Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = NIR laser irradiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6123 KiB  
Article
Effects of Near-Infrared Diode Laser Irradiation on Pain Relief and Neuropeptide Markers During Experimental Tooth Movement in the Periodontal Ligament Tissues of Rats: A Pilot Study
by Kanako Okazaki, Ayaka Nakatani, Ryo Kunimatsu, Isamu Kado, Shuzo Sakata, Hirotaka Kiridoshi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(15), 7404; https://doi.org/10.3390/ijms26157404 - 31 Jul 2025
Viewed by 169
Abstract
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin [...] Read more.
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), contribute to the transmission and maintenance of inflammatory pain. Heat shock protein (HSP) 70 plays a protective role against various stresses, including orthodontic forces. This study aimed to examine the effects of diode laser irradiation on neuropeptides and HSP 70 expression in periodontal tissues induced by experimental tooth movement (ETM). For inducing ETM for 24 h, 50 g of orthodontic force was applied using a nickel–titanium closed-coil spring to the upper left first molar and the incisors of 20 male Sprague Dawley rats (7 weeks old). The right side without ETM treatment was considered the untreated control group. In 10 rats, diode laser irradiation was performed on the buccal and palatal sides of the first molar for 90 s with a total energy of 100.8 J/cm2. A near-infrared (NIR) laser with a 808 nm wavelength, 7 W peak power, 560 W average power, and 20 ms pulse width was used for the experiment. We measured the number of facial groomings and vacuous chewing movements (VCMs) in the ETM and ETM + laser groups. Immunohistochemical staining of the periodontal tissue with SP, CGRP, and HSP 70 was performed. The number of facial grooming and VCM periods significantly decreased in the ETM + laser group compared to the ETM group. Moreover, the ETM + laser group demonstrated significant suppression of SP, CGRP, and HSP 70 expression. These results suggest that the diode laser demonstrated analgesic effects on ETM-induced pain by inhibiting SP and CGRP expression, and decreased HSP 70 expression shows alleviation of cell damage. Thus, although further validation is warranted for human applications, an NIR diode laser can be used for reducing pain and neuropeptide markers during orthodontic tooth movement. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

29 pages, 3391 KiB  
Article
Near-Infrared and Sono-Enhanced Photodynamic Therapy of Prostate Cancer Cells Using Phyto-Second Harmonic Generation Nanoconjugates
by Efrat Hochma, Michael A. Firer and Refael Minnes
Polymers 2025, 17(13), 1831; https://doi.org/10.3390/polym17131831 - 30 Jun 2025
Viewed by 385
Abstract
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm [...] Read more.
This study investigates near-infrared (NIR)-induced, Phyto-enhanced, second harmonic generation-mediated photodynamic therapy (Phyto-SHG-PDT) using barium titanate (BT)/rhein/polyethylene glycol 100 (PEG100) and BT/Yemenite “Etrog” leaf extract/PEG100 nanoconjugates. We compare continuous-wave (CW), multi-line Argon-ion laser illumination in the NIR range with high-peak-power femtosecond (fs) 800 nm pulses. Under CW NIR light, BT/rhein nanoconjugates reduced PC3 prostate cancer cell viability by 18% versus non-irradiated controls (p < 0.05), while BT/extract nanoconjugates exhibited 15% dark toxicity. The observed SHG signal matched theoretical predictions and previous CW laser studies. Reactive Oxygen Species (ROS) scavenger 1,3-diphenyl-isobenzofuran (DPBF) showed reduced absorbance at 410 nm upon NIR illumination, indirectly supporting SHG emission at 400 nm from nanoconjugates. Under fs-pulsed laser exposure, pronounced two-photon absorption (TPA) and SHG effects were observed in both nanoconjugate types. Our results demonstrate the effectiveness of BT/rhein nanoconjugates under both laser conditions, while the BT/extract nanoconjugates benefited from high-power pulsed excitation. These results highlight the potential of BT-based Phyto-SHG-PDT nanoconjugates for NIR and blue light applications, leveraging nonlinear optical effects for advanced photochemical cancer therapies. Full article
Show Figures

Graphical abstract

11 pages, 1648 KiB  
Article
Solar-Driven Interfacial Evaporation Using Bumpy Gold Nanoshell Films with Controlled Shell Thickness
by Yoon-Hee Kim, Hye-Seong Cho, Kwanghee Yoo, Cho-Hee Yang, Sung-Kyu Lee, Homan Kang and Bong-Hyun Jun
Int. J. Mol. Sci. 2025, 26(13), 6160; https://doi.org/10.3390/ijms26136160 - 26 Jun 2025
Viewed by 281
Abstract
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal [...] Read more.
Metal nanostructure-assisted solar-driven interfacial evaporation systems have emerged as a promising solution to achieve sustainable water production. Herein, we fabricated photothermal films of a bumpy gold nanoshell with controlled shell thicknesses (11.7 nm and 16.6 nm) and gap structures to enhance their photothermal conversion efficiency. FDTD simulation of bumpy nanoshell modeling revealed that thinner nanoshells exhibited higher absorption efficiency across the visible–NIR spectrum. Photothermal films prepared by a three-phase self-assembly method exhibited superior photothermal conversion, with films using thinner nanoshells (11.7 nm) achieving higher surface temperatures and faster water evaporation under both laser and sunlight irradiation. Furthermore, evaporation performance was evaluated using different support layers. Films on PVDF membranes with optimized hydrophilicity and minimized heat convection achieved the highest evaporation rate of 1.067 kg m−2 h−1 under sunlight exposure (937.1 W/m2), outperforming cellulose and PTFE supports. This work highlights the critical role of nanostructure design and support layer engineering in enhancing photothermal conversion efficiency, offering a strategy for the development of efficient solar-driven desalination systems. Full article
Show Figures

Figure 1

15 pages, 3748 KiB  
Article
Constructing 1 + 1 > 2 Photosensitizers Based on NIR Cyanine–Iridium(III) Complexes for Enhanced Photodynamic Cancer Therapy
by Ziwei Wang, Weijin Wang, Qi Wu and Dongxia Zhu
Molecules 2025, 30(12), 2662; https://doi.org/10.3390/molecules30122662 - 19 Jun 2025
Viewed by 476
Abstract
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic [...] Read more.
Photosensitizers with high singlet oxygen (1O2) generation capacity under near-infrared (NIR) irradiation are essential and challenging for photodynamic therapy (PDT). A simple yet effective molecular design strategy is realized to construct 1 + 1 > 2 photosensitizers with synergistic effects by covalently integrating iridium complexes with cyanine via ether linkages, as well as introducing aldehyde groups to suppress non-radiative decay, named CHO−Ir−Cy. It is demonstrated that CHO−Ir−Cy successfully maintains the NIR absorption and emission originated from cyanine units and high 1O2 generation efficiency from the iridium complex part, which gives full play to their respective advantages while compensating for shortcomings. Density functional theory (DFT) calculations reveal that CHO−Ir−Cy exhibits a stronger spin–orbit coupling constant (ξ (S1, T1) = 9.176 cm−1) and a reduced energy gap (ΔE = −1.97 eV) between triplet excited states (T1) and first singlet excited states (S1) compared to parent Ir−Cy or Cy alone, directly correlating with its enhanced 1O2 production. Remarkably, CHO−Ir−Cy demonstrates superior cellular internalization in 4T1 murine breast cancer cells, generating substantially elevated 1O2 yields compared to individual Ir−Cy/Cy under 808 nm laser irradiation. Such enhanced reactive oxygen species production translates into effective cancer cell ablation while maintaining favorable biocompatibility, significant phototoxicity and negligible dark toxicity. This molecular engineering strategy overcomes the inherent NIR absorption limitation of traditional iridium complexes and ensures their own high 1O2 generation ability through dye–metal synergy, establishing a paradigm for designing metal–organic photosensitizers with tailored photophysical properties for precision oncology. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

15 pages, 2507 KiB  
Article
Selective Photothermal Therapy Using Antioxidant Nanoparticles Encapsulating Novel Near-Infrared-Absorbing Platinum(II) Complexes
by Ryota Sawamura, Hiromi Kurokawa, Atsushi Taninaka, Takuto Toriumi, Yukio Nagasaki, Hidemi Shigekawa, Hirofumi Matsui and Nobuhiko Iki
Nanomaterials 2025, 15(11), 796; https://doi.org/10.3390/nano15110796 - 25 May 2025
Viewed by 750
Abstract
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato [...] Read more.
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato radical) can kill cancer cells through its photothermal conversion ability. In this study, we developed PtL2-loading nanoparticles (PtL2@RNPs) for the delivery of the complex to tumors based on the enhanced permeability and retention effect using an amphiphilic block copolymer that can scavenge reactive oxygen species. PtL2@RNPs exhibited particle diameters of 20–30 nm, an encapsulation efficiency exceeding 90%, and loading capacities of up to 12%. Under NIR laser irradiation, PtL2@RNPs stably generated heat with almost 100% photothermal conversion efficiency. Although the particles were not modified for cancer cell targeting, their uptake by cancer cells was approximately double that by normal cells. PtL2@RNPs exhibited NIR absorption and effectively killed cancer cells at a low irradiation power (0.15 W). Normal cells treated with PtL2@RNPs remained largely undamaged under identical irradiation conditions, demonstrating a cancer-cell-specific photothermal killing effect. These findings can provide insights for future basic studies on cancer cells and the development of effective cancer treatment modalities. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

18 pages, 3645 KiB  
Article
Effects of Graphene Derivatives and Near-Infrared Laser Irradiation on E. coli Biofilms and Stress Response Gene Expression
by Yuliya Maksimova, Ekaterina Pyankova, Larisa Nesterova and Aleksandr Maksimov
Int. J. Mol. Sci. 2025, 26(10), 4728; https://doi.org/10.3390/ijms26104728 - 15 May 2025
Cited by 1 | Viewed by 504
Abstract
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial [...] Read more.
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial effect. This investigation is devoted to the determination of the expression level of bacterial stress response genes (soxS and rpoS) under graphene oxide (GO), reduced graphene oxide (rGO), and NIR laser irradiation (1270 nm). GO, rGO and NIR laser irradiation separately and irradiation in the presence of graphene derivatives cause an increase in the expression level of rpoS associated with the general stress response of bacteria. GO and rGO do not change the expression level of soxS associated with the cell response to oxidative stress, and decrease it in the presence of a strong oxidizing agent paraquat (PQ). The expression of soxS increases under laser irradiation, but decreases under NIR laser irradiation in combination with graphene derivatives. The effect of GO, rGO, and NIR laser irradiation on the formation and eradication of E. coli biofilms was studied. NIR laser with GO and rGO suppresses the metabolic rate and decreases the intracellular ATP content by 94 and 99.6%, respectively. CNMs are shown to reduce biofilm biomass and the content of extracellular polymeric substances (EPSs), both exopolysaccharides and protein in the biofilm matrix. Graphene derivatives in combination with NIR laser irradiation may be an effective means of combating emerging and mature biofilms of Gram-negative bacteria. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

29 pages, 3900 KiB  
Article
Efficacy and Safety of Visible and Near-Infrared Photobiomodulation Therapy on Astenospermic Human Sperm: Wavelength-Dependent Regulation of Nitric Oxide Levels and Mitochondrial Energetics
by Matilde Balbi, Rachele Lai, Sara Stigliani, Claudia Massarotti, Matteo Bozzo, Paola Scaruffi, Silvia Ravera and Andrea Amaroli
Biology 2025, 14(5), 491; https://doi.org/10.3390/biology14050491 - 1 May 2025
Viewed by 2547
Abstract
Male infertility is a growing global concern, with asthenozoospermia being an important contributing factor. Mitochondrial dysfunction and changes in the metabolism of nitric oxide (NO) are key determinants of reduced sperm motility. This study investigates the effects of photobiomodulation (PBM) with visible and [...] Read more.
Male infertility is a growing global concern, with asthenozoospermia being an important contributing factor. Mitochondrial dysfunction and changes in the metabolism of nitric oxide (NO) are key determinants of reduced sperm motility. This study investigates the effects of photobiomodulation (PBM) with visible and near-infrared (NIR) laser light on sperm of asthenozoospermic patients, focusing on mitochondrial energetic status, oxidative stress, and NO dynamics. Semen samples were irradiated at 450 nm, 635 nm, 810 nm, 940 nm, and 1064 nm at different power levels (0.25, 0.50, 1.00, and 2.00 W) for 60 s on a spot area of 1 cm2. ATP and AMP levels, oxidative stress markers, and NO concentrations were assessed at 10 and 60 min after irradiation, with the ATP/AMP ratio calculated as an index of cellular energy balance. The results show that the PBM modulates the energetic status of spermatozoa in a way dependent on wavelength and dose. Irradiation at 810 nm produced the most marked improvement in energetic status, whereas 635 nm exposure led to a significant decrease in cellular energy levels. NO levels showed a biphasic response, correlated with the visible range and with energy metabolism at 810 nm. Irradiation with 635 nm induced higher NO production with respect to the other wavelengths. Our findings suggest that PBM mainly involves mitochondrial photoreceptors and potentially the heme and flavin groups of nitric oxide synthases, facilitating electron transitions, enhancing the effectiveness of oxidative phosphorylation, and optimizing enzymatic activity. At longer wavelengths (940 nm and 1064 nm), interactions with water and lipids may introduce additional variables that affect membrane fluidity and mitochondrial function differently from shorter wavelengths. Full article
Show Figures

Graphical abstract

14 pages, 8033 KiB  
Article
GSH-Responsive Nano-Photosensitizer for Potentiating Photodynamic Therapy Through Multi-Pronged Synergistic Upregulation of Ferroptosis Sensitivity
by Yunong Ma, Kexin Xu, Jing Feng, Xi Zhao, Peilin Tian, Jiayang Luo, Luyao Xu, Jiaxing Song and Cuixia Lu
Antioxidants 2025, 14(4), 407; https://doi.org/10.3390/antiox14040407 - 28 Mar 2025
Viewed by 654
Abstract
Impeded by the limited light penetration of photodynamic therapy (PDT) to tissues and the hypoxic environment of solid tumors, the clinical therapeutic efficacy and application are below expectations. In this study, a glutathione (GSH)-responsive nano-photosensitizer, based on the chlorquinaldol (CQD)-loaded iron-containing nanorod composed [...] Read more.
Impeded by the limited light penetration of photodynamic therapy (PDT) to tissues and the hypoxic environment of solid tumors, the clinical therapeutic efficacy and application are below expectations. In this study, a glutathione (GSH)-responsive nano-photosensitizer, based on the chlorquinaldol (CQD)-loaded iron-containing nanorod composed of meso-tetra (4-carboxyphenyl) porphyrin (TCPP), was prepared to serve as the laser-ignited ferroptosis sensitizer to improve the tumoricidal effect of PDT. In the tumor microenvironment (TME) with elevated GSH levels, therapeutic cargos and ferrous ions are released and are accompanied by the degradation of the nano-photosensitizer and GSH exhaustion. This not only increases liable iron pool (LIP) accumulation by the released ferrous ions but also decreases glutathione peroxidase 4 (GPX4) activity by GSH exhaustion. Simultaneously, GSH exhaustion disrupts intracellular redox homeostasis, heightening NIR light irradiation-triggered photosensitive oxidative stress. Moreover, the released CQD elevates the level of intracellular reactive oxygen species (ROS), enabling the nanorods to gain an oxygen radical generation ability and enhancing the photosensitive oxidative therapeutic efficacy. Strikingly, CQD exacerbates the downregulation of GPX4 expression to promote the accumulation of lipid peroxides. Therefore, we herald a new paradigm for synergistically potentiating PDT based on the “all-in-one” nano-photosensitizer through the multi-pronged upregulation of ferroptosis sensitivity. Full article
(This article belongs to the Special Issue Nanotechnology and Redox Health)
Show Figures

Figure 1

19 pages, 4837 KiB  
Article
Construction of Antibacterial MoS2-ACF Phenotype Switcher for Bidirectionally Regulating Inflammation–Proliferation Transition in Wound Healing
by Mengxin Mao, Diyi Li, Yunyun Wu, Bing Li, Xiaoqing Han, Jiao Yan, Lei Shang, Haiyuan Zhang and Xi Li
Materials 2025, 18(5), 963; https://doi.org/10.3390/ma18050963 - 21 Feb 2025
Cited by 1 | Viewed by 626
Abstract
The transition between the inflammatory phase and the proliferative phase is critical for wound healing. However, the development of proper switchers that can regulate this transition is facing great challenges. Macrophages play versatile roles in all wound healing phases because they can readily [...] Read more.
The transition between the inflammatory phase and the proliferative phase is critical for wound healing. However, the development of proper switchers that can regulate this transition is facing great challenges. Macrophages play versatile roles in all wound healing phases because they can readily switch from pro-inflammatory M1 phenotypes to anti-inflammatory M2 phenotypes in response to different microenvironment stimuli. Herein, taking advantage of enhanced electron transfer by coupling MoS2 with a highly conductive activated carbon fiber (ACF) network, a MoS2-ACF heterojunction structure was constructed as a macrophage M1-M2 phenotype switcher (MAPS) for regulating inflammation–proliferation transition to accelerate wound healing. In the early stages of wound repair, MAPS-mediated photothermal effects with near-infrared laser irradiation could promote macrophage reprogramming to the M1 phenotype, which can expedite inflammation. NIR photo-induced hyperthermia, together with M1 macrophages, directly and indirectly kills bacteria. Later, during the healing process, the MAPS could further reprogram macrophages towards the M2 phenotype via its inherent reactive oxygen species (ROS) scavenging ability to resolve inflammation, promoting cell proliferation. Therefore, MoS2-ACF heterojunction structures provide a new strategy to modulate inflammation–proliferation transition by rebalancing the immuno-environmental equilibrium of macrophage M1/M2 phenotypes. Full article
Show Figures

Figure 1

12 pages, 3657 KiB  
Article
Laser-Induced Photothermal Hydrogels Promote the Proliferation of MC3T3-E1 Preosteoblasts for Enhanced Bone Healing
by Audrey L. Wu, Abigail F. Wu, Chieh-Ying Chen, Ruaina Lily Hope Moreno, Jia-Lin Wu and Pei-Chun Wong
J. Funct. Biomater. 2025, 16(2), 63; https://doi.org/10.3390/jfb16020063 - 12 Feb 2025
Cited by 1 | Viewed by 1102
Abstract
The nonunion and delayed union of bones are common challenges in orthopedic surgery, even when bone alignment is correct and sufficient mechanical stability is provided. To address this, artificial bone grafts are often applied to fracture gaps or defect sites to promote osteogenesis [...] Read more.
The nonunion and delayed union of bones are common challenges in orthopedic surgery, even when bone alignment is correct and sufficient mechanical stability is provided. To address this, artificial bone grafts are often applied to fracture gaps or defect sites to promote osteogenesis and enhance bone healing. In this study, we developed an alginate-based hydrogel incorporating gold nanoparticles (AuNPs) to enhance cell proliferation and facilitate bone healing through a photothermal effect induced by near-infrared (NIR) laser irradiation. The temperature was controlled by adjusting the AuNP content. The hydrogel’s properties were characterized and cell viability was assessed. Our results indicate that while the incorporation of AuNPs slightly disrupted the hydrogel’s cross-linking network at low concentrations, cell viability remained unaffected across both low and high AuNP contents. These findings suggest that this photothermal hydrogel holds great promise for orthopedic applications to improve bone healing. Full article
(This article belongs to the Special Issue Natural Biomaterials for Biomedical Applications)
Show Figures

Figure 1

26 pages, 4876 KiB  
Article
Microfluidic-Assisted Silk Nanoparticles Co-Loaded with Epirubicin and Copper Sulphide: A Synergistic Photothermal–Photodynamic Chemotherapy Against Breast Cancer
by Zijian Gao, Muhamad Hawari Mansor, Faith Howard, Jordan MacInnes, Xiubo Zhao and Munitta Muthana
Nanomaterials 2025, 15(3), 221; https://doi.org/10.3390/nano15030221 - 30 Jan 2025
Cited by 1 | Viewed by 1366
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has emerged as a promising non-invasive cancer treatment, addressing issues like drug resistance and systemic toxicity common in conventional breast cancer therapies. Recent research has shown that copper sulphide (CuS) nanoparticles and polydopamine (PDA) [...] Read more.
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has emerged as a promising non-invasive cancer treatment, addressing issues like drug resistance and systemic toxicity common in conventional breast cancer therapies. Recent research has shown that copper sulphide (CuS) nanoparticles and polydopamine (PDA) exhibit exceptional photothermal conversion efficiency under 808 nm near-infrared (NIR) laser irradiation, making them valuable for cancer phototherapy. However, the effectiveness of PDT is limited in hypoxic tumour environments, which are common in many breast cancer types, due to its reliance on local oxygen levels. Moreover, single-modality approaches, including phototherapy, often prove insufficient for complete tumour elimination, despite their therapeutic strength. In this paper, a microfluidic-assisted approach was used to create multifunctional silk-based nanoparticles (SFNPs) encapsulating the chemotherapeutic drug Epirubicin (EPI), the PTT/PDT agent CuS, and the heat-activated, oxygen-independent alkyl radical generator AIPH for combined chemotherapy, PTT, and PDT, with a polydopamine (PDA) coating for enhanced photothermal effects and surface-bound folic acid (FA) for targeted delivery in breast cancer treatment. The synthesised CuS-EPI-AIPH@SF-PDA-FA nanoparticles achieved a controlled size of 378 nm, strong NIR absorption, and high photothermal conversion efficiency. Under 808 nm NIR irradiation, these nanoparticles selectively triggered the release of alkyl radicals and EPI, improving intracellular drug levels and effectively killing various breast cancer cell lines while demonstrating low toxicity to non-cancerous cells. We demonstrate that novel core–shell CuS-EPI-AIPH@SF-PDA-FA NPs have been successfully designed as a multifunctional nanoplatform integrating PTT, PDT, and chemotherapy for targeted, synergistic breast cancer treatment. Full article
(This article belongs to the Special Issue Emerging Nanoscale Materials for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

8 pages, 1956 KiB  
Communication
Cuprous Halide Coordination Polymer for Efficient NIR-I Photothermal Effect and Photo-Thermo-Electric Conversion
by Ning-Ning Zhang, Xiang-Tong Liu, Ke Xu, Ya-Tong Liu, Lin-Xu Liu and Yong Yan
Molecules 2024, 29(24), 6034; https://doi.org/10.3390/molecules29246034 - 21 Dec 2024
Viewed by 759
Abstract
Photo-thermo-electric conversion devices represent a promising technology for converting solar energy into electrical energy. Photothermal materials, as a critical component, play a significant role in efficient conversion from solar energy into thermal energy and subsequently electrical energy, thereby directly influencing the overall system’s [...] Read more.
Photo-thermo-electric conversion devices represent a promising technology for converting solar energy into electrical energy. Photothermal materials, as a critical component, play a significant role in efficient conversion from solar energy into thermal energy and subsequently electrical energy, thereby directly influencing the overall system’s efficiency in solar energy utilization. However, the application of single-component photothermal materials in photo-thermo-electric conversion systems remains limited. The exploration of novel photothermal materials with broad-spectrum absorption, a high photothermal conversion efficiency (PCE), and a robust output power density is highly desired. In this study, we investigated a black cuprous halide compound, [Cu2Cl2PA]n (1, PA = phenazine), which exhibits broad-spectrum absorption extending into the near-infrared (NIR) region. Compound 1 demonstrated a high NIR-I PCE of 50% under irradiation with an 808 nm laser, attributed to the metal-to-ligand charge transfer (MLCT) from the Cu(I) to the PA ligands and the strong intermolecular π–π interactions among the PA ligands. Furthermore, the photo-thermo-electric conversion device constructed using compound 1 achieved a notable output voltage of 261 mV and an output power density of 0.92 W/m2 under the 1 Sun (1000 W/m2) xenon lamp. Full article
Show Figures

Graphical abstract

13 pages, 4650 KiB  
Article
A Phthalimide-Functionalized Heptamethine Cyanine Dye for Tumor-Targeted Photothermal Therapy
by Yoonbin Park, Juhui Yang and Hoon Hyun
Cancers 2024, 16(24), 4155; https://doi.org/10.3390/cancers16244155 - 13 Dec 2024
Viewed by 996
Abstract
Background: A phthalimide-functionalized heptamethine cyanine dye, named Ph790H, is used for targeted photothermal cancer therapy in vivo. We highlight that the chemical structure of Ph790H is newly designed and synthesized for the first time in this study. Objectives: By possessing a rigid chloro-cyclohexenyl [...] Read more.
Background: A phthalimide-functionalized heptamethine cyanine dye, named Ph790H, is used for targeted photothermal cancer therapy in vivo. We highlight that the chemical structure of Ph790H is newly designed and synthesized for the first time in this study. Objectives: By possessing a rigid chloro-cyclohexenyl ring in the heptamethine cyanine backbone, the bifunctional near-infrared (NIR) fluorescent dye Ph790H can be preferentially accumulated in tumor without the need for additional targeting ligands, which is defined as the “structure-inherent tumor targeting” concept. Methods: The phototherapeutic effect of Ph790H is evaluated in HT-29 human colorectal cancer xenografts to be used as a cancer-targeting photothermal agent. Results: The results reveal that the Ph790H shows enhanced tumor accumulation in HT-29 xenografts 48 h post-injection with a high tumor-to-background ratio. After determination of the optimal timing for photothermal therapy (PTT), the HT-29 tumor-possessing nude mice pretreated with Ph790H are subsequently irradiated with an 808 nm NIR laser for 5 min. The tumor-targeted PTT treatment can efficiently inhibit the tumor development compared with that of control groups. Moreover, no tumor regrowth or Ph790H-induced mortality occurs after the treatment of Ph790H and laser irradiation during a period of monitoring. Conclusions: Therefore, this work demonstrates that the bifunctional phototheranostic agent Ph790H can be utilized for targeted cancer imaging and fluorescence-guided phototherapy simultaneously. Full article
(This article belongs to the Special Issue Novel Therapeutic Approaches for Cancer Treatment)
Show Figures

Figure 1

13 pages, 2174 KiB  
Article
Leveraging Femtosecond Laser Ablation for Tunable Near-Infrared Optical Properties in MoS2-Gold Nanocomposites
by Ilya A. Zavidovskiy, Ilya V. Martynov, Daniil I. Tselikov, Alexander V. Syuy, Anton A. Popov, Sergey M. Novikov, Andrei V. Kabashin, Aleksey V. Arsenin, Gleb I. Tselikov, Valentyn S. Volkov and Alexey D. Bolshakov
Nanomaterials 2024, 14(23), 1961; https://doi.org/10.3390/nano14231961 - 6 Dec 2024
Cited by 3 | Viewed by 1980
Abstract
Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS2), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and [...] Read more.
Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS2), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and offers significant advantages for photonic applications. This study presents a novel approach to synthesize MoS2-Au nanocomposites utilizing femtosecond laser ablation in liquid to achieve tunable optical properties in the near-infrared (NIR) region. By adjusting ablation and fragmentation protocols, we successfully synthesize various core–shell and core–shell–satellite nanoparticle composites, such as MoS2/MoSxOy, MoSxOy/Au, and MoS2/MoSxOy/Au. UV-visible absorption spectroscopy unveils considerable changes in the optical response of the particles depending on the fabrication regime due to structural modifications. Hybrid nanoparticles exhibit enhanced photothermal properties when subjected to NIR-I laser irradiation, demonstrating potential benefits for selective photothermal therapy. Our findings underscore that the engineered nanocomposites not only facilitate green synthesis but also pave the way for tailored therapeutic applications, highlighting their role as promising candidates in the field of nanophotonics and cancer treatment. Full article
(This article belongs to the Special Issue Optical Composites, Nanophotonics and Metamaterials)
Show Figures

Figure 1

13 pages, 3283 KiB  
Article
Laser Emission at 675 nm: Molecular Counteraction of the Aging Process
by Lorenzo Notari, Laura Pieri, Francesca Cialdai, Irene Fusco, Chiara Risaliti, Francesca Madeddu, Stefano Bacci, Tiziano Zingoni and Monica Monici
Biomedicines 2024, 12(12), 2713; https://doi.org/10.3390/biomedicines12122713 - 27 Nov 2024
Cited by 2 | Viewed by 1206
Abstract
Background/Objectives: Many lasers applied in skin rejuvenation protocols show emissions with wavelengths falling in the red or near-infrared (NIR) bands. To obtain further in vitro data on the potential therapeutic benefits regarding rejuvenation, we employed a 675 nm laser wavelength on cultured human [...] Read more.
Background/Objectives: Many lasers applied in skin rejuvenation protocols show emissions with wavelengths falling in the red or near-infrared (NIR) bands. To obtain further in vitro data on the potential therapeutic benefits regarding rejuvenation, we employed a 675 nm laser wavelength on cultured human dermal fibroblasts to understand the mechanisms involved in the skin rejuvenation process’s signaling pathways by analyzing cytoskeletal proteins, extracellular matrix (ECM) components, and membrane integrins. Methods: Normal human dermal fibroblasts (NHDFs) were irradiated with a 675 nm laser 24 h after seeding, and immunofluorescence microscopy and Western blotting were applied. Results: The results demonstrate that the laser treatment induces significant changes in human dermal fibroblasts, affecting cytoskeleton organization and the production and reorganization of ECM molecules. The cell response to the treatment appears to predominantly involve paxillin-mediated signaling pathways. Conclusions: These changes suggest that laser treatment can potentially improve the structure and function of skin tissue, with interesting implications for treating skin aging. Full article
(This article belongs to the Special Issue Photodynamic Therapy (3rd Edition))
Show Figures

Figure 1

Back to TopTop