Decision Science Driven Selection of High-Temperature Conventional Ti Alloys for Aeroengines
Abstract
:1. Introduction and Background
2. Methods
2.1. Literature Data
2.2. Ranking
2.3. Analyses
3. Results and Discussions
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sl# | Alloy | Chemistry (Nominal) | Processing Step 1 | Processing Step 2 | Microstructure Description | Alloy Designation | Ref. |
---|---|---|---|---|---|---|---|
1 | IMI834 | Ti-5.8Al-4Sn-3.5Zr-0.7Mo-0.35Si-0.7Nb-0.06C | 834-(α + β)ST1025 °C OQ | 700 °C | Micro 1-Bimodal-αp (15 vol.%/15–20 µm) & Tr.β | IMI834-1 | [31] |
2 | IMI834 | Ti-5.8Al-4Sn-3.5Zr-0.7Mo-0.35Si-0.7Nb-0.06C | 834-TMT-(α + β)ST1000WQ | 600 °C-4 h | Micro 2-Bimodal-higher amount of αp than Micro1 | IMI834-2 | |
3 | IMI834 | Ti-5.8Al-4Sn-3.5Zr-0.7Mo-0.35Si-0.7Nb-0.06C | 834-TMT-βST1080 °C WQ | 600 °C-4 h | Micro 3-Lamellar-Tr.β | IMI834-3 | |
4 | Ti-1100 | Ti-5.8Al-2.7Sn-4Zr-0.4Mo-0.45Si | Ti-1100 °C Forged at 980 °C AQ | Unaged | Micro A-Bimodal-αp (15 vol.%/15–20 µm) & Tr.β | Ti-1100-1 | |
5 | Ti-1100 | Ti-5.8Al-2.7Sn-4Zr-0.4Mo-0.45Si | Ti-1100 °C (α + β) ST940 °C WQ | 600 °C-4 h | Micro B-Bimodal and finer than Micro A | Ti-1100-2 | |
6 | Ti-1100 | Ti-5.8Al-2.7Sn-4Zr-0.4Mo-0.45Si | Ti-1100 °C (α + β) ST980 °C WQ | 600 °C-4 h | Micro C-Bimodal coarse compared to Micro B but comparable to Micro-A | Ti-1100-3 | |
7 | Ti-1100 | Ti-5.8Al-2.7Sn-4Zr-0.4Mo-0.45Si | Ti-1100 °C-βST1020 °C WQ | 600 °C-4 h | Micro D-Lamellar-Prior β grain size 200 µm | Ti-1100-4 | |
8 | Ti-1100 | Ti-5.8Al-2.7Sn-4Zr-0.4Mo-0.45Si | Ti-1100 °C-βST1060WQ | 600 °C-4 h | Micro E-Lamellar-Prior β grain size 500 to 600 µm | Ti-1100-5 | |
9 | Ti-1100 | Ti-5.8Al-2.7Sn-4Zr-0.4Mo-0.45Si | Ti-1100 °C-TMT-(α + β) ST1000 °C WQ | 600 °C-4 h | Micro F-Bimodal-finer compared to Micro C | Ti-1100-6 | |
10 | Ti-1100 | Ti-5.8Al-2.7Sn-4Zr-0.4Mo-0.45Si | Ti-1100 °C-TMT-βST1060 °C WQ | 600 °C-4 h | Micro G-Lamellar-finer compared to Micro E | Ti-1100-7 | |
11 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °C-WQ | Unaged | Lamellar α’—No precipitates | IMI685-1 | [32] |
12 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °C-WQ | 550 °C-24 h | Lamellar α’—No precipitates | IMI685-2 | |
13 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °C-WQ | 650 °C-24 h | Lamellar-Silicides S1 & S2—NO Ti3Al | IMI685-3 | |
14 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °C-WQ | 700 °C-24 h | Lamellar-Silicides S2—NO Ti3Al | IMI685-4 | |
15 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °C-WQ | 800 °C-24 h | Lamellar~0.1µm Silicides S2—NO Ti3Al | IMI685-5 | |
16 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °C-WQ | 700 °C-24 h | Lamellar-finer Silicides S2/41.2 nm—NO Ti3Al | IMI685-6 | [33] |
17 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °CWQ6CR | 700 °C-24 h | Lamellar-finer Silicides S2/38.6 nm—NO Ti3Al | IMI685-7 | |
18 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °CWQ12CR | 700 °C-24 h | Lamellar-finer Silicides S2/33.4 nm—NO Ti3Al | IMI685-8 | |
19 | IMI685 | Ti-6.18Al-5.27Zr-0.5Mo-0.28Si | 685-βST1050 °CWQ15CR | 700 °C-24 h | Lamellar-finer Silicides S2/28.5 nm-NO Ti3Al | IMI685-9 | |
20 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-WQ | Unaged | Lamellar α’—No precipitates | IMI829-1 | [34] |
21 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-WQ | 625 °C-24 h | Lamellar—Silicides S2 only-No Ti3Al | IMI829-2 | |
22 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-OQ | Unaged | Lamellar α’—No precipitates | IMI829-3 | |
23 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-OQ | 625 °C-24 h | Lamellar-Silicides S2 only-No Ti3Al | IMI829-4 | |
24 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-AC | Unaged | Lamellar/Widmanstatten- No precipitates-No Silicides or Ti3Al | IMI829-5 | |
25 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-AC | 625 °C-24 h | Lamellar/Widmanstatten-Silicides S2 only-No Ti3Al | IMI829-6 | |
26 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-FC | Unaged | Aligned alpha/Lamellar—No precipitates | IMI829-7 | |
27 | IMI829 | Ti-6.1Al-3.3Sn-3.2Zr-1Nb-0.5Mo-0.32Si | 829-βST1050 °C-FC | 625 °C-24 h | Aligned alpha/LamellarS2—Ti3Al | IMI829-8 | |
28 | IMI829 | Ti-5.54Al-3.48Sn-2.95Zr-0.97Nb-0.34Mo-0.28Si | 829-βST1050 °C-AC | Unaged | Lamellar- No pecipitates | IMI829-9 | [35] |
29 | IMI829 | Ti-5.54Al-3.48Sn-2.95Zr-0.97Nb-0.34Mo-0.28Si | 829-βST1050 °C-AC | 625 °C-2 h-AC-575 °C-1000 h-AC | Lamellar—Ti3Al (5 nm) | IMI829-10 | |
30 | IMI829 | Ti-5.51Al-3.48Sn-3.04Zr-0.99Nb-0.33Mo < 0.02Si | 829NS-βST1050 °C-AC | Unaged | Lamellar-No precipitates | IMI829NS-1 | |
31 | IMI829 | Ti-5.51Al-3.48Sn-3.04Zr-0.99Nb-0.33Mo < 0.02Si | 829NS-βST1050 °C-AC | 625 °C-2 h-AC-575 °C-1000 h-AC | Lamellar—Ti3Al (5 nm) | IMI829NS-2 | |
32 | Ti-1100 | Ti-6Al-2.8Sn-4Zr-0.4Mo-0.45Si | Ti1100-βST1093 °C-AC | Unaged (593C-8 h-AC) | Lamellar-No precipitates | Ti-1100-8 | [36] |
33 | Ti-1100 | Ti-6Al-2.8Sn-4Zr-0.4Mo-0.45Si | Ti1100-βST1093 °C-AC | Overaged (Unaged + 593C-180 K min-AC) | Lamellar-13 nm Ti3Al in Tr β and 175 × 35 nm Silicides | Ti-1100-9 | |
34 | Ti-1100 | Ti-6Al-2.8Sn-4Zr-0.4Mo-0.45Si | Ti1100-βST1093 °C-AC | PAHT (Unaged + 593C-60 K min + 750C-4 h-AC) | Lamellar-only Silicides (~100 nm)-NO Ti3Al | Ti-1100-10 | |
35 | IMI834 | Ti-5.07Al-3.08Sn-3.45Zr-0.31Mo-0.2Si-0.66Nb-0.04C | 834-βST1080 °C-cooled to (α + β)1010 °C-1 h-WQ | Unaged | Lamellar-No precipitates | IMI834-4 | [37] |
36 | IMI834 | Ti-5.07Al-3.08Sn-3.45Zr-0.31Mo-0.2Si-0.66Nb-0.04C | 834-βST1080 °C-cooled to (α + β)1010 °C-1 h-WQ | 700 °C-2 h-AC | Lamellar—Ti3Al (5 nm) in Tr. β and Silicides | IMI834-5 | |
37 | IMI834 | Ti-5.07Al-3.08Sn-3.45Zr-0.31Mo-0.2Si-0.66Nb-0.04C | 834-βST1080 °C-cooled to (α + β)1010 °C-1 h-WQ | 825 °C-2 h-WQ | Lamellar—100 to 175 nm Silicides (Ti3Al dissolved at 825 °C) | IMI834-6 | |
38 | IMI834 | Ti-5.78Al-4.54Sn-4.05Zr-0.70Nb-0.52Mo-0.44Si-0.055C | 834-(α + β)ST1020 °C-2 h-OQ (12-15%αp) | 600 °C-4 h | Bimodal-Ti3Al in only αp | IMI834-7 | [38] |
39 | IMI834 | Ti-5.78Al-4.54Sn-4.05Zr-0.70Nb-0.52Mo-0.44Si-0.055C | 834-(α + β)ST1020 °C-2 h-OQ- (12-15%αp) | 650 °C-4 h | Bimodal-Ti3Al in αp & Tr. β and Silicides S2 | IMI834-8 | |
40 | IMI834 | Ti-5.78Al-4.54Sn-4.05Zr-0.70Nb-0.52Mo-0.44Si-0.055C | 834-(α + β)ST1020 °C-2 h-OQ- (12-15%αp) | 700 °C-4 h | Bimodal-Ti3Al in αp & Tr. β and Silicides S2 | IMI834-9 | |
41 | WJZ-Ti | Ti-6.7Al-1.9Sn-3.9Zr-4.6Mo-0.96W-0.23Si | 834-(α + β)ST940 °C-2 h-AC | Unaged | Bimodal-No precipitates | WJZ-Ti-1 | [39] |
42 | WJZ-Ti | Ti-6.7Al-1.9Sn-3.9Zr-4.6Mo-0.96W-0.23Si | 834-(α + β)ST940 °C-1 h-AC | 600 °C-2 h | Bimodal-6 nm Ti3Al in αp | WJZ-Ti-2 | |
43 | WJZ-Ti | Ti-6.7Al-1.9Sn-3.9Zr-4.6Mo-0.96W-0.23Si | 834-(α + β)ST940 °C-1 h-AC | 750 °C-2 h | Bimodal-7 nm Ti3Al in αp & Tr.β | WJZ-Ti-3 | |
44 | WJZ-Ti | Ti-6.7Al-1.9Sn-3.9Zr-4.6Mo-0.96W-0.23Si | 834-(α + β)ST940 °C-1 h-AC | 750 °C-12 h | Bimodal-15 nm Ti3Al in αp & Tr.β | WJZ-Ti-4 | |
45 | TA29 | Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si-0.06C | TA29-βST (at > 1050 °C) | 750 °C-2 h | Lamellar—~100 nm Silicides -small number at IPB | TA29-1 | [40] |
46 | TA29 | Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si-0.06C | TA29-βST (at > 1050 °C) + 750 °C-2 h | 650 °C-8 h | Lamellar—~100 nm Silicides at IPB & Ti3Al (<5 nm) | TA29-2 | |
77 | TA29 | Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si-0.06C | TA29-βST (at > 1050 °C) + 750 °C-2 h | 650 °C-100 h | Lamellar—~100 nm-Silicides at IPB and some inside &Ti3Al in Tr. β (~8 nm) | TA29-3 | |
48 | TA29 | Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si-0.06C | TA29-βST (at > 1050 °C) + 750 °C-2 h | 650 °C-500 h | Lamellar—~100 nm Silicides at IPB and inside-IPB & Ti3Al in Tr. β (26 nm L x13 nm thk.) | TA29-4 | |
49 | TA29 | Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si-0.06C | TA29-βST (at > 1050 °C) + 750 °C-2 h | 650 °C-1000 h | Lamellar—~100 nm Silicides at IPB and inside & Ti3Al in Tr. β (~20 nm dia.) | TA29-5 | |
50 | KIMS | Ti-6.5Al-3Sn-4Hf-0.2Nb-0.4Mo-0.4Si-0.1B | KIMS-(α + β)ST-1 h-WQ | 650 °C-5 h | Bimodal—Ti3Al αp & Tr.β uniformly and Silicides-~80 nm | KIMS-1 | [41] |
51 | KIMS | Ti-6.5Al-3Sn-4Hf-0.2Nb-0.4Mo-0.4Si-0.1B | KIMS-(α + β)ST-1 h-WQ | 700 °C-2 h-AC | Bimodal—150 nm Silicides-IPB | KIMS-2 | |
52 | JZ1 | Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ1-(α + β)ST-1005 °C-2 h-AC | 700 °C-2 h-AC | Bimodal—No precipitates | JZ1-1 | [42] |
53 | JZ1 | Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ1-(α + β)ST-1005 °C-2 h-AC | 700 °C-5 h-AC | Bimodal—Ti3Al in αp + Silicides (~100 nm) | JZ1-2 | |
54 | JZ1 | Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ1-(α + β)ST-1005 °C-2 h-AC | 700 °C-15 h-AC | Bimodal—Ti3Al in αp + Silicides (~100 nm) | JZ1-3 | |
55 | JZ1 | Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ1-(α + β)ST-1005 °C-2 h-AC | 700 °C-2 h-AC-600 °C-100 h | Bimodal—Ti3Al in αp + Silicides | JZ1-4 | |
56 | JZ1 | Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ1-(α + β)ST-1005 °C-2 h-AC | 700 °C-5h-AC-600 °C-100 h | Bimodal—Ti3Al in αp + Silicides (~100 nm) | JZ1-5 | |
57 | JZ1 | Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ1-(α + β)ST-1005 °C-2 h-AC | 700 °C-15h-AC-600 °C-100 h | Bimodal—Ti3Al in αp + Silicides (~100 nm) | JZ1-6 | |
58 | JZ2 | Ti-6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ2-(α + β)ST-1015 °C-2 h-AC | 760 °C-2 h-AC | Bimodal—Ti3Al in αp + Silicides | JZ2-1 | |
59 | JZ2 | Ti-6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ2-(α + β)ST-1015 °C-2 h-AC | 760 °C-5h-AC | Bimodal—Ti3Al in αp + Silicides (~100 nm) | JZ2-2 | |
60 | JZ2 | Ti-6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ2-(α + β)ST-1015 °C-2 h-AC | 760 °C-10 h-AC | Bimodal—Ti3Al in αp + Silicides | JZ2-3 | |
61 | JZ2 | Ti-6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ2-(α + β)ST-1015 °C-2 h-AC | 760 °C-2 h-AC | Bimodal—Ti3Al in αp & Tr.β + Silicides | JZ2-4 | |
62 | JZ2 | Ti-6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ2-(α + β)ST-1015 °C-2 h-AC | 760 °C-5h-AC-600 °C-100 h | Bimodal—Ti3Al in αp & Tr.β + Silicides (~100 nm) | JZ2-5 | |
63 | JZ2 | Ti-6Al-4.8Sn-2Zr-1Mo-0.35Si | JZ2-(α + β)ST-1015 °C-2 h-AC | 760 °C-10 h-AC-600 °C-100 h | Bimodal—Ti3Al in αp & Tr.β + Silicides | JZ2-6 | |
64 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | Unaged | Bimodal—No precipitates | Ti60-1 | [43] |
65 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 650 °C-2 h-AC | Bimodal-No Ti3Al+ small number of Silicides 100 nm-Stage 1 | Ti60-2 | |
66 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 650 °C-4 h-AC | Bimodal-No Ti3Al+ small number of Silicides-100 nm-Stage 1 | Ti60-3 | |
67 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 650 °C-8 h-AC | Bimodal-No Ti3Al + Silicides—100 nm-Stage 1 | Ti60-4 | |
68 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 650 °C-16 h-AC | Bimodal-No Ti3Al + Silicides—100 nm —Stage 1 | Ti60-5 | |
69 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 700 °C-2 h-AC | Bimodal-No Ti3Al + Silicides 100 nm Stage 1 | Ti60-6 | |
70 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 700 °C-4 h-AC | Bimodal-Ti3Al in αp + Silicides | Ti60-7 | |
71 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 700 °C-8 h-AC | Bimodal-Ti3Al in αp + Silicides | Ti60-8 | |
72 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 700 °C-16 h-AC | Bimodal-Ti3Al in αp + Silicides | Ti60-9 | |
73 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 700 °C-24 h-AC | Bimodal-Ti3Al in αp + Silicides | Ti60-10 | |
74 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 700 °C-48 h-AC | Bimodal-Ti3Al in αp + Silicides | Ti60-11 | |
75 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 750 °C-2 h-AC | Bimodal-Silicides-Ti3Al in αp | Ti60-12 | |
76 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 750 °C-4 h-AC | Bimodal-Ti3Al in αp + Silicides | Ti60-13 | |
77 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 750 °C-8 h-AC | Bimodal-Ti3Al in αp + Silicides | Ti60-14 | |
78 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-(α + β)ST1010 °C-2 h-OQ | 750 °C-16 h-AC | Bimodal-Ti3Al in αp + Silicides—100 nm | Ti60-15 | |
79 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-1035C-near β forged-(α + β)ST1010 °C-2 h-AC | 700 °C-2 h-AC | Bimodal-No Ti3Al + Silicides-~100 nm | Ti60-16 | [44] |
80 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-1035C-near β forged-(α + β) ST1010 °C-2 h-AC | 700 °C-2 h-AC-600C-100 h-AC | Bimodal-Ti3Al in αp + Silicides ~200 nm | Ti60-17 | |
81 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-1035C-near β forged-(α + β)ST1010 °C-2 h-AC | 700 °C-2 h-A -700 °C-100 h-AC | Bimodal-only Silicides possibly (dissolution of Ti3Al) | Ti60-18 | |
82 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-1035C-near β forged-(α + β)ST1010 °C-2 h-AC | 700 °C-2 h-AC-750 °C-100 h-AC | Bimodal-only Silicides possibly (dissolution of Ti3Al) | Ti60-19 | |
83 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-1070C- β forged-(α + β)ST1010 °C-2 h-AC | 700 °C-2 h-AC | Lamellar + No Ti3Al + Silicides ~100 nm | Ti60-20 | |
84 | Ti60 | Ti-5.8Al-4Sn-3.5Zr-0.4Mo-0.4Nb-1Ta-0.4Si-0.06C | TA60-1070C-β forged-(α + β)ST1010 °C-2 h-AC | 700 °C-2 h-AC-600 °C-100 h-AC | Lamellar-Ti3Al in Tr. β + Silicides ~100 nm | Ti60-21 | |
85 | JL | Ti-5.6Al-4.3Sn-3Zr-1Mo-0.8Nd-0.34Si | JL-(α + β) forged- (α + β)ST1010 °C-2 h-AC | Unaged | Bimodal—No precipitates (αp is ~10% vf.;~150 nm) | JL-1 | [45] |
86 | JL | Ti-5.6Al-4.3Sn-3Zr-1Mo-0.8Nd-0.34Si | JL-(α + β) forged- (α + β)ST1010 °C-2 h-AC | 700 °C-2 h-AC | Bimodal—Ti3Al in αp + Silicides ~125 nm | JL-2 | |
87 | JL | Ti-5.6Al-4.3Sn-3Zr-1Mo-0.8Nd-0.34Si | JL-(α + β) forged- (α + β)ST1010 °C-2 h-AC | 700 °C-12 h-AC | Bimodal—Ti3Al in αp & Tr. β + Silicides ~125 nm | JL-3 | |
88 | JL | Ti-5.6Al-4.3Sn-3Zr-1Mo-0.8Nd-0.34Si | JL-(α + β) forged- βST1030 °C-2 h-AC | Unaged | Lamellar—No precipitates (colony size; ~350 nm) | JL-4 | |
89 | JL | Ti-5.6Al-4.3Sn-3Zr-1Mo-0.8Nd-0.34Si | JL-(α + β) forged- βST1030 °C-2 h-AC | 700 °C-2 h-AC | Lamellar—Ti3Al in Tr. β + Silicides ~125 nm | JL-5 | |
90 | JL | Ti-5.6Al-4.3Sn-3Zr-1Mo-0.8Nd-0.34Si | JL-(α + β) forged- βST1030 °C-2 h-AC | 700 °C-12 h-AC | Lamellar—Ti3Al in Tr. β + Silicides ~125 nm | JL-6 | |
91 | IMI834 | Ti-5.8Al-4Sn-3.5Zr-0.7Mo-0.35Si-0.7Nb-0.06C | 834-(α + β) ST1020 °C-2 h-AC | 700 °C-2 h-AC | Bimodal—Ti3Al in αp + Silicides ~125 nm | IMI834-10 | [46] |
92 | Ti6242S | Ti-5.7Al-1.9Sn-3.7Zr-1.9Mo-0.09Si | Ti6242S-(α + β) Hot rolled βST1052 °C-1 h-CC | Unaged | Lamellar-No precipitates | Ti6242-1 | [47] |
93 | Ti6242S | Ti-5.7Al-1.9Sn-3.7Zr-1.9Mo-0.09Si | Ti6242S-(α + β) Hot rolled β ST1052 °C-1 h-CC | 760 °C-600 h-AC | Lamellar-Silicides (>100 nm) | Ti6242-2 | |
94 | LD-Ti423 | Ti-8Al-1Cr-1V-0.5Fe-0.1Si | VIM-Open die forged at (β)1100 °C-Hot rolled at (α + β)1000 °C-50%Reduction (Rolled plate) or HR | NA | Heterogenous microstructure/similar to bimodal (major equiaxed αp 11 µm and small amount of acicular αs and β phases in the interstices of equiaxed α) | LD-Ti423-1 | [48] |
95 | LD-Ti423 | Ti-8Al-1Cr-1V-0.5Fe-0.1Si | VIM-Open die forged at (β)1100 °C-Hot rolled at (α + β)1000 °C-50%Reduction (Rolled plate) | HR +(α + β) ST at 1000 °C-1 h-AC-Aged at 560 °C-4 h-AC (STA) | Heterogenous microstructure/similar to bimodal (major equiaxed αp 20µm and small amount of acicular αs and β phases in the interstices of equiaxed α) | LD-Ti423-2 | |
96 | TMC-Ti213 | Ti-2Al-1.3V | Thermomechanical consolidation (TMC) of TiH2 and Ti6Al4V at a mass ratio of 2:1, and extruded to produce Ti-2Al-1.3V at 16 to 1 ratio at around 1200 °C | TMC-Vac Anneal 700 °C-6 h-FC | lamellar α/β (lamellae of 0.9µm thk and ave. lamellar colony size of 15.4 µm) | TMC-Ti213-1 | [49] |
97 | TMC-Ti213 | Ti-2Al-1.3V | Thermomechanical consolidation (TMC) of TiH2 and Ti6Al4V at a mass ratio of 2:1, and extruded to produce Ti-2Al-1.3V at 16 to 1 ratio at around 1200 °C | TMC-Vac Anneal 700 °C-6 h-FC-980 °C-1 h-AC | equiaxed α grains and α/β lamellar structured domains (βt or β transformed structure) | TMC-Ti213-2 | |
98 | TA19 | Ti-6.6Al-1.75Sn-4.12Zr-1.91Mo-0.32W-0.1Si | α-β field rolled plate, tempered in the α-β field | 970 °C-1 h-AC (for equiaxed structure (EM)) | equiaxed α grains (42%Vol.; 12 µm dia) and α/β lamellar (αs 10 µm length × 400 nm width); g.b α 420 nm width | TA19-1 | [50] |
99 | TA19 | Ti-6.6Al-1.75Sn-4.12Zr-1.91Mo-0.32W-0.1Si | α-β field rolled plate, tempered in the α-β field | 1015 °C-35s-cooled at 20 °C/s (for semi equiaxed structure (S-EM)) | Semi-equiaxed α grains (41%Vol.; 13 µm dia) and α/β lamellar (αs 11 µm length × 410 nm width); g.b α 850 nm width | TA19-2 | |
100 | TKT-1 | Ti-4.8Al-2.3Sn-4.2Zr-2Mo | Double melted; β forged qt 1100 °C-groove rolled to 50% reduction at (α + β) 960 °C to rods of 14mm dia | Annealed at 950 °C-1 h-AC-aged at 590 °C-8 h-AC | Bimodal microstructure comprising primary equiaxed α and α-β lamellar (transformed β) structures | TKT-1 | [51] |
101 | TKT-2 | Ti-4.8Al-2.2Sn-4.1Zr-2Mo-1.1Ge | Double melted; β forged qt 1100 °C-groove rolled to 50% reduction at (α + β) 960 °C to rods of 14mm dia | Annealed at 950 °C-1 h-AC-aged at 590 °C-8 h-AC | Bimodal microstructure comprising primary equiaxed α and α-β lamellar (transformed β) structures | TKT-2 | |
102 | TKT-6 | Ti-4.9Al-2.3Sn-4.1Zr-2.1Mo-0.1Si-0.8Ge | Double melted; β forged qt 1100 °C-groove rolled to 50% reduction at (α + β) 960 °C to rods of 14mm dia | Annealed at 950 °C-1 h-AC-aged at 590 °C-8 h-AC | Bimodal microstructure comprising primary equiaxed α and α-β lamellar (transformed β) structures with (TiZr)6(SiGe)3 precipitates | TKT-6 | |
103 | PC | Ti-6Al-3.5Sn-4.5Zr-2.0Ta-0.7Nb-0.5Mo-0.4Si | Induction skull melted ingot 80mm dia × 120mm length and then 1100 °C β upset forged to a total height reduction of 75% (reduction ratio of 4 to 1) | ONE-Isothermal Multidirectional Forging (IMDF) at 1020 °C-annealed at 650 °C-6 h | Mainly α laths (lamellar mainly—mean size 2.13 µm) with small amount of equiaxed α | PC-IMDF1 | [52] |
104 | PC | Ti-6Al-3.5Sn-4.5Zr-2.0Ta-0.7Nb-0.5Mo-0.4Si | Induction skull melted ingot 80 mm dia × 120 mm length and then 1100C β upset forged to a total height reduction of 75% (reduction ratio of 4 to 1) | TWO-IMDFs at 1020 °C-annealed at 650 °C-6 h | prior β boundaries start to disappear and α laths transform to spheroidal α grains (equiaxed α—mean size 1.85 µm) | PC-IMDF2 | |
105 | PC | Ti-6Al-3.5Sn-4.5Zr-2.0Ta-0.7Nb-0.5Mo-0.4Si | Induction skull melted ingot 80 mm dia × 120 mm length and then 1100 °C β upset forged to a total height reduction of 75% (reduction ratio of 4 to 1) | FOUR-IMDFs at 1020 °C-annealed at 650 °C-6 h | large number of spheroidal α grains transformed from lamellae | PC-IMDF4 |
Alloy Desig. | Grade | Al.eq. | Matrix | Precipitates | Size | YS | UTS | %El | Ref. |
---|---|---|---|---|---|---|---|---|---|
IMI834-1 | IMI834 | 8 | Bimodal | NA | NA | 1040 | 1125 | 9 | [31] |
IMI834-2 | IMI834 | 8 | Bimodal | NA | NA | 1200 | 1255 | 13 | |
IMI834-3 | IMI834 | 8 | Lamellar | NA | NA | 1110 | 1220 | 4 | |
Ti-1100-1 | Ti-1100 | 7 | Bimodal | NA | NA | 900 | 965 | 13.5 | |
Ti-1100-2 | Ti-1100 | 7 | Bimodal | NA | NA | 965 | 1050 | 14 | |
Ti-1100-3 | Ti-1100 | 7 | Bimodal | NA | NA | 995 | 1090 | 8 | |
Ti-1100-4 | Ti-1100 | 7 | Lamellar | NA | NA | 1050 | 1160 | 7.5 | |
Ti-1100-5 | Ti-1100 | 7 | Lamellar | NA | NA | 1080 | 1190 | 5 | |
Ti-1100-6 | Ti-1100 | 7 | Bimodal | NA | NA | 1100 | 1200 | 10 | |
Ti-1100-7 | Ti-1100 | 7 | Lamellar | NA | NA | 1150 | 1250 | 2.5 | |
IMI685-1 | IMI685 | 7 | Lamellar | NP | 0 | 919 | 1058 | 7.2 | [32] |
IMI685-2 | IMI685 | 7 | Lamellar | NP | 0 | 966 | 1090 | 7.3 | |
IMI685-3 | IMI685 | 7 | Lamellar | Silicides | >50 | 1020 | 1132 | 4.7 | |
IMI685-4 | IMI685 | 7 | Lamellar | Silicides | >50 | 1005 | 1102 | 4.8 | |
IMI685-5 | IMI685 | 7 | Lamellar | Silicides | >50 | 954 | 1038 | 3.75 | |
IMI685-6 | IMI685 | 7 | Lamellar | Silicides | 21–50 | 917.5 | 1021 | 5.55 | [33] |
IMI685-7 | IMI685 | 7 | Lamellar | Silicides | 21–50 | 980 | 1064 | 4.9 | |
IMI685-8 | IMI685 | 7 | Lamellar | Silicides | 21–50 | 978 | 1060 | 2.5 | |
IMI685-9 | IMI685 | 7 | Lamellar | Silicides | 21–50 | 1025.5 | 1067 | 2.65 | |
IMI829-1 | IMI829 | 8 | Lamellar | NP | 0 | 886 | 970 | 10 | [34] |
IMI829-2 | IMI829 | 8 | Lamellar | Silicides | >50 | 1005 | 1023 | 2 | |
IMI829-3 | IMI829 | 8 | Lamellar | NP | 0 | 863 | 951 | 11 | |
IMI829-4 | IMI829 | 8 | Lamellar | Silicides | >50 | 960 | 1005 | 3 | |
IMI829-5 | IMI829 | 8 | Lamellar | NP | 0 | 867 | 942 | 10 | |
IMI829-6 | IMI829 | 8 | Lamellar | Silicides | >50 | 858 | 975 | 7 | |
IMI829-7 | IMI829 | 8 | Lamellar | NP | 0 | 866 | 946 | 9 | |
IMI829-8 | IMI829 | 8 | Lamellar | Silicides | >50 | 851 | 953 | 6.5 | |
IMI829-9 | IMI829 | 7 | Lamellar | NP | 0 | 861 | 977.5 | 9.6 | [35] |
IMI829-10 | IMI829 | 7 | Lamellar | Silicides aided by Ti3Al in Tr.β | >50 | 881.5 | 953 | 3.1 | |
IMI829NS-1 | IMI829 | 7 | Lamellar | NP | 0 | 800 | 904 | 9.4 | |
IMI829NS-2 | IMI829 | 7 | Lamellar | Ti3Al in Tr.β-3 | <7 | 819.5 | 891.5 | 9.05 | |
Ti-1100-8 | Ti-1100 | 8 | Lamellar | NP | 0 | 915 | 1000 | 5.5 | [36] |
Ti-1100-9 | Ti-1100 | 8 | Lamellar | Ti3Al in Tr.β aided by Silicides | 7–20 | 955 | 982 | 0.18 | |
Ti-1100-10 | Ti-1100 | 8 | Lamellar | Silicides | >50 | 895 | 980 | 4.15 | |
IMI834-4 | IMI834 | 7 | Lamellar | NP | 0 | 987 | 1128 | 7.5 | [37] |
IMI834-5 | IMI834 | 7 | Lamellar | Ti3Al in Tr.β-3 | <7 | 1028 | 1134 | 6.5 | |
IMI834-6 | IMI834 | 7 | Lamellar | Silicides | >50 | 980 | 1098 | 7.5 | |
IMI834-7 | IMI834 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 905 | 1037 | 13 | [38] |
IMI834-8 | IMI834 | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 953 | 1075 | 9.5 | |
IMI834-9 | IMI834 | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 933 | 1060 | 8.7 | |
WJZ-Ti-1 | WJZ-Ti | 8 | Bimodal | NP | 0 | 1195 | 1300 | 18 | [39] |
WJZ-Ti-2 | WJZ-Ti | 8 | Bimodal | Ti3Al in αp-1 | <7 | 1325 | 1450 | 18 | |
WJZ-Ti-3 | WJZ-Ti | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 1230 | 1250 | 12 | |
WJZ-Ti-4 | WJZ-Ti | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 1100 | 1120 | 5 | |
TA29-1 | TA29 | 8 | Lamellar | Silicides | >50 | 995 | 1062 | 7.5 | [40] |
TA29-2 | TA29 | 8 | Lamellar | Ti3Al in Tr.β-3 | <7 | 990 | 1075 | 6.5 | |
TA29-3 | TA29 | 8 | Lamellar | Ti3Al in Tr.β-3 | 7–20 | 975 | 1060 | 3 | |
TA29-4 | TA29 | 8 | Lamellar | Ti3Al in Tr.β-3 | 7–20 | 1018 | 1085 | 2.5 | |
TA29-5 | TA29 | 8 | Lamellar | Ti3Al in Tr.β-3 | 7–20 | 975 | 1060 | 3.5 | |
KIMS-1 | KIMS | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 1113.8 | 1133.9 | 4.07 | [41] |
KIMS-2 | KIMS | 8 | Bimodal | Silicides | >50 | 1032.6 | 1124.6 | 16.94 | |
JZ1-1 | JZ1 | 8 | Bimodal | NP | 0 | 965 | 1030 | 15.5 | [42] |
JZ1-2 | JZ1 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 965 | 1040 | 15 | |
JZ1-3 | JZ1 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 940 | 1030 | 15 | |
JZ1-4 | JZ1 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 1000 | 1060 | 16 | |
JZ1-5 | JZ1 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 1000 | 1070 | 14.5 | |
JZ1-6 | JZ1 | 8 | Bimodal | Ti3Al in αp-1 | 7-20 | 990 | 1060 | 15 | |
JZ2-1 | JZ2 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 965 | 1060 | 15.5 | |
JZ2-2 | JZ2 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 960 | 1060 | 16.5 | |
JZ2-3 | JZ2 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 960 | 1050 | 17 | |
JZ2-4 | JZ2 | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 1040 | 1110 | 14 | |
JZ2-5 | JZ2 | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 1040 | 1110 | 12.5 | |
JZ2-6 | JZ2 | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | 7–20 | 1030 | 1100 | 13 | |
Ti60-1 | Ti60 | 8 | Bimodal | NP | 0 | 960 | 1080 | 11 | [43] |
Ti60-2 | Ti60 | 8 | Bimodal | Silicides | >50 | 962 | 1082 | 10 | |
Ti60-3 | Ti60 | 8 | Bimodal | Silicides | >50 | 1000 | 1100 | 10 | |
Ti60-4 | Ti60 | 8 | Bimodal | Silicides | >50 | 1000 | 1100 | 9 | |
Ti60-5 | Ti60 | 8 | Bimodal | Silicides | >50 | 1000 | 1100 | 9 | |
Ti60-6 | Ti60 | 8 | Bimodal | Silicides | >50 | 982 | 1082 | 10 | |
Ti60-7 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 970 | 1060 | 10 | |
Ti60-8 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 960 | 1070 | 10 | |
Ti60-9 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 940 | 1060 | 10 | |
Ti60-10 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 960 | 1080 | 10 | |
Ti60-11 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 980 | 1085 | 10 | |
Ti60-12 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 960 | 1082 | 10 | |
Ti60-13 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 970 | 1080 | 9 | |
Ti60-14 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 965 | 1080 | 10 | |
Ti60-15 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 955 | 1077 | 11.5 | |
Ti60-16 | Ti60 | 8 | Bimodal | Silicides | >50 | 1010 | 1060 | 11 | [44] |
Ti60-17 | Ti60 | 8 | Bimodal | Ti3Al in αp-1 | 7–20 | 1050 | 1120 | 7 | |
Ti60-18 | Ti60 | 8 | Bimodal | Silicides | >50 | 1021 | 1090 | 12 | |
Ti60-19 | Ti60 | 8 | Bimodal | Silicides | >50 | 950 | 1018 | 11.5 | |
Ti60-20 | Ti60 | 8 | Lamellar | Silicides | >50 | 1020 | 1080 | 9 | |
Ti60-21 | Ti60 | 8 | Lamellar | Ti3Al in Tr.β-3 | 7–20 | 1040 | 1100 | 4 | |
JL-1 | JL | 8 | Bimodal | NP | 0 | 944 | 1029 | 15.6 | [45] |
JL-2 | JL | 8 | Bimodal | Ti3Al in αp-1 | <7 | 985 | 1057 | 12.2 | |
JL-3 | JL | 8 | Bimodal | Ti3Al in αp & Tr.β-2 | <7 | 994 | 1066 | 12 | |
JL-4 | JL | 8 | Lamellar | NP | 0 | 933 | 1020 | 12.4 | |
JL-5 | JL | 8 | Lamellar | Ti3Al in Tr.β-3 | 7–20 | 981 | 1052 | 8.4 | |
JL-6 | JL | 8 | Lamellar | Ti3Al in Tr.β-3 | 7–20 | 970 | 1042 | 6.5 | |
IMI834-10 | IMI834 | 8 | Bimodal | Ti3Al in αp-1 | <7 | 945 | 1012 | 14.5 | [46] |
Ti6242-1 | Ti6242S | 7 | Lamellar | NP | 0 | 837 | 946 | 12 | [47] |
Ti6242-2 | Ti6242S | 7 | Lamellar | Silicides | >50 | 875 | 925 | 5.8 | |
LD-Ti423-1 | LD-Ti423 | 8 | Bimodal | NP | 0 | 948 | 1046 | 8.3 | [48] |
LD-Ti423-2 | LD-Ti423 | 8 | Bimodal | NP | 0 | 923 | 1013 | 8 | |
TMC-Ti213-1 | TMC-Ti213 | 2 | Lamellar | NP | 0 | 996 | 1059 | 13.9 | [49] |
TMC-Ti213-2 | TMC-Ti213 | 2 | Bimodal | NP | 0 | 876 | 994 | 7.4 | |
TA19-1 | TA19 | 8 | Bimodal | NP | 0 | 984 | 1067 | 23.9 | [50] |
TA19-2 | TA19 | 8 | Bimodal | NP | 0 | 1022 | 1113 | 22.8 | |
TKT-1 | TKT-1 | 6 | Bimodal | NP | 0 | 980 | 1175 | 20 | [51] |
TKT-2 | TKT-2 | 6 | Bimodal | NP | 0 | 1075 | 1285 | 19 | |
TKT-6 | TKT-6 | 6 | Bimodal | Germanides | <500 | 1060 | 1255 | 18 | |
PC-IMDF1 | PC | 8 | Lamellar | NA | NA | 982 | 1020 | 10.6 | [52] |
PC-IMDF2 | PC | 8 | Bimodal | NA | NA | 1004 | 1043 | 12.7 | |
PC-IMDF4 | PC | 8 | Bimodal | NA | NA | 1072 | 1118 | 15.6 |
References
- Ikpe, E.; Ikechukwu, O.; Ebunilo, P.O.; Ikpe, E. Material selection for high pressure (HP) compressor blade for an aircraft engine. Int. J. Adv. Mater. Res. 2016, 2, 59–65. [Google Scholar]
- Foltz, J.; Gram, M. Introduction to titanium and its alloys. In ASM Handbook, Heat Treating of Nonferrous Alloys, Volume 4E; Totten, G.E., MacKenzie, D.S., Eds.; ASM International: Materials Park, OH, USA, 2016. [Google Scholar]
- Canumalla, R. On the low tensile ductility at room temperature in high temperature titanium alloys. SCIREA J. Metall. Eng. 2020, 4, 16–51. [Google Scholar]
- Williams, J.C.; Boyer, R.R. Opportunities and issues in the application of titanium alloys for aerospace components. Metals 2020, 10, 705. [Google Scholar] [CrossRef]
- Rao, M.N. Materials for gas turbines—An overview. In Advances in Gas Turbine Technology; Intechopen: Rijeka, Croatia, 2011; pp. 293–314. [Google Scholar]
- Gogia, K. High-temperature titanium alloys. Def. Sci. J. 2005, 55, 149–173. [Google Scholar] [CrossRef]
- Singh, K.; Ramachandra, C. Characterization of silicides in high temperature titanium alloys. J. Mater. Sci. 1997, 32, 229–234. [Google Scholar] [CrossRef]
- Ramachandra, C.; Singh, V.; Rao, P.R. On silicides in high temperature Ti alloys. Def. Sci. J. 1986, 36, 207–220. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, C.-T. Design of titanium alloys by additive manufacturing: A critical review. Adv. Powder Mater. 2022, 1, 100014. [Google Scholar] [CrossRef]
- Tshephe, S.T.; Akinwamide, S.O.; Olevsky, E.; Olubambi, P.A. Additive manufacturing of titanium-based alloys—A review of methods, properties, challenges, and prospects. Heliyon 2022, 8, e09041. [Google Scholar] [CrossRef]
- TIMETAL 834 Datasheet; Titanium Metals Corporation: Warrensville Heights, OH, USA, 2000.
- TIMETAL 1100 Datasheet; Titanium Metals Corporation: Warrensville Heights, OH, USA, 2008.
- Ashby, M.F. Materials and the Environment Eco-Informed Material Choice, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Ashby, M.F. Materials Selection in Mechanical Design, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Jahan, A.; Ismail, M.Y.; Sapuan, S.M.; Mustapha, F. Materials screening and choosing methods—A review. Mater. Des. 2010, 31, 696–705. [Google Scholar] [CrossRef]
- Anojkumar, L.; Ilangkumaran, M.; Sasirekha, V. Comparative analysis of MCDM methods for pipe material selectionin sugar industry. Expert Syst. Appl. 2014, 41, 2964–2980. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, G.F.; Hu, X.B. Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach. Mater. Des. 2009, 30, 1209–1215. [Google Scholar] [CrossRef]
- Rao, R.V.; Davim, J.P. A decision-making framework model for material selection using a combined multiple attribute decision-making method. Int. J. Adv. Manuf. Technol. 2008, 35, 751–760. [Google Scholar] [CrossRef]
- Gupta, N. Material selection for thin-film solar cells using multiple attribute decision making approach. Mater. Des. 2011, 32, 1667–1671. [Google Scholar] [CrossRef]
- Shanian, A.; Savadogo, O. A material selection model based on the concept of multiple attribute decision making. Mater. Des. 2006, 27, 329–337. [Google Scholar] [CrossRef]
- Chauhan, A.; Vaish, R. Magnetic material selection using multiple attribute decision making approach. Mater. Des. 2012, 36, 1–5. [Google Scholar] [CrossRef]
- Tzeng, G.H.; Huang, J.J. Multiple Attribute Decision Making Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Rao, R.V. Decision Making in the Manufacturing Environment, Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Farag, M.M. Materials and Process Selection in Engineering; Elsevier Science and Technology: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Cherian, R.P.; Smith, L.N.; Midha, P.S. A neural network approach for selection for powder metallurgy materials and process parameters. Artif. Intell. Eng. 2000, 14, 39–44. [Google Scholar] [CrossRef]
- Perez-Benitez, J.A.; Padovese, L.R. Feature Selection and Neural Network for analysis of microstructural changesin magnetic materials. Expert Syst. Appl. 2011, 38, 10547–10553. [Google Scholar] [CrossRef]
- Zavadskas, K.; Turskis, Z.; Kildiene, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Rajan, K. Materials Informatics. Mater. Today 2005, 8, 38–45. [Google Scholar] [CrossRef]
- Cadima, J.; Jolliffle, I.T. Principal Component Analysis: A review and recent developments. Phil. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar]
- George, L.; Hrubiak, R.; Rajan, K.; Saxena, S.K. Principal component analysis on properties of binary and ternary hydrides and a comparison of metal versus metal hydride properties. J. Alloys Compd. 2009, 478, 731–735. [Google Scholar] [CrossRef]
- Peters, M.; Lee, Y.T.; Grundhoff, K.J.; Schurmann, H.; Welsch, G. Influence of processing on microstructure and mechanical properties of Ti-1100 and IMI 834. In Proceedings of the Minerals and Metals Society Fall Meeting, Detroit, MI, USA, 7–11 October 1991; pp. 533–548. [Google Scholar]
- Ramachandra, C.; Singh, V. Effect of silicides on tensile properties and fracture of alloy Ti-6Al-5Zr-0.5Mo-0.25Si from 300 to 823 K. J. Mater. Sci. 1988, 23, 835–841. [Google Scholar] [CrossRef]
- Ramachandra, C.; Singh, V. Effect of thermomechanical treatments on size and distribution of silicides and tensile properties of alloy Ti-6AI-5Zr-0.5Mo-0.25Si. Metall. Trans. A 1988, 19, 389–391. [Google Scholar] [CrossRef]
- Sridhar, G.; Sarma, D.S. Structure and properties of a near-alpha titanium alloy after beta solution treatment and aging at 625 °C. Metall. Trans. A 1988, 19, 3025–3033. [Google Scholar] [CrossRef]
- Woodfield, P.; Postans, P.J.; Loretto, M.; Smallman, R. The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti-5331S. Acta Metall. 1988, 36, 507–515. [Google Scholar] [CrossRef]
- Madsen, A.; Ghonem, H. Separating the effects of T3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593 °C in a near-alpha titanium alloy. J. Mater. Eng. Perform. 1995, 4, 301–307. [Google Scholar] [CrossRef]
- Srinadh, K.V.S.; Nidhi, S.; Singh, V. Role of Ti3Al/Silicides on tensile properties of Timetal 834 at various temperatures. Bull. Mater. Sci. 2007, 30, 595–600. [Google Scholar] [CrossRef]
- Cope, M.T.; Hill, M.J. The influence of aging temperature on the mechanical properties of IMI 834. In Proceedings of the 6th World Conference on Titanium, Cannes, France, 6–9 June 1988. [Google Scholar]
- Zhang, W.J.; Song, X.Y.; Hui, S.X.; Ye, W.J.; Yu, Y.; Li, Y.F. α2 phase precipitation behavior and tensile properties at room temperature and 650 °C in an (α + β) titanium alloy. Rare Met. 2019, 40, 3261–3268. [Google Scholar] [CrossRef]
- Li, J.; Cai, J.; Xu, Y.; Xiao, W.; Huang, X.; Ma, C. Influences of thermal exposure on the microstructural evolution and subsequent mechanical properties of a near-α high temperature titanium alloy. Mater. Sci. Eng. A 2020, 774, 138934. [Google Scholar] [CrossRef]
- Narayana, P.; Kim, S.W.; Hong, J.K.; Reddy, N.; Yeom, J.T. Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650 °C. Mater. Sci. Eng. 2018, 718, 287–291. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, N.; Wang, Q.; Wang, X. A new aging treatment way for near α high temperature titanium alloys. J. Mater. Sci. Technol. 2009, 25, 454–458. [Google Scholar]
- Jia, W.; Zeng, W.; Yu, H. Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy. Mater. Des. 2014, 58, 108–115. [Google Scholar] [CrossRef]
- Jia, W.; Zeng, W.; Liu, J.; Zhou, Y.; Wang, Q. Influence of thermal exposure on the tensile properties and microstructures of Ti60 titanium alloy. Mater. Sci. Eng. A 2011, 2011, 511–518. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Li, D.; Yang, R. Effect of aging on fatigue-crack growth behavior of a high temperature titanium alloy. Mater. Trans. 2004, 5, 1577–1585. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Gauthama; Singh, V. Low cycle fatigue behavior of Ti alloy IMI 834 at room temperature. Mater. Sci. Eng. A 2002, 325, 324–332. [Google Scholar] [CrossRef]
- Allison, J.E.; Cho, W.; Jones, J.W.; Donlon, W.T.; Lasecki, J.V. The influence of elevated temperature on the mechanical behavior of alpha/beta titanium alloys. In Proceedings of the Sixth World Conference on Titanium, Cannes, France, 6–9 June 1988. [Google Scholar]
- Zhu, S.; Zhu, C.; Luo, D.; Zhang, X.; Zhou, K. Development of a Low-Density and High-Strength Titanium Alloy. Metals 2023, 13, 251. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Zhang, B.; Zhang, Y.; Zhang, D. Microstructure and mechanical properties of a novel PM Ti–2Al–1.3V alloy in different heat treatment conditions. Heat Treat. Surf. Eng. 2022, 4, 43–53. [Google Scholar] [CrossRef]
- Luo, M.; Lin, T.; Zhou, L.; Li, W.; Liang, Y.; Han, M.; Liang, Y. Deformation Behavior and Tensile Properties of the Semi-Equiaxed Microstructure in Near Alpha Titanium Alloy. Materials 2021, 14, 3380. [Google Scholar] [CrossRef]
- Kitashima, T.; Suresh, K.S.; Yamba-Mitarai, Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy. Mater. Sci. Eng. A 2014, 597, 212–218. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, C.X.; Zhang, S.Z.; Feng, H.; Chen, C.Y.; Zhang, H.Z.; Cao, P. Microstructural manipulation and improved mechanical properties of a near α titanium alloy. Mater. Sci. Eng. A 2020, 771, 138569. [Google Scholar] [CrossRef]
- Jahan, A.; Edwards, K.L.; Bahraminasab, M. Multi-Criteria Decision Analysis—For Supporting the Selection of Engineering Materials in Product Design, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Memariani, A.; Amini, A.; Alinezhad, A. Sensitivity analysis of simple additive weighting method (SAW): The results of change in the weight of one attribute on the final ranking alternatives. J. Ind. Eng. 2009, 4, 13–18. [Google Scholar]
- Afshari, A.; Mojaahed, M.; Yusuff, R.M. Simple additive weighting approach to personal selection problem. Int. J. Innov. Mgt. Technol. 2010, 1, 511–515. [Google Scholar]
- Madic, M.; Radovanovic, M.; Manic, M. Application of the ROV method of selection of cutting fluids. Decis. Sci. Lett. 2016, 5, 245–254. [Google Scholar] [CrossRef]
- Jha, G.K.; Chatterjee, P.; Chatterjee, R.; Chakraborty, S. Suppliers selection in a manufacturing environment using a range of value method. J. Mech. Eng. 2013, 3, 16–22. [Google Scholar] [CrossRef]
- Zavadskas, K.; Turskis, Z.; Vilutiene, T. Multiple criteria analysis of foundation installment alternatives by applying additive ratio assessment (ARAS) method. Arch. Civil Mech. Eng. 2010, 10, 123–141. [Google Scholar] [CrossRef]
- Zavadskas, K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriterial decision making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Stanujic, S.; Jovanovic, R. Measuring a quality of faculty website using ARAS method. Contemp. Issues Bus. Manag. Educ. 2012, 2012, 545–554. [Google Scholar]
- Yazdabi, M.; Zavadskas, E.K.; Turskis, Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Desicion 2019, 57, 2501–2519. [Google Scholar]
- Qiyas, M.; Naeem, M.; Khan, S.; Abdullah, S.; Botmart, T.; Shah, T. Decision support system based on CoCoSo method with the picture fuzzy information. J. Math. 2022, 2022, 1476233. [Google Scholar] [CrossRef]
- Mefgouda, B.; Idoudi, H. A novel MADM based netwrok interface selection approach with rank reversal avoidance in HWNs. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference, Austin, TX, USA, 10–13 April 2022. [Google Scholar]
- Chatterjee, P.; Chakraborty, S. Material selection using preferential ranking methods. Mater. Des. 2012, 35, 384–393. [Google Scholar] [CrossRef]
- Erdogan, S.; Aydin, S.; Balki, M.K.; Sayin, C. Operational evaluation of thermal barrier coated diesel engine fueled with biodiesel/diesel blend by using MCDM method base on engine performance, emission and combustion characteristics. Renew. Energy 2020, 151, 698–706. [Google Scholar] [CrossRef]
- Darji, V.P.; Rao, R.V. Intelligent multi-criteria decision making methods for material selection in sugar industry. Procedia Mater. Sci. 2014, 5, 2585–2594. [Google Scholar] [CrossRef] [Green Version]
- Siregar, D.; Arisandi, D.; Usman, A.; Irwan, D.; Rahim, R. Research of simple multi-attribute rating technique for decision support. J. Phys. Conf. Ser. 2017, 930, 012015. [Google Scholar] [CrossRef]
- Patel, M.R.; Vashi, M.P.; Bhatt, B.V. SMART-Multi-criteria decision-making technique for use in planning activities. In Proceedings of the New Horizons in Civil Engineering, Surat, India, 25–26 March 2017. [Google Scholar]
- Rao, R.V.; Singh, D. Evaluating flexible manufacturing systems using euclidean distance-based integrated approach. Int. J. Risk Manag. 2012, 3, 32–53. [Google Scholar] [CrossRef]
- Rao, R.V.; Singh, D. Weighted Euclidean distance-based approach as a multiple attribute decision making method for plant or facility layout design selection. Int. J. Ind. Eng. Comput. 2012, 3, 365–382. [Google Scholar]
- Alinezhad, A.; Khalili, J. New Methods and Applications of Multiple Attribute Decision Making (MADM); Springer Nature: Berlin/Heidelberg, Germany, 2019; p. 193. [Google Scholar]
- Tesic, D.; Radovanovic, M.; Bozanic, D.; Pamucar, D.; Milic, A.; Puska, A. Modification of the DIBR and MABAC methods by applying rough numbers and its application in making decisions. Information 2022, 13, 353. [Google Scholar] [CrossRef]
- Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. Technol. 2011, 4, 1155–1166. [Google Scholar] [CrossRef]
- Dominguez, L.P.; Mojica, K.Y.S.; Pabon, L.C.O.; Diaz, M.C.C. Application of the MOORA method for the evaluation of the industrial maintenance system. J. Phys. Conf. Ser. 2018, 1126, 012018. [Google Scholar] [CrossRef]
- Triantaphyllou, E.; Shu, B.; Sanchez, S.N.; Ray, T. Multi-criteria decision making: An operations research approach. In Encyclopedia of Electrical and Electronics Engineering; Webster, H.G., Ed.; John Wiley & Sons: New York, NY, USA, 1998; Volume 15, p. 175. [Google Scholar]
- Deng, H.; Yeh, C.H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res. 2000, 27, 963–973. [Google Scholar] [CrossRef]
- Gul, M.; Celik, E.; Aydin, N.; Gumus, A.T.; Guneri, A.F. A state of the art literature review of VIKOR and its fuzzy extensions on applications. Appl. Soft Comput. 2016, 46, 60–89. [Google Scholar] [CrossRef]
- Sayadi, M.M.; Heydari, M.; Shahanaghi, K. Extension of VIKOR method for decision making problem with interval numbers. Appl. Math. Model. 2009, 33, 2257–2262. [Google Scholar] [CrossRef]
- Mohanty, P.P.; Mahapatra, S.S. A compromise solution by VIKOR method for ergonomically designed product with optimal set of design characteristics. Procedia Mater. Sci. 2014, 6, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Trung, D. Multi-criteria deciison making under MARCOS method and weighting methods: Applied to milling, grinding, and turning processes. Manuf. Rev. 2022, 9, 3. [Google Scholar]
- Stevic, Z.; Pamucar, D.; Puska, A.; Chatterjee, P. Sustainable supplier selection in healthcare insudtries using a new MCDM method: Measurement Alternatives and Ranking according to Compromise Solution (MARCOS). Int. J. Appl. Eng. Res. 2020, 140, 106231. [Google Scholar]
- Levine, M.; Ramsey, P.P.; Smidt, R.K. Applied Statistics for Engineers and Scientists; Prentice-Hall: Upper Saddle, NJ, USA, 2001. [Google Scholar]
- Navidi, W. Statistics for Engineers and Scientists, 3rd ed.; McGraw-Hill Science/Engineering: New York, NY, USA, 2010. [Google Scholar]
SAW | ROVM | CoCoSo | OCRA | SMART | WEDBA | MABAC | MOORA | TOPSIS | VIKOR | ARAS | |
---|---|---|---|---|---|---|---|---|---|---|---|
ROVM | 0.902 | ||||||||||
CoCoSo | 0.903 | 0.999 | |||||||||
OCRA | 0.906 | 0.661 | 0.660 | ||||||||
SMART | 0.530 | 0.799 | 0.800 | 0.172 | |||||||
WEDBA | 0.826 | 0.983 | 0.981 | 0.544 | 0.884 | ||||||
MABAC | 0.902 | 1.000 | 0.999 | 0.661 | 0.799 | 0.983 | |||||
MOORA | 0.973 | 0.794 | 0.794 | 0.975 | 0.357 | 0.694 | 0.794 | ||||
TOPSIS | 0.925 | 0.698 | 0.696 | 0.998 | 0.216 | 0.584 | 0.698 | 0.984 | |||
VIKOR | 0.902 | 1.000 | 0.999 | 0.661 | 0.799 | 0.983 | 1.000 | 0.794 | 0.698 | ||
ARAS | 0.980 | 0.813 | 0.812 | 0.967 | 0.383 | 0.716 | 0.813 | 0.999 | 0.978 | 0.813 | |
MARCOS | 0.907 | 0.665 | 0.663 | 1.000 | 0.176 | 0.548 | 0.665 | 0.976 | 0.998 | 0.665 | 0.968 |
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 | PC12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eigenvalue | 9.833 | 2.044 | 0.089 | 0.022 | 0.005 | 0.003 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
Proportion | 0.819 | 0.170 | 0.007 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cumulative | 0.819 | 0.990 | 0.997 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canumalla, R.; Jayaraman, T.V. Decision Science Driven Selection of High-Temperature Conventional Ti Alloys for Aeroengines. Aerospace 2023, 10, 211. https://doi.org/10.3390/aerospace10030211
Canumalla R, Jayaraman TV. Decision Science Driven Selection of High-Temperature Conventional Ti Alloys for Aeroengines. Aerospace. 2023; 10(3):211. https://doi.org/10.3390/aerospace10030211
Chicago/Turabian StyleCanumalla, Ramachandra, and Tanjore V. Jayaraman. 2023. "Decision Science Driven Selection of High-Temperature Conventional Ti Alloys for Aeroengines" Aerospace 10, no. 3: 211. https://doi.org/10.3390/aerospace10030211
APA StyleCanumalla, R., & Jayaraman, T. V. (2023). Decision Science Driven Selection of High-Temperature Conventional Ti Alloys for Aeroengines. Aerospace, 10(3), 211. https://doi.org/10.3390/aerospace10030211