Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (746)

Search Parameters:
Keywords = NRF2/KEAP1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 848 KiB  
Review
Food-Derived Phytochemicals: Multicultural Approaches to Oxidative Stress and Immune Response
by Eiger Gliozheni, Yusuf Salem, Eric Cho, Samuel Wahlstrom, Dane Olbrich, Brandon Shams, Michael Alexander and Hirohito Ichii
Int. J. Mol. Sci. 2025, 26(15), 7316; https://doi.org/10.3390/ijms26157316 - 29 Jul 2025
Viewed by 275
Abstract
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on [...] Read more.
This review will focus on how ethnic consumption of foods such as shiitake, ginseng, turmeric, black seeds, berries, rosemary, moringa and holy basil can help act as antioxidants and immune modulators in fighting many diseases. We will investigate how these foods act on pathways like Nrf2/Keap1 to increase endogenous antioxidant capacity and help in reducing ROS production, based on publications found in PubMed between 1994 and 2024. In addition, we will show how these plants can cause immune system shifts by changing the makeup of the ratio of Th1/Th2 cells, reduce inflammation, and have antiangiogenic effects on cancer. This review will also show how plants can alter the gut microbiota and lead to a further decrease in oxidative stress. Overall, it will show how plants and their metabolites can potentially create a path forward for creating novel therapeutic approaches and help lead to an improved redox balance, support immune function, and enhance long-term health outcomes. Full article
Show Figures

Figure 1

18 pages, 2205 KiB  
Article
Lupeol Attenuates Oxysterol-Induced Dendritic Cell Activation Through NRF2-Mediated Antioxidant and Anti-Inflammatory Effects
by Sarmistha Saha, Antonella Capozzi, Elisabetta Profumo, Cristiano Alessandri, Maurizio Sorice, Luciano Saso and Brigitta Buttari
Int. J. Mol. Sci. 2025, 26(15), 7179; https://doi.org/10.3390/ijms26157179 - 25 Jul 2025
Viewed by 201
Abstract
Oxysterols such as 7-ketocholesterol (7KCh) contribute to the pathogenesis of autoimmune and chronic inflammatory diseases by inducing oxidative stress and promoting pro-inflammatory immune cell activation. Dendritic cells (DCs) play a central role in maintaining immune tolerance, and their dysregulation is a key driver [...] Read more.
Oxysterols such as 7-ketocholesterol (7KCh) contribute to the pathogenesis of autoimmune and chronic inflammatory diseases by inducing oxidative stress and promoting pro-inflammatory immune cell activation. Dendritic cells (DCs) play a central role in maintaining immune tolerance, and their dysregulation is a key driver of autoimmunity. Targeting DCs by using natural compounds offers a promising strategy to restore redox balance and suppress aberrant immune responses. This study investigated the immunomodulatory and antioxidant properties of Lupeol, a natural triterpenoid, in human monocyte-derived DCs exposed to 7KCh. Flow cytometry and cytokine profiling demonstrated that Lupeol preserved the immature, tolerogenic phenotype of DCs by promoting a dose-dependent increase in the anti-inflammatory cytokine IL-10. Lupeol also inhibited the 7KCh-induced upregulation of maturation markers (CD83, CD86) and suppressed the release of pro-inflammatory cytokines IL-1β and IL-12p70. Functionally, Lupeol-treated DCs directed T cell polarization toward an anti-inflammatory and regulatory profile while dampening the inflammatory responses triggered by 7KCh. This immunoregulatory effect was further supported by the decreased secretion of the pro-inflammatory cytokines IL-1β and IL-12p70 in DC culture supernatants. Mechanistic analyses using immunofluorescence showed that Lupeol alone significantly increased nuclear NRF2 levels and upregulated HO-1 expression. Western blot analysis further confirmed Lupeol’s ability to activate the KEAP1-NRF2 signaling pathway, as evidenced by increased expression of NRF2 and its downstream target, NQO1. The use of ML385, a selective NRF2 inhibitor, in ROS and cytokine assays supported the involvement of NRF2 in mediating the Lupeol antioxidant and anti-inflammatory effects in DCs. Notably, the oxidative burden induced by 7KCh limited the full activation of NRF2 signaling triggered by Lupeol. Furthermore, docking and MM/PBSA analyses revealed the specific interactions of Lupeol with the kelch domain of KEAP1. These findings suggest that Lupeol may serve as a promising orally available immunomodulatory agent capable of promoting tolerogenic DCs, offering potential applications in autoimmune and other chronic inflammatory diseases. Full article
(This article belongs to the Special Issue Updates on Synthetic and Natural Antioxidants)
Show Figures

Figure 1

25 pages, 4337 KiB  
Article
Cullin-3 and Regulatory Biomolecules Profiling in Vitiligo: Integrated Docking, Clinical, and In Silico Insights
by Hidi A. A. Abdellatif, Mohamed Azab, Eman Hassan El-Sayed, Rwan M. M. M. Halim, Ahmad J. Milebary, Dhaifallah A. Alenizi, Manal S. Fawzy and Noha M. Abd El-Fadeal
Biomolecules 2025, 15(7), 1053; https://doi.org/10.3390/biom15071053 - 21 Jul 2025
Viewed by 381
Abstract
Background: Vitiligo, a chronic depigmentation disorder driven by oxidative stress and immune dysregulation, remains poorly understood mechanistically. The Keap1/NRF2/ARE pathway is critical for melanocyte protection against oxidative damage; however, the role of Cullin-3 (CUL3), a scaffold for E3 ubiquitin ligases that regulate NRF2 [...] Read more.
Background: Vitiligo, a chronic depigmentation disorder driven by oxidative stress and immune dysregulation, remains poorly understood mechanistically. The Keap1/NRF2/ARE pathway is critical for melanocyte protection against oxidative damage; however, the role of Cullin-3 (CUL3), a scaffold for E3 ubiquitin ligases that regulate NRF2 degradation, and its interplay with inflammatory mediators in vitiligo pathogenesis are underexplored. This study investigates CUL3, NRF2, and the associated regulatory networks in vitiligo, integrating clinical profiling and computational docking to identify therapeutic targets. Methods: A case-control study compared non-segmental vitiligo patients with age-/sex-matched controls. Lesional skin biopsies were analyzed by qRT-PCR for the expression of CUL3, NRF2, miRNA-146a, FOXP3, NF-κB, IL-6, TNF-α, and P53. Molecular docking was used to evaluate vitexin’s binding affinity to Keap1, validated by root mean square deviation (RMSD) calculations. Results: Patients with vitiligo exhibited significant downregulation of CUL3 (0.27 ± 0.03 vs. 1 ± 0.58; p = 0.013), NRF2 (0.37 ± 0.26 vs. 1 ± 0.8; p = 0.001), and FOXP3 (0.09 ± 0.2 vs. 1 ± 0.3; p = 0.001), alongside the upregulation of miRNA-146a (4.7 ± 1.9 vs. 1 ± 0.8; p = 0.001), NF-κB (4.7 ± 1.9 vs. 1 ± 0.5; p = 0.001), IL-6 (2.8 ± 1.5 vs. 1 ± 0.4; p = 0.001), and TNF-α (2.2 ± 1.1 vs. 1 ± 0.3; p = 0.001). P53 showed no differential expression (p > 0.05). Docking revealed a strong binding of vitexin to Keap1 (RMSD: 0.23 Å), mirroring the binding of the control ligand CDDO-Im. Conclusions: Dysregulation of the CUL3/Keap1/NRF2 axis and elevated miRNA-146a levels correlate with vitiligo progression, suggesting a role for oxidative stress and immune imbalance. Vitexin’s high-affinity docking to Keap1 positions it as a potential modulator of the NRF2 pathway, offering novel therapeutic avenues. This study highlights the translational potential of targeting the ubiquitin–proteasome and antioxidant pathways in the management of vitiligo. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Skin Disorders)
Show Figures

Figure 1

20 pages, 1903 KiB  
Article
Study on the Regulatory Effect of Water Extract of Artemisia annua L. on Antioxidant Function of Mutton Sheep via the Keap1/Nrf2 Signaling Pathway
by Gen Gang, Ruiheng Gao, Ruizhen Li, Xiao Jin, Yuanyuan Xing, Sumei Yan, Yuanqing Xu and Binlin Shi
Antioxidants 2025, 14(7), 885; https://doi.org/10.3390/antiox14070885 - 18 Jul 2025
Viewed by 359
Abstract
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 [...] Read more.
This study was conducted through in vivo and in vitro experiments and aimed to reveal the regulatory effect of water extract of Artemisia annua L. (WEAA) on the antioxidant function of mutton sheep and the underlying mechanism. In the in vivo experiment, 32 Dorper × Han female sheep (3 months old; avg. body weight: 24 ± 0.09 kg) were allocated to four groups (eight lambs/group) and fed a diet containing 0, 500, 1000, and 1500 mg/kg WEAA, respectively. In the in vitro experiments, peripheral blood lymphocytes (PBLs) were cultured with different doses of WEAA (0, 25, 50, 100, 200, 400 µg/mL) to determine the optimal concentration, followed by a 2 × 2 factorial experiment with four treatment groups (six replicates per treatment group): the ML385(−)/WEAA(−) group, the ML385(−)/WEAA(+) group, the ML385(+)/WEAA(−) group, and the ML385(+)/WEAA(+) group. The results showed that WEAA supplementation dose-dependently increased serum, liver and spleen tissue total antioxidant capacity, glutathione peroxidase (GSH-Px), and catalase (CAT) activity while reducing malondialdehyde level (p < 0.05). Moreover, WEAA supplementation significantly upregulated the liver and spleen expression of nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, GSH-Px, CAT and NAD(P)H quinone dehydrogenase 1 (p < 0.05) while significantly downregulating the kelch-like ECH associated protein 1 expression in a dose-dependent manner (p < 0.05), thereby activating the Keap1/Nrf2 pathway with the peak effect observed in the 1000 mg/kg WEAA group. Additionally, supplementation with 100 µg/mL of WEAA had significant antioxidation activity in the culture medium of PBLs. Its action mechanism involved the Keap1/Nrf2 pathway; specifically, WEAA exerted its antioxidant effect by upregulating the gene expression related to the Keap1/Nrf2 pathway. In conclusion, WEAA enhances sheep’s antioxidant capacity by up-regulating Keap1/Nrf2 pathway genes and boosting antioxidant enzyme activity. The results provided experimental support for the potential application of WEAA in intensive mutton sheep farming. Full article
Show Figures

Figure 1

15 pages, 9834 KiB  
Article
Rosmarinic Acid Protects Against Acetaminophen-Induced Hepatotoxicity by Suppressing Ferroptosis and Oxidative Stress Through Nrf2/HO-1 Activation in Mice
by Liqin Wu, Li Lv, Yifei Xiang, Dandan Yi, Qiuling Liang, Min Ji, Zhaoyou Deng, Lanqian Qin, Lingyi Ren, Zhengmin Liang and Jiakang He
Mar. Drugs 2025, 23(7), 287; https://doi.org/10.3390/md23070287 - 14 Jul 2025
Viewed by 598
Abstract
Liver injury caused by the irrational use of acetaminophen (APAP) represents a significant challenge in the field of public health. In clinical treatment, apart from N—acetylcysteine (NAC), the only approved antidote, there are extremely limited effective intervention measures for APAP-induced hepatotoxicity. Therefore, exploring [...] Read more.
Liver injury caused by the irrational use of acetaminophen (APAP) represents a significant challenge in the field of public health. In clinical treatment, apart from N—acetylcysteine (NAC), the only approved antidote, there are extremely limited effective intervention measures for APAP-induced hepatotoxicity. Therefore, exploring novel liver-protecting drugs and elucidating their mechanisms of action is of great scientific significance and clinical value. Rosmarinic acid (RA), as a natural polyphenolic compound, has been proven to have significant antioxidant activity. Previous studies have shown that it has a protective effect against drug-induced liver injury. Nevertheless, the precise protective mechanism of RA in APAP-induced acute liver injury (AILI) has not been fully defined. This study was based on an AILI mouse model to systematically explore the liver-protecting effect of RA and its underlying molecular mechanisms. The research results showed that pretreatment with RA could notably mitigate liver pathological injury. It could decrease the activities of ALT and AST in the serum, suppress the liver inflammatory reaction, and reverse the decline in the levels of CAT, T-AOC, SOD, and GSH caused by APAP. Meanwhile, RA could enhance antioxidant defense capabilities by activating the Keap1/Nrf2/HO-1 signaling pathway, regulate the xCT/GPX4 axis to inhibit lipid peroxidation, and thus block the process of ferroptosis. In conclusion, this study confirmed that RA exerts a protective effect against AILI by regulating the Keap1/Nrf2/HO-1 axis to enhance antioxidant capacity and inhibit ferroptosis through the xCT/GPX4 pathway. Our research provides a theoretical basis for RA as a potential therapeutic agent for APAP-induced liver injury. Full article
(This article belongs to the Special Issue Bioactive Specialized Metabolites from Marine Plants)
Show Figures

Figure 1

22 pages, 2242 KiB  
Article
Quercetin Can Alleviate ETECK88-Induced Oxidative Stress in Weaned Piglets by Inhibiting Quorum-Sensing Signal Molecule Autoinducer-2 Production in the Cecum
by Hailiang Wang, Min Yao, Dan Wang, Mingyang Geng, Shanshan Nan, Xiangjian Peng, Yuyang Xue, Wenju Zhang and Cunxi Nie
Antioxidants 2025, 14(7), 852; https://doi.org/10.3390/antiox14070852 - 11 Jul 2025
Viewed by 442
Abstract
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The [...] Read more.
This study evaluated the inhibitory activity of quercetin at sub-inhibitory concentrations on quorum-sensing (QS) molecules in vitro and the effects of dietary supplementation with quercetin (for 24 consecutive days) on enterotoxigenic Escherichia coli (ETEC)-induced inflammatory and oxidative stress responses in weaned piglets. The piglets were fed one of three diets: the basal diet (Con), ETEC challenge (K88) after the basal diet, or ETEC challenge (quercetin + K88) after the basal diet supplemented with 0.2% quercetin. In vitro experiments revealed that 5 mg/mL quercetin exhibited the strongest QS inhibitory activity and reduced pigment production by Chromobacterium violaceum ATCC12472 by 67.70%. In vivo experiments revealed that quercetin + K88 significantly increased immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin G (IgG) levels in the serum, ileum mucosa, and colon mucosa; increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) levels in the serum, liver, and colon mucosa; and decreased cluster of differentiation 3 (CD3) and cluster of differentiation 8 (CD8)activity in the serum compared with K88 alone. Quercetin + K88 significantly alleviated pathological damage to the liver and spleen and upregulated antioxidant genes (nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1(HO-1), CAT, SOD, and glutathione s-transferase (GST)). Inducible nitric oxide synthase (iNOS) and kelch-like ech-associated protein 1 (Keap1), which cause oxidative damage to the liver and spleen, were significantly downregulated. The acetic acid content in the cecum was significantly increased, and the E. coli count and QS signal molecule autoinducer-2 (AI-2) yield were significantly reduced. In conclusion, 0.2% dietary quercetin can alleviate ETEC-induced inflammation and oxidative stress in weaned piglets. Full article
Show Figures

Figure 1

25 pages, 4620 KiB  
Review
Network Pharmacology as a Tool to Investigate the Antioxidant and Anti-Inflammatory Potential of Plant Secondary Metabolites—A Review and Perspectives
by Anna Merecz-Sadowska, Arkadiusz Sadowski, Hanna Zielińska-Bliźniewska, Karolina Zajdel and Radosław Zajdel
Int. J. Mol. Sci. 2025, 26(14), 6678; https://doi.org/10.3390/ijms26146678 - 11 Jul 2025
Viewed by 377
Abstract
Plant secondary metabolites possess significant antioxidant and anti-inflammatory properties, but their complex polypharmacological mechanisms remain poorly understood. Network pharmacology has emerged as a powerful systems-level approach for investigating multi-target interactions of natural products. This review systematically analyzes network pharmacology applications in elucidating the [...] Read more.
Plant secondary metabolites possess significant antioxidant and anti-inflammatory properties, but their complex polypharmacological mechanisms remain poorly understood. Network pharmacology has emerged as a powerful systems-level approach for investigating multi-target interactions of natural products. This review systematically analyzes network pharmacology applications in elucidating the antioxidant and anti-inflammatory mechanisms of plant metabolites, evaluating concordance between computational predictions and experimental validation. A comprehensive literature search was conducted across major databases (2015–2025), focusing on network pharmacology studies with experimental validation. Analysis revealed remarkable convergence toward common molecular mechanisms, despite diverse chemical structures. For antioxidant activities, the Nrf2/KEAP1/ARE pathway emerged as the most frequently validated mechanism, along with PI3K/AKT, MAPK, and NF-κB signaling. Anti-inflammatory mechanisms consistently involved NF-κB, MAPK, and PI3K/AKT pathways. Key targets, including AKT1, TNF-α, COX-2, NFKB1, and RELA, were repeatedly identified. Flavonoids, phenolic acids, and terpenoids dominated as bioactive compounds. Molecular docking studies supported predicted interactions, with experimental validation showing good concordance for pathway modulation and cytokine regulation. Network pharmacology provides a valuable framework for investigating the complex bioactivities of plant metabolites. The convergence toward common regulatory hubs suggests that natural compounds achieve protective effects by modulating central nodes that integrate redox balance and inflammatory responses. Despite limitations, including database dependency, integrating network pharmacology with experimental validation accelerates mechanistic understanding in natural-product drug discovery. Full article
Show Figures

Figure 1

18 pages, 5392 KiB  
Article
Kaempferol Alleviates Carbon Tetrachloride-Induced Liver Fibrosis in Mice by Regulating Intestinal Short-Chain Fatty Acids
by Siqi Zhang, Fei Tang, Zhe Zhou, Linhui Li, Yang Tang, Kaiwen Fu, Yang Tan and Ling Li
Int. J. Mol. Sci. 2025, 26(14), 6666; https://doi.org/10.3390/ijms26146666 - 11 Jul 2025
Viewed by 337
Abstract
Liver fibrosis remains a critical health concern with limited therapeutic options. Kaempferol (Kae) is a natural flavonoid widely present in natural plants, yet its role in modulating gut–liver axis interactions during fibrosis is unexplored. This study investigates the hepatoprotective effects of Kae on [...] Read more.
Liver fibrosis remains a critical health concern with limited therapeutic options. Kaempferol (Kae) is a natural flavonoid widely present in natural plants, yet its role in modulating gut–liver axis interactions during fibrosis is unexplored. This study investigates the hepatoprotective effects of Kae on alleviating carbon tetrachloride (CCl4)-induced liver fibrosis, and its underlying mechanisms, focusing on oxidative stress, gut microbiota, and short-chain fatty acids (SCFAs), are revealed. A mouse model of hepatic fibrosis was built by the subcutaneous injection of CCl4. Meanwhile, Kae was administered by gavage at doses of 25, 50, and 100 mg/kg body weight. Serum biomarkers, liver histopathology, oxidative damage markers, and nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase 1 (HO-1) signaling were analyzed. AML12 hepatocytes were pretreated with Kae or SCFAs (acetate, propionate, butyrate) before H2O2-induced oxidative injury. The changes in gut microbiota and the levels of SCFAs were assessed via 16S rRNA sequencing and GC-MS, respectively. Kae effectively alleviated the destruction of the liver morphology and tissue structure, reduced the infiltration of inflammatory cells, collagen deposition in the liver, and the expression of fibrotic factors, and downregulated the oxidative stress level in the liver of mice with liver fibrosis by activating the Nrf2/Keap1/HO-1 pathway (p < 0.05 or 0.01). In vitro, Kae significantly mitigated H2O2-induced cytotoxicity and oxidative damage (p < 0.05 or 0.01). Furthermore, Kae restored gut microbiota diversity, increased beneficial genera (e.g., Lactobacillus), and elevated both intestinal and hepatic SCFA levels (p < 0.01). The discrepant SCFA pretreatment similarly protected AML12 cells by activating Nrf2 signaling (p < 0.05 or 0.01). Our research suggests that Kae could inhibit CCl4-induced liver fibrosis by restoring the levels of intestinal metabolite SCFAs to reduce oxidative damage. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 4245 KiB  
Article
Oxidative Stress and Complement Activation in Aqueous Cells and Vitreous from Patient with Vitreoretinal Diseases: Comparison Between Diabetic ERM and PDR
by Lucia Dinice, Pamela Cosimi, Graziana Esposito, Fabio Scarinci, Andrea Cacciamani, Concetta Cafiero, Luca Placentino, Guido Ripandelli and Alessandra Micera
Antioxidants 2025, 14(7), 841; https://doi.org/10.3390/antiox14070841 - 8 Jul 2025
Viewed by 338
Abstract
Background: Epiretinal membrane (ERM) and proliferative diabetic retinopathy (PDR) belong to the group of vitreoretinal diseases, characterized by impairments at both the retina and the vitreous. The non-diabetic and diabetic forms of ERM (no-dERM and dERM) as well as the PDR are caused [...] Read more.
Background: Epiretinal membrane (ERM) and proliferative diabetic retinopathy (PDR) belong to the group of vitreoretinal diseases, characterized by impairments at both the retina and the vitreous. The non-diabetic and diabetic forms of ERM (no-dERM and dERM) as well as the PDR are caused by microvascular disorder, which frequently occurs in association with inflammation and oxidative stress. To better characterize no-dERM, dERM, and PDR at the biomolecular level, we compared the expression of inflammatory, oxidative, lipidic peroxidation products, and complement receptors. Methods: Twenty-seven ocular fluids from patients who underwent phaco-vitrectomy were categorized as no-dERM (9, 4M/5F; 70.4 ± 6.4), dERM (6, 3M/3F; 73.2 ± 4.9), and PDR (6, 5M/1F; 63.7 ± 7.4). Six cataracts (CTR; 3M/3F; 77.7 ± 9.0) were collected for internal control of aqueous cells. Results: In aqueous cells, p65NFkB, iNOS, Nox1/Nox4, and Nrf2 were significantly upregulated, and Keap1 was downregulated in dERM compared with PDR and no-dERM. In aqueous cells, a significant upregulation for C3aR1mRNA, C5aR1mRNA, and CFHmRNA were observed in dERM. In vitreous, C3a, C5b9, and MDA levels were significantly increased in dERM compared with PDR and no-dERM. Conclusions: Inflammatory and ROS products, as well as C3aR1/C5aR1 and soluble MDA, appear of great interest, as their expression in aqueous and vitreous might have potential prognostic and therapeutic values. Full article
Show Figures

Figure 1

19 pages, 18888 KiB  
Article
Effects of Lactobacillus plantarum-Fermented Feed on Growth and Intestinal Health in Haliotis discus hannai
by Ling Ke, Chenyu Huang, Song Peng, Mengshi Zhao, Fengqiang Lin and Zhaolong Li
Microorganisms 2025, 13(7), 1603; https://doi.org/10.3390/microorganisms13071603 - 8 Jul 2025
Viewed by 429
Abstract
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening [...] Read more.
This study multidimensionally investigates the comprehensive effects of Lactobacillus plantarum (LP)-fermented feed on growth performance, intestinal health, and metabolic regulation in Pacific abalone (Haliotis discus hannai). The results demonstrate that LP fermentation significantly alters feed’s physical properties and nutritional profile, softening texture, increasing viscosity, and emitting an acidic aroma. Notably, it enhanced contents of cis-9-palmitoleic acid, α-linolenic acid (ALA), and functional amino acids (GABA, L-histidine, and L-asparagine), indicating that fermentation optimized ω-3 fatty acid accumulation and amino acid profiles through the modulation of fatty acid metabolic pathways, thereby improving feed biofunctionality and stress-resistant potential. Further analyses revealed that fermented feed markedly improved intestinal morphology in abalone, promoting villus integrity and upregulating tight junction proteins (ZO-1, Claudin) to reinforce intestinal barrier function. Concurrently, it downregulated inflammatory cytokines (TNF-α, NF-κB, IL-16) while upregulating anti-inflammatory factors (TLR4) and antioxidant-related genes (NRF2/KEAP1 pathway), synergistically mitigating intestinal inflammation and enhancing antioxidant capacity. Sequencing and untargeted metabolomics unveiled that fermented feed substantially remodeled gut microbiota structure, increasing Firmicutes abundance while reducing Bacteroidetes, with the notable enrichment of beneficial genera such as Mycoplasma. Metabolite profiling highlighted the significant activation of lipid metabolism, tryptophan pathway, and coenzyme A biosynthesis. A Spearman correlation analysis identified microbiota–metabolite interactions (such as Halomonas’ association with isethionic acid) potentially driving growth performance via metabolic microenvironment regulation. In conclusion, LP-fermented feed enhances abalone growth, immune response, and aquaculture efficiency through multi-dimensional synergistic mechanisms (nutritional optimization, intestinal homeostasis regulation, microbiota–metabolome crosstalk), providing critical theoretical foundations for aquafeed development and probiotic applications in aquaculture. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

20 pages, 2783 KiB  
Article
Dietary Tea Polyphenols Improve Growth Performance and Intestinal Microbiota Under Chronic Crowding Stress in Hybrid Crucian Carp
by Zhe Yang, Gege Sun, Jinsheng Tao, Weirong Tang, Wenpei Li, Zehong Wei and Qifang Yu
Animals 2025, 15(13), 1983; https://doi.org/10.3390/ani15131983 - 5 Jul 2025
Viewed by 382
Abstract
This study systematically investigated the effects of dietary tea polyphenols (TPs, major bioactive polyphenols from Camellia sinensis with potent antioxidant and anti-inflammatory properties) on the growth performance and intestinal health of hybrid crucian carp HCC2 under chronic crowding stress. A low-density control group [...] Read more.
This study systematically investigated the effects of dietary tea polyphenols (TPs, major bioactive polyphenols from Camellia sinensis with potent antioxidant and anti-inflammatory properties) on the growth performance and intestinal health of hybrid crucian carp HCC2 under chronic crowding stress. A low-density control group (44.4 fish/m3, basal diet without TPs) and four high-density crowding stress groups (222.2 fish/m3) were established, one fed the basal diet without TPs (CS) and three fed basal diets supplemented with 100 (CSLTP), 200 (CSMTP), or 400 (CSHTP) mg/kg TPs. We analyzed the impacts of TPs on growth performance, serum biochemical parameters, antioxidant capacity, expression of lipid metabolism-related genes, and intestinal microbiota composition. The results demonstrated that chronic crowding stress significantly suppressed the final body weight, weight gain rate, and specific growth rate of HCC2, while increasing serum lactate LDH, TG, and ALB and decreasing GLU, LDL-C, ALT, AST, and ALP levels. Dietary TPs supplementation enhanced antioxidant capacity (T-AOC, SOD, CAT, and GSH) and alleviated lipid metabolic disorders by activating the Nrf2/Keap1 and PPARα signaling pathways, thereby upregulating the expression of liver antioxidant genes (CAT and SOD) and fatty acid oxidation genes (CPT1 and acox1). Furthermore, intestinal microbiota analysis revealed that chronic crowding stress significantly increased the abundance of Proteobacteria and decreased the proportion of Firmicutes compared to the low-density control. Dietary TPs intervention, particularly at higher doses, partially restored the Firmicutes abundance and reduced the enrichment of potential pathogenic bacteria associated with stress. This study is the first to comprehensively elucidate the mechanism by which TPs alleviate crowding stress through enhanced antioxidant capacity, metabolic regulation, and microbiota remodeling, providing robust theoretical support for the application of plant-based additives in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

25 pages, 2198 KiB  
Article
Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities
by Valentina Masala, Gabriele Serreli, Antonio Laus, Monica Deiana, Adam Kowalczyk and Carlo Ignazio Giovanni Tuberoso
Foods 2025, 14(13), 2365; https://doi.org/10.3390/foods14132365 - 3 Jul 2025
Viewed by 507
Abstract
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, [...] Read more.
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, DPPH, and ABTS•+ assays; and tested ROS scavenging activity in Caco-2 cell cultures. Phenolic compounds were identified by (HR) LC-ESI-QTOF MS/MS and quantified with HPLC-PDA. Furthermore, Keap1-Nrf2, iNOS, and NOX enzymes involved in oxidative stress and antioxidant defences were the targets of molecular docking on key polyphenols. Hydroxycinnamic acids and flavonoids are the most important classes of compounds detected in the extracts. Among these compounds, the most significant was rosmarinic acid, followed by caffeic acid, luteolin glucuronide, and methyl rosmarinate. Although all extracts have shown encouraging results, the ethanolic extract solubilised with water (SEtOHA) was the one with the highest hydroxycinnamic acid content and total phenol content (518.64 ± 5.82 mg/g dw and 106.02 ± 6.02 mg GAE/g dw), as well as the highest antioxidant and antiradical activity. The extracts have shown anti-inflammatory activity by inhibiting NO release in LPS-stimulated Caco-2 cells. Finally, the in silico evaluation against the three selected enzymes showed interesting results for both numerical affinity ranking and predicted ligand binding models. The outcome of this study suggests this by-product as a possible ally in counteracting oxidative stress, as established by its favourable antioxidant compound profile, thus suggesting an interesting future application as a nutraceutical. Full article
Show Figures

Figure 1

16 pages, 2188 KiB  
Article
Tartary Buckwheat Peptides Prevent Oxidative Damage in Differentiated SOL8 Cells via a Mitochondria-Mediated Apoptosis Pathway
by Yifan Xu, Yawen Wang, Min Yang, Pengxiang Yuan, Weikang Xu, Tong Jiang and Jian Huang
Nutrients 2025, 17(13), 2204; https://doi.org/10.3390/nu17132204 - 2 Jul 2025
Viewed by 476
Abstract
Background: Under oxidative stress conditions, the increased levels of reactive oxygen species (ROS) within cells disrupt the intracellular homeostasis. Tartary buckwheat peptides exert their effects by scavenging oxidative free radicals, such as superoxide anion and hydrogen peroxide, thereby reducing oxidative damage within cells. [...] Read more.
Background: Under oxidative stress conditions, the increased levels of reactive oxygen species (ROS) within cells disrupt the intracellular homeostasis. Tartary buckwheat peptides exert their effects by scavenging oxidative free radicals, such as superoxide anion and hydrogen peroxide, thereby reducing oxidative damage within cells. Meanwhile, these peptides safeguard mitochondria by maintaining the mitochondrial membrane potential, decreasing the production of mitochondrial oxygen free radicals, and regulating mitochondrial biogenesis and autophagy to preserve mitochondrial homeostasis. Through these mechanisms, Tartary buckwheat peptides restore the intracellular redox balance, sustain cellular energy metabolism and biosynthesis, and ensure normal cellular physiological functions, which is of great significance for cell survival and adaptation under oxidative stress conditions. Objectives: In this experiment, a classical cellular oxidative stress model was established. Indicators related to antioxidant capacity and mitochondrial membrane potential changes, as well as pathways associated with oxidative stress, were selected for detection. The aim was to elucidate the effects of Tartary buckwheat oligopeptides on the metabolism of cells in response to oxidative stress. Methods: In this study, we established an oxidative damage model of mouse skeletal muscle myoblast (SOL8) cells using hydrogen peroxide (H2O2), investigated the pre-protective effects of Tartary buckwheat oligopeptides on H2O2-induced oxidative stress damage in SOL8 cells at the cellular level, and explored the possible mechanisms. The CCK-8 method is a colorimetric assay based on WST-8-[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodiumsalt], which is used to detect cell proliferation and cytotoxicity. Results: The value of CCK-8 showed that, when the cells were exposed to 0.01 mmol/L H2O2 for 1 h and 10 mg/mL Tartary buckwheat oligopeptides intervention for 48 h, these were the optimal conditions. Compared with the H2O2 group, the intervention group (KB/H2O2 group) showed that the production of ROS was significantly reduced (p < 0.001), the malondialdehyde (MDA) content was significantly decreased (p < 0.05), and the activity of catalase (CAT) was significantly increased (p < 0.01); the mitochondrial membrane potential in the KB/H2O2 group tended to return to the level of the control group, and they all showed dose-dependent effects. Compared with the H2O2 group, the mRNA expression of KEAP1 in the KB/H2O2 group decreased, while the mRNA expression of NRF2α, HO-1, nrf1, PGC-1, P62, and PINK increased. Conclusions: Therefore, Tartary buckwheat oligopeptides have a significant pre-protective effect on H2O2-induced SOL8 cells, possibly by enhancing the activity of superoxide dismutase, reducing ROS attack, balancing mitochondrial membrane potential, and maintaining intracellular homeostasis. Full article
Show Figures

Figure 1

20 pages, 2461 KiB  
Article
Effects of Different Forms of Organic Selenium on Growth Performance, Antioxidant Capacity, and Intestinal Health in Rice Field Eel (Monopterus albus)
by Denghang Yu, Yujia Liu, Jincheng Wan, Jiaxiang Chen, Yangjie Qiu and Chi Zhang
Animals 2025, 15(13), 1949; https://doi.org/10.3390/ani15131949 - 2 Jul 2025
Viewed by 359
Abstract
To evaluate the effects of different organic selenium sources on rice field eel (Monopterus albus), four isonitrogenous and isolipidic diets were tested: a control (no supplement) and four diets each supplemented with 0.24 mg/kg selenium as diselenoacetic acid (Se1), diselenopropionic acid [...] Read more.
To evaluate the effects of different organic selenium sources on rice field eel (Monopterus albus), four isonitrogenous and isolipidic diets were tested: a control (no supplement) and four diets each supplemented with 0.24 mg/kg selenium as diselenoacetic acid (Se1), diselenopropionic acid (Se2), diselenobutyric acid (Se3), or diselenodibutyric acid (Se4). Rice field eels (initial body weight 18.43 ± 0.03 g) were fed for 60 days. The Se1 group showed significantly higher WGR and SGR than the control. Whole-body crude protein was significantly increased in the Se3 and Se4 groups, while crude lipid content was significantly decreased in Se1, Se3, and Se4 groups. Selenium concentrations in the liver and kidney were highest in the Se2 group. Serum AST and ALT activities were decreased in Se4. In the Se4 group, intestinal CAT, T-SOD, and GSH-PX activities were enhanced, along with upregulation of Gpx8, CAT, Nrf2, and Keap1. Hepatic CAT and GSH-PX increased in Se2 and Se4, with Gpx8 upregulated in Se1. Intestinal lipase activity was significantly increased in Se2. At the phylum level, Proteobacteria predominated. At the genus level, Cetobacterium predominated. In summary, diselenoacetic acid enhanced growth, while diselenopropionic acid and diselenodibutyric acid improved antioxidant defense and intestinal health in rice field eel. Full article
(This article belongs to the Special Issue Sustainable Feed Ingredients in Freshwater Aquaculture)
Show Figures

Figure 1

19 pages, 2294 KiB  
Article
NGF, BDNF, and NO in Myopic Subjects: Relationships Between Aqueous Levels and Lens Epithelial Cells’ Activation
by Maria De Piano, Andrea Cacciamani, Fabio Scarinci, Rosanna Squitti, Pamela Cosimi, Marisa Bruno, Guido Ripandelli, Paola Palanza and Alessandra Micera
Int. J. Mol. Sci. 2025, 26(13), 6350; https://doi.org/10.3390/ijms26136350 - 1 Jul 2025
Viewed by 424
Abstract
Several soluble mediators are activated during myogenesis and progression, and severe neurodegeneration, with related biomarkers, characterizes high myopia-related retinal atrophy. Targets of oxidative stress, epigenetics and neurogenic inflammation have been reported in the prospecting of some bioindicators to mirror retinal insults occurring in [...] Read more.
Several soluble mediators are activated during myogenesis and progression, and severe neurodegeneration, with related biomarkers, characterizes high myopia-related retinal atrophy. Targets of oxidative stress, epigenetics and neurogenic inflammation have been reported in the prospecting of some bioindicators to mirror retinal insults occurring in high myopia. The aim of the present study was to assess the expression of a few selected biomarkers belonging to the neurotrophin (NGF and BDNF), oxidative (NO, KEAP1/NRF2), and epigenetic (DNMT3 and HD1) pathways. Sixty-five (65; 76.25 ± 9.40 years) specimens—aqueous, anterior capsule (AC), and lens epithelial cells (LEC)—were collected at the time of cataract surgery and used for ELISA (aqueous) and transcripts analysis (AC/LEC). Biosamples were grouped as emmetrope (23; 81.00 ± 6.70 years); myopia (24; 75.96 ± 7.30); and high (pathological) myopia (18; 70.56 ± 11.68 years), depending on axial length (AL) and refractive error (RE). Comparisons and correlations were carried out between myopic and high-myopic subgroups. NGF and BDNF were lowered in myopic samples; NGF and BDNF transcripts were differentially expressed in LEC, and their expression correlated positively with NGF and negatively with BDNF, with the expression of the αSMA phenotype. NGF and BDNF correlated negatively with NO and nitrites. Oxidative stress (iNOS/NOX1/NOX4 and KEAP1/NRF2) and epigenetic (DNMTα3/HD1) transcripts were upregulated in myopic LEC, compared with emmetropic ones. Herein, we prospect the contribution of NGF and BDNF in both neuroinflammation and neuroprotection occurring in this chronic disease. Full article
(This article belongs to the Special Issue Retinal Degenerative Diseases: 2nd Edition)
Show Figures

Figure 1

Back to TopTop