength with the addition of
refractory elements, such as NbMoTaW [13,16], and TiZrHfNbTa [23,24], etc. The inherent
high density of these elements limited the development of these alloy systems. Therefore,
several studies have been focusing on the development of low-density HEAs. The AlLiMg-
based HEAs were reported to have multi-phase structures due to the negative effect on the
binary mixing enthalpy (∆Hmix) [25–30]. Only the AlLiMgScTi low-density HEA formed an
FCC solid solution structure via mechanical alloying [26]. Furthermore, another type of the
low-density HEAs is implemented for lightweight refractory HEAs with BCC structures.
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These alloys mainly contain refractory elements, such as the Ti, Zr, Nb, and V, etc., and
Al, Cr, and Si elements, etc. Yang et al. [31] investigated the effect of Al element on
the NbTiVTaAlx HEAs alloys, which present BCC structures with excellent compression
ductility exceeding 50% without the breakage. Among them, the NbTiVTaAl0.25 HEA shows
the highest yield strength at around 1330 MPa. In addition, a low-density Cr-Nb-Ti-V-Zr
system was also investigated. With the addition of low-density refractory alloy elements,
the NbTiVZr and NbTiV2Zr HEAs form disordered BCC structures, and the Cr element
promotes the formation of the ordered Laves phase, thereby improving the hardness of
these alloys [32,33]. The addition of the Al element can enhance the yield strength of the
AlxNbTiMoV HEAs [34], and Al is an element that can increase the stability of BCC or B2
structures [35,36]. In addition, the AlTiNbV, AlNbTiVZr0.5, and AlTiVCr low-density HEAs
display single BCC structures, high specific strengths, and an improved ductility with the
addition of Zr [36–38].

The Cr and Mo can improve the high-temperature properties of the BCC HEAs [39,40],
and the Si can also promote some Laves phase to enhance the properties [41]. Several studies
have indicated that the addition of Al can increase the strength of the Zr50Ti35Nb15 alloy,
and the Alx(Zr50Ti35Nb15)100−x HEAs present high strength and excellent plasticity [15,42].
Therefore, the present work investigates the effect of the Cr, Mo, and Si on microstructures
and properties of the Al-Zr-Ti-Nb HEAs, and attempts to demonstrate the influence of
these elements on the phase formation of low-density BCC HEAs.

2. Materials and Methods

The ingots of Al15Zr40Ti28Nb12Cr5 (Cr5), Al15Zr40Ti28Nb12Mo5 (Mo5), and
Al15Zr40Ti28Nb12Si5 (Si5) HEAs were prepared by the vacuum arc smelting under an
Ar atmosphere, and each sample of approximately 40 g was melted at least five times with
pure Al, Zr, Ti, Nb, Cr, Mo and Si (99.95 wt.%). The phase structure of the samples was
determined by X-ray Diffraction (XRD) using Rigaku DMAX-RB Cu Kα radiation with scat-
tering angles in the range of 10–90◦ and a scanning rate of 5◦/min. The microstructure and
fracture cross-sectional morphology were characterized by a Zeiss Supra 55 filed emission
scanning electron microscopes (SEM, SUPRA 55, Carl Zeiss AG, Jena, Germany), equipped
with an energy-dispersive X-ray spectrometer (EDS, UltraDry EDS, Thermo Scientific™,
Waltham, MA, USA) and electron backscattered diffraction (EBSD, C-swift, Oxford Instru-
ments plc, Tubney Woods, Abingdon, UK,). The samples for SEM observation were treated
by mechanical polishing, and those for the EBSD test were mechanically ground by a
3500-grit SiC paper, followed by electro-chemically polishing with a mixture of 80% ethanol
and 20% perchloric acid (vol.%) at room temperature [43]. The density of the alloy was
measured based on the Archimedes Principle, with the following measurement formula:

ρmeasured =
m1

m2
·ρH2O (1)

where ρmeasured is the measured density of the alloy, m1 is the mass of the sample in air, m2
is the mass gain of water when the sample is immersed in distilled water, and ρH2O is the
density of water.

The samples for the compression test were cut from the ingot with a size of Φ3 × 6 mm.
The room-temperature compression test was conducted by a CMT4105 universal electronic
testing machine (Suns, Shenzhen, China) with an initial strain rate of 2.0 × 10−4 s−1. Three
samples were tested with the same composition.

3. Results
3.1. The Microstructures and the Phase Sructures

Figure 1 shows the SEM images with the back-scattered electron (BSE) of Cr5, Mo5,
and Si5 HEAs. It can be seen from Figure 1a,b that with the addition of Cr and Mo, the Cr5
and Mo5 HEAs display a single solid solution phase. The BSE microstructure shown in
Figure 1c indicates that there is a large number of dark phases (DPs) appearing in the solid
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solution matrix of the Si5 HEA. These DPs present a needle-like sharp eutectic HEAs [44]
structure with BCC + DP and a mesh-shape distribution in the matrix, suggesting that the
addition of Si promotes the formation of an ordered silicide phase [41,45]. This structure
guarantees that this alloy has an excellent casting property.
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formed in these alloys [44,46], and there is also a peak with illustration enlargement with 
the pattern of the Mo5 alloy. According to the reported Al10 (Al10(Zr50Ti35Nb15)90) [15] and 
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Figure 1. The SEM images of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs with BSE. (a) Cr5 HEAs,
(b) Mo5 HEAs, and (c) Si5 HEAs.

The EDS mapping of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs is displayed in Figure 2.
As can been seen from Figure 2a,b, the distribution of each element is still uniform in the
Cr5 and Mo5 HEAs alloys. However, with the addition of Si, a large number of Si-rich
precipitates appeared in the matrix. In addition, these precipitates are poor in Ti, as shown
in Figure 2c, and the Al, Zr, and Nb display uniform distributions.
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(SE2). (a) Cr5 HEA, (b) Mo5 HEA, and (c) Si5 HEA.

The XRD patterns of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs are shown in Figure 3.
It can be seen that the main phase of these alloys is a BCC solid solution structure. A small
amount of B2 structure appears with the addition of Cr and Mo. A large amount of silicide
appears in the Si5 HEA with the addition of Si, which exhibits DP in Figure 1c. The peak at
26◦ in the XRD patterns of these HEAs indicates that some ordered B2 phases have been
formed in these alloys [44,46], and there is also a peak with illustration enlargement with
the pattern of the Mo5 alloy. According to the reported Al10 (Al10(Zr50Ti35Nb15)90) [15]
and Zr50Ti35Nb15 [42] alloy, the ordered B2 phase indicates that the Cr, Mo, Si, and Al can
promote the formation of an ordered BCC structure in the Zr-Ti-Nb-based alloys.
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Figure 3. The XRD pattern of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs.

The EBSD images of the Cr5 and Mo5 HEAs with all Euler angles are shown in
Figure 4a,b, respectively. The BCC structure with a lattice constant of Zr was applied
to determine the lattice of these HEAs with a step of 2.5 µm. However, the lattice of Zr
alloy can also be used for the resolution of these B2 phases. Additionally, the B2 and BCC
phase cannot be discriminated between using EBSD. We find that these two alloys generate
equiaxed grains, and the grain size of the Cr5 and Mo5 HEAs with the EBSD data are
presented in Figure 4c,d, respectively. The grain size of the Cr5 HEA ranges from 15 to
125 µm, with a concentrated distribution of 15–40 µm and average grain size of ~28.0 µm.
In addition, the grain size of the Mo5 HEA ranges from 15 to 95 µm, with a concentrated
distribution of 15–55 µm and average grain size of ~33.8 µm. Due to a large amount of
silicides in the microstructure of Si5 HEA, it is hard to obtain grain sizes or EBSD images of
the Si5 alloy. Since the smelting method of these alloys is similar, and a large number of
precipitations occur during solidification, we speculate that the grain size of the Si5 alloy is
smaller than the Cr5 and Mo5 alloys.
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3.2. Properities and Compression Fracture Mechanism

The compressive engineer stress-engineering strain curves of the Al15Zr40Ti28Nb12M5
(Cr, Mo, Si) HEAs are displayed in Figure 5. The yield strengths of the Cr5, Mo5, and Si5
HEAs are ~1.36 GPa, ~1.27 GPa, and ~1.35 GPa, respectively, as displayed in Figure 5.
Moreover, the compressive plasticity values of these alloys are ~9%, over 50%, and ~7%,
respectively. Compared with the Al10 alloys reported in Ref. [15], the compressive yield
strengths of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs are distinctly enhanced from ~1 GPa
to ~1.3 GPa. In addition, the yield strength of these alloys are similar to that of the
Al20 (Al20(Zr50Ti35Nb15)80) alloy [15], suggesting that the strength-hardening effect of the
addition of Cr, Mo, and Si is comparable to that of the addition of Al. The properties of
the Mo5 alloy are similar to those of the Al20 alloy. However, the ductility drops severely,
mainly because the formation of a large number of silicides enhances the strength of the
Si5 HEA. The actual densities of these alloys are below 6 g·cm−3, with ~5.82, ~6.00, and
~5.79 g·cm−3 for Cr5 HEA, Mo5 HEA and Si5 HEA, respectively. The theoretical densities,
the actual densities and properties of these alloys are listed in Table 1.

1 
 

 

Figure 5. Compressed stress–strain curves of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs and
Alx(Zr50Ti35Nb15)100−x [15] HEAs (reproduced from Ref. [15], with permission from Elsevier, 2022).
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Table 1. The theoretical densities, actual density and properties of the Al15Zr40Ti28Nb12M5(Cr, Mo,
Si) alloys.

Alloys Theoretical Density 1

(g·cm−3)
Actual Density

(g·m−3)
Yield Strength

(MPa)
Ductility

(%)

Al15Zr40Ti28Nb12Cr5 5.78 5.82 1357 9
Al15Zr40Ti28Nb12Mo5 5.92 6.00 1275 50
Al15Zr40Ti28Nb12Si5 5.57 5.79 1346 7

1 The theoretical density is calculated by the Formula: ρtheoretical = ∑ ci Ai
∑ ci Ai/ρi

. Here, ci, Ai, and ρi are the concentration,
atomic weight, and density of the ith element, respectively.

The SEM images of the samples after the compression test and the fracture surface
of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs are shown in Figure 6. Figure 6a–c show
the compressed sample morphologies of the Cr5, Mo5 and Si5 HEAs, respectively. It can
be found that the alloys exhibit obvious brittle fracture with the addition of Cr and Si.
However, the sample of the Mo5 HEA is not completely damaged, with only cracks and
slip lines appearing on the sample surface. The fracture-surface images of the Cr5 HEAs
are shown in Figure 6d. There are many cleavages planes and river patterns on the fracture
surface, indicating that the alloy exhibits significant cleavage fracture. The fracture-surface
image of the Mo5 alloy is presented in Figure 6b,e. It can be seen that there are many slip
lines and dimples on the surface of the sample and fracture surface, leading to ductile
fracture of the Mo5 alloy. The fracture-surface image of Si5 alloy is exhibited in Figure 6f.
The river pattern and needle-sheet structure in the fracture suggest that brittle breakage
occurs during the progress of compression.
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Figure 6. The SEM images of the samples after the compression test and the fracture surface of the
Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs, (a–c) the compressed samples morphology of the Cr5, Mo5 and
Si5 HEAs, respectively; (d–f) the fracture-surface image of the Cr5, Mo5 and Si5 HEAs, respectively.

4. Discussion

Owing to the component complexity of the HEAs, a higher mixing entropy (∆Smix)
would promote the formation of solid-solution structures in HEAs [34]. Furthermore, these
parameters ∆Hmix, δ, Ω, and VEC, etc. [47–49] provide a clearer and easier method by which
to predict the phase formation for the design of HEAs. Here, these parameters are defined.

∆Smix = −R ∑n
i=1 ci ln ci, (2)
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δ =

√
∑n

i=1 ci

(
1− ri

∑n
i=1 ciri

)2
, (3)

∆Hmix = ∑n
i=1,i 6=j 4cicj∆Hij

mix, (4)

Ω = Tm∆Smix/|∆Hmix|, (5)

VEC = ∑n
i=1 ci(VEC)i, (6)

where R is the gas constant, ci and cj are the atomic fraction of the ith and jth elements,

δ is the atomic size difference, ∆Hij
mix denotes the binary mixing enthalpy of the ith and

jth elements [50], ri is the radius of ith element, Ω is a multi-component solid solution
rule, Tm is the average melting point, and VEC is the valence electron concentration. As
previously reported, it is easier to form the solid solution with a larger enthalpy and a
smaller δ value [47] under Ω ≥ 1.1 and δ ≤ 6.6%. In addition, with the help of the VEC, the
phase stability for BCC or FCC phases in HEAs can be quantitatively predicted. When the
VEC < 6.87, the BCC phase is stable in the alloy. When the VEC ≥ 8.0, the FCC phase is
stable. When 6.87 ≤ VEC ≤ 8.0, the BCC or FCC phase would coexist.

In the present work, the parameters of Al15Zr40Ti28Nb12M5(Cr, Mo, Si) and Alx
(Zr50Ti35Nb15)100−x HEAs [15] are calculated according to Equations (2) and (6). The
binary mixing enthalpy of all of the elements are listed in Table 2. We found that the binary
mixing enthalpies of the Al, Cr, Mo and Si with other elements are negative, which means
that these alloy elements more easily form the ordered phase with other elements. This
feature is responsible for the ordered B2 phase formed in these alloys, as indicated by the
XRD result in Figure 2. Furthermore, the binary mixing enthalpy of Si is lower than that
of Al, Mo and Cr, leading to a large number of silicides appearing in the Si5 alloy. Table 3
lists the corresponding results with the parameters of these alloys. Chen et al. found that
the Ω values of the AlxNbTiMoV HEAs were reduced with the addition of Al [34]. This
trend also occurs in Alx(Zr50Ti35Nb15)100−x alloys [15]. With the addition of the Cr and
Mo, the Ω values of these alloys increased compared to that of the Al20 alloy, indicating
that the additions of the Cr and Mo elements stabilized the solid-solution phase in the
Al15Zr40Ti28Nb12M5 alloy. Additionally, with the addition of Si, the Ω value decreased to
less than 1.1, and the δ was found to be the largest (7.29 %) in these alloys, which promotes
the formation of a multi-phase structure in the Si5 HEA. According to the calculated VEC
value of these alloys, we found that the VEC values of these alloys are less than 6.87,
suggesting that these alloys could form the BCC structure.

Table 2. The binary mixing enthalpy of the elements added in these HEAs [50].

∆Hij
mix

Al Zr Ti Nb Cr Mo Si

Al - −44 −30 −18 −10 −5 −19
Zr - - 0 4 −12 −6 −84
Ti - - - 2 −7 −4 −56

Nb - - - - −7 −6 −37

Table 3. The calculated parameters for the phase formation of the Al15Zr40Ti28Nb12M5(Cr, Mo, Si)
and Alx(Zr50Ti35Nb15)100−x [15] HEAs.

Alloys ∆Smix(J·K−1·mol−1) ∆Hmix(kJ·mol−1) Tm(K) δ (%) VEC Ω

Al10(Zr50Ti35Nb15)90 [15] 10.17 −11.3598 2033.57 5.07 4.04 1.82
Al20(Zr50Ti35Nb15)80 [15] 10.80 −21.3952 1911.28 5.13 3.92 0.96

Al15Zr40Ti28Nb12Cr5 11.74 −17.6792 1973.63 6.30 4.07 1.31
Al15Zr40Ti28Nb12Mo5 11.74 −16.8572 2009.43 5.46 4.07 1.40
Al15Zr40Ti28Nb12Si5 11.74 −27.1732 1948.98 7.29 3.97 0.84
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Excellent mechanical properties were reported by Yan et al. [15], as they found that
some B2 particles appeared in the Al10 HEA tensile test samples with the cold rolling and
annealing processes. Moreover, the CrNbTiZr and the CrNbTiVZr HEAs present a higher
level of hardness than the CrNbTiVZr and NbTiV2Zr HEAs alloys without the addition
of Cr [32]. In addition, some studies have found that some Cr-rich Laves phases are pre-
cipitated during heat treatment, which enhances the properties of these alloys [33,51–54].
The Mo is a refractory element commonly used to improve the high-temperature proper-
ties [13,39,40,55–58], and the Si is a common non-metallic low-density additive element
that can form silicides with multiple elements [41,59]. For the Al15Zr40Ti28Nb12M5(Cr, Mo,
Si) alloys, the yield strength is similar to the Al20 [15] alloy. However, the ductility of
the Cr5 and Si5 alloys decrease significantly. In this work, we found that with the addi-
tion of the Cr and Si, the δ values of the Cr5 and Si5 alloys were much larger than the
Alx(Zr50Ti35Nb15)100−x alloys. Nevertheless, with the addition of the Mo, the δ value of
the Mo5 alloy is similar to the Alx(Zr50Ti35Nb15)100−x alloys. In addition, the Ω values of
the Cr5 and Mo5 alloys are between those of the Al10 and Al20 alloys, and the Ω value
of the Si5 alloy is the lowest. Therefore, the δ value plays a greater effect on the ductility
of the alloys than the Ω vale, indicating that a larger δ value is responsible for the large
lattice distortion in facilitating the orderly formation. Besides, this promotes the ordered
phase formation, and reduce the ductility. In addition, a 10 kg ingot of the Al20 alloy was
prepared by the vacuum magnetic suspension technology, as shown in Figure 7a. The
length unit of the scale in the figure is cm. Therefore, the phase structure of this ingot is the
same as that of the low mass one [15], as presented in Figure 7b. Subsequently, the 10 kg
level ingots of Al15Zr40Ti28Nb12M5(Cr, Mo, Si) HEAs can also be prepared by this method,
which provides support for research and industrialization application.
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5. Conclusions

In this work, the microstructures and properties of the low-density Al15Zr40Ti28Nb12M5
(Cr, Mo, Si) HEAs were investigated. The density of these alloy is lower than 6 g·cm−3, and
the main phase of these alloys belongs to the BCC structure. With the addition of Cr and
Mo, some of the B2 phase forms in these alloys, and the Si addition promotes the formation
of the silicides. The yield strengths of these alloys are similar, ~1.3 GPa, and the Cr and
Si elements exert a negative effect on the ductility due to the large δ value. However, the
addition of Mo has little influence on the properties of the alloy. Furthermore, a 10 kg ingot
of the Al20(Zr50Ti35Nb15)80 alloy was prepared with the same phase structure as that of
the low mass one. We anticipate the development of a low-density BCC HEAs to achieve
high-temperature applications.
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