Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = NHPs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1678 KiB  
Article
Molecular Surveillance of Plasmodium spp. Infection in Neotropical Primates from Bahia and Minas Gerais, Brazil
by Luana Karla N. S. S. Santos, Sandy M. Aquino-Teixeira, Sofía Bernal-Valle, Beatriz S. Daltro, Marina Noetzold, Aloma Roberta C. Silva, Denise Anete M. Alvarenga, Luisa B. Silva, Ramon S. Oliveira, Cirilo H. Oliveira, Iago A. Celestino, Maria E. Gonçalves-dos-Santos, Thaynara J. Teixeira, Anaiá P. Sevá, Fabrício S. Campos, Bergmann M. Ribeiro, Paulo M. Roehe, Danilo Simonini-Teixeira, Filipe V. S. Abreu, Cristiana F. A. Brito and George R. Albuquerqueadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 757; https://doi.org/10.3390/pathogens14080757 (registering DOI) - 31 Jul 2025
Viewed by 237
Abstract
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial [...] Read more.
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial for understanding the distribution of these parasites and assessing the risk of zoonotic transmission. This study aimed to detect the presence of Plasmodium spp. genetic material in Platyrrhini primates from 47 municipalities in the states of Bahia and Minas Gerais. The animals were captured using Tomahawk-type live traps baited with fruit or immobilized with tranquilizer darts. Free-ranging individuals were chemically restrained via inhalation anesthesia using VetBag® or intramuscular anesthesia injection. Blood samples were collected from the femoral vein. A total of 298 blood and tissue samples were collected from 10 primate species across five genera: Alouatta caraya (25), Alouatta guariba clamitans (1), Callicebus melanochir (1), Callithrix geoffroyi (28), Callithrix jacchus (4), Callithrix kuhlii (31), Callithrix penicillata (175), Callithrix spp. hybrids (15), Leontopithecus chrysomelas (16), Sapajus robustus (1), and Sapajus xanthosthernos (1). Molecular diagnosis was performed using a nested PCR targeting the 18S small subunit ribosomal RNA (18S SSU rRNA) gene, followed by sequencing. Of the 298 samples analyzed, only one (0.3%) from Bahia tested positive for Plasmodium brasilianum/P. malariae. This represents the first detection of this parasite in a free-living C. geoffroyi in Brazil. These findings highlight the importance of continued surveillance of Plasmodium infections in NHPs to identify regions at risk for zoonotic transmission. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

21 pages, 407 KiB  
Review
Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
by Krystal J. Vail, Brittany N. Macha, Linh Hellmers and Tracy Fischer
Int. J. Mol. Sci. 2025, 26(14), 6886; https://doi.org/10.3390/ijms26146886 - 17 Jul 2025
Viewed by 467
Abstract
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with [...] Read more.
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with a unique set of challenges. First, because brain biopsies are rarely necessary to diagnose viral-associated neurological disorders, antemortem tissue samples are not readily available for study and human pathological studies must rely on end-stage, postmortem evaluations. Second, in vitro models fail to fully capture the nuances of an intact immune system, necessitating the use of animal models to fully characterize pathogenesis and identify potential therapeutic approaches. Non-human primates (NHP) represent a particularly attractive animal model in that they overcome many of the limits posed by more distant species and most closely mirror human disease pathogenesis and susceptibility. Here, we review NHP infection models of viruses known to infect and/or replicate within cells of the CNS, including West Nile virus, the equine encephalitis viruses, Zika virus, and herpesviruses, as well as those known to alter the immune status of the brain in the absence of significant CNS penetrance, including human immunodeficiency virus (HIV) in the current era of combination antiretroviral therapy (cART) and the coronavirus of severe acute respiratory syndrome (SARS)-CoV−2. This review focuses on viruses with an established role in causing CNS disease, including encephalitis, meningitis, and myelitis and NHP models of viral infection that are directly translatable to the human condition through relevant routes of infection, comparable disease pathogenesis, and responses to therapeutic intervention. Full article
(This article belongs to the Special Issue Animal Research Model for Neurological Diseases, 2nd Edition)
18 pages, 313 KiB  
Article
The Role of Axillary Lymph Node Dissection Width and Radiotherapy in Axillary Vein Pathologies and Psychophysical Outcomes in Breast Cancer
by Mujdat Turan, Ibrahim Burak Bahcecioglu, Sumeyra Guler, Sevket Baris Morkavuk, Gokhan Giray Akgul, Sebnem Cimen, Elif Ayse Ucar, Ebru Umay, Mehmet Mert Hidiroglu, Yasemin Ozkan, Mutlu Sahin and Kerim Bora Yilmaz
Medicina 2025, 61(7), 1212; https://doi.org/10.3390/medicina61071212 - 3 Jul 2025
Viewed by 373
Abstract
Background and Objectives: Lymphedema is one of the most important morbid complications of modified radical mastectomy (MRM) surgery. It can cause limb movement restriction and psychosocial deformities in some patients. This study aimed to determine and compare the physiological and pathological changes that [...] Read more.
Background and Objectives: Lymphedema is one of the most important morbid complications of modified radical mastectomy (MRM) surgery. It can cause limb movement restriction and psychosocial deformities in some patients. This study aimed to determine and compare the physiological and pathological changes that develop in the axillary venous structures in patients who underwent axillary lymph node dissection (ALND) and sentinel lymph node biopsy (SLNB). Materials and Methods: Patients diagnosed with breast cancer who underwent MRM and breast-conserving surgery (BCS) plus SLNB between 2017 and 2022 were retrospectively examined. The patients’ operation side and contralateral axillary vein diameter and the difference between them, axillary vein flow rate and the difference between them, axillary vein wall thickness and the difference between them, severity of lymphedema, extremity joint restriction examination, and the Nottingham Health Profile (NHP) data were recorded. The relationship of these parameters with the lymph node dissection width and radiotherapy was analyzed. Results: Fifty-eight patients in total were included in the study. In the distribution of lymphedema and lymphedema severity according to ALND groups, there is a statistically significant difference (p < 0.001). A statistically significant difference was determined in the distribution of the difference in the axillary vein blood flow rate and axillary vein diameter difference between the two arms according to the lymph node dissection groups. In the distribution of physical therapy and rehabilitation scales according to the lymph node dissection groups, a significant difference was found in the disabilities of the arm, shoulder, and hand (DASH), shoulder flexion restriction variables, and NHP sleep variables (all p < 0.001). Conclusions: This study demonstrated that ALND leads to more pronounced physiological and pathological changes in axillary venous structures—including increased vein wall thickness, altered flow rates, and diameter differences—compared to SLNB combined with breast-conserving surgery. These changes may be attributed to lymphovenous disruption and postoperative edema. Furthermore, radiotherapy appears to contribute to these changes, though to a lesser extent than ALND. Therefore, SLNB followed by radiotherapy may be preferable in eligible patients to reduce postoperative complications such as lymphedema, joint restriction, and sleep disturbances. Full article
(This article belongs to the Section Oncology)
11 pages, 1363 KiB  
Case Report
Molecular and Microscopic Challenges in Detecting Plasmodium cynomolgi Co-Infections with Plasmodium vivax: A Case Report
by Mohd Adilin Yaacob, Raden Shamilah Radin Hisam, Nor Parina Ismail, Noor Azian Md Yusuf, Jose Miguel Rubio Muñoz, Suhana Hashim and Tam Jenn Zhueng
Pathogens 2025, 14(7), 651; https://doi.org/10.3390/pathogens14070651 - 30 Jun 2025
Viewed by 449
Abstract
The risk of non-human primate (NHP) malaria transmission to humans is increasing, with Plasmodium knowlesi and Plasmodium cynomolgi emerging as significant zoonotic threats, particularly in Malaysia. While P. knowlesi is well-documented, P. cynomolgi infections in humans remain underreported, largely due to diagnostic challenges. [...] Read more.
The risk of non-human primate (NHP) malaria transmission to humans is increasing, with Plasmodium knowlesi and Plasmodium cynomolgi emerging as significant zoonotic threats, particularly in Malaysia. While P. knowlesi is well-documented, P. cynomolgi infections in humans remain underreported, largely due to diagnostic challenges. Routine microscopy and standard molecular diagnostic tools often misdiagnose P. cynomolgi infections as P. vivax due to morphological similarities and genetic homology. We report a new case of a human P. cynomolgi infection misdiagnosed as Plasmodium vivax in a 32-year-old male with no prior malaria history or travel to endemic countries. The initial diagnoses made by the microscopy and qPCR conducted by the Kota Bharu Public Health Laboratory in Kelantan identified the infection as P. vivax. However, cross-examination by the Institute for Medical Research (IMR) revealed the presence of mixed-species infection, prompting further analysis. The real-time PCR and sequencing performed at MAPELAB, Spain, confirmed the co-infection of P. vivax and P. cynomolgi. This case highlights the diagnostic limitations in detecting P. cynomolgi, which shares high genetic similarity with P. vivax, leading to potential cross-reactivity and diagnostic inaccuracies. As P. cynomolgi emerges as the second zoonotic malaria species after P. knowlesi capable of infecting humans in Southeast Asia, improved diagnostic methods are urgently needed. Enhanced molecular diagnostics and comprehensive epidemiological studies are essential to elucidate transmission dynamics, assess public health implications, and inform effective malaria control strategies. Full article
(This article belongs to the Special Issue Parasites and Zoonotic Diseases)
Show Figures

Figure 1

12 pages, 241 KiB  
Article
Examining the Effect of Polypharmacy on Quality of Life and Frailty in Older Adults from the Perspective of Community-Based Rehabilitation
by Mustafa Cemali, Aynurhayat Kanlıca, Sıla Yılmaz, İlayda Yılmaz, Özgün Elmas and Aynur Ayşe Karaduman
Healthcare 2025, 13(13), 1531; https://doi.org/10.3390/healthcare13131531 - 27 Jun 2025
Viewed by 468
Abstract
Objective: Although the negative effects of polypharmacy on older adults are well-documented, studies exploring its relationship with frailty and quality of life within the framework of community-based rehabilitation (CBR) remain scarce. In this context, the aim of this study was to compare frailty [...] Read more.
Objective: Although the negative effects of polypharmacy on older adults are well-documented, studies exploring its relationship with frailty and quality of life within the framework of community-based rehabilitation (CBR) remain scarce. In this context, the aim of this study was to compare frailty and quality of life levels between older adults with and without polypharmacy and to examine the relationship between these parameters from a CBR perspective. The ultimate purpose of this study was to determine the usefulness of CBR. Method: A total of 120 community-dwelling older adults (60 with polypharmacy, 60 without polypharmacy), aged 65–75 years (mean age = 68.18 ± 3.50), were included in a community-based assessment carried out under the coordination of Lokman Hekim University in Ankara, Turkey. The use of five to nine medications was taken as a reference for those with polypharmacy, and the use of less than two medications was taken as a reference for those without polypharmacy. The quality of life of the older adults in the study was assessed with the Nottingham Health Profile (NHP), and frailty was assessed with the Edmonton Frailty Scale (EFS). In line with CBR principles, the findings were interpreted with a focus on promoting community-wide strategies to support older adults. Results: The study found a statistically significant difference in NHP and EFS results between older adults with and without polypharmacy (p < 0.05). In addition, a statistically significant relationship was found between NHP and all subdomains of NHP and EFS (p < 0.05). Conclusion: Older adults with polypharmacy had higher levels of frailty and lower quality of life, and an increase in frailty was significantly associated with a decrease in quality of life in both groups. These findings highlight the importance of community-level preventive interventions to support healthy aging. Within the framework of CBR, strategies such as creating accessible physical activity areas at the neighborhood level; organizing informative seminars on frailty, quality of life, medication use and health literacy in collaboration with volunteer health professionals and local authorities; and creating volunteer support networks to increase social interaction can contribute to the control of these symptoms in older adults. Full article
17 pages, 3826 KiB  
Article
Influence of Seed Coat Integrity on the Response of Pepper Seeds to Dielectric Barrier Discharge Plasma Treatment
by Chanyanuch Sriruksa, Choncharoen Sawangrat, Sakon Sansongsiri, Dheerawan Boonyawan and Sa-nguansak Thanapornpoonpong
Plants 2025, 14(13), 1938; https://doi.org/10.3390/plants14131938 - 24 Jun 2025
Viewed by 566
Abstract
This study investigated the response of pepper seeds with varying seed coat conditions (SCs) to dielectric barrier discharge plasma treatment (PT). The experimental design was a split plot with three replications. The primary plot factor was the SC (normal seeds [NMS], nicking at [...] Read more.
This study investigated the response of pepper seeds with varying seed coat conditions (SCs) to dielectric barrier discharge plasma treatment (PT). The experimental design was a split plot with three replications. The primary plot factor was the SC (normal seeds [NMS], nicking at the hilum part [NHP], and removed seed coat [RSC]), while the subplot factor was the plasma exposure time (0.4–2.0 s/cm), including a control, to determine the effects on seed viability, germination, and vigor. The results indicate that NMS seeds exhibit the highest performance in terms of seed viability. The NMS and NHP had statistically significantly higher seed germination, electrical conductivity, radical emergence, and germination index at 14 days after sowing, and the shoot length measured longer than RSC. Plasma exposure at 1.2 s/cm improved germination and vigor, whereas 2.0 s/cm exposure significantly decreased seed viability and increased the number of abnormal seedlings. The interaction between SC and PT significantly affected seedling abnormalities, with RSC seeds being more vulnerable to damage under prolonged exposure. These findings highlight the crucial role of seed coat integrity in maintaining seed quality and suggest that carefully controlled PT can be a promising and sustainable method to enhance pepper seed performance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

23 pages, 4903 KiB  
Article
Highly Effective mRNA-LNP Vaccine Against Respiratory Syncytial Virus (RSV) in Multiple Models
by Huarong Bai, Xueliang Yu, Yue Gao, Qin Li, Baigang Wen and Rongkuan Hu
Vaccines 2025, 13(6), 625; https://doi.org/10.3390/vaccines13060625 - 10 Jun 2025
Viewed by 1509
Abstract
Background: The transmembrane fusion (F) protein of RSV plays important roles in RSV pathogenesis as it mediates the fusion between the virus and the target cell membrane. During the fusion process, the F protein transits from a metastable state (prefusion, preF) to a [...] Read more.
Background: The transmembrane fusion (F) protein of RSV plays important roles in RSV pathogenesis as it mediates the fusion between the virus and the target cell membrane. During the fusion process, the F protein transits from a metastable state (prefusion, preF) to a stable state (postfusion, postF) after the merging of the virus and cell membranes. The majority of highly neutralizing antibodies induced by natural infection or immunization target the preF form, which makes it the preferred antigen for vaccine development. Methods: Here, we designed an effective RSV mRNA vaccine, STR-V003, consisting of mRNA encoding preF protein in lipid nanoparticles (LNPs). The immunogenicity, protection efficacy and toxicity were measured in multiple animal models. Results: STR-V003 demonstrated robust immunogenicity in both mice and cotton rats, inducing high levels of neutralizing antibodies and RSV preF-specific IgG antibodies and significantly reducing the RSV viral loads in the lung and nose tissue of challenged animals. In addition, STR-V003 did not show significant enhancement of lung pathology without causing vaccine-enhanced disease (VED). The repeated dose general toxicology studies and local tolerance studies of STR-V003 were evaluated in rats and non-human primate (NHP). Conclusions: STR-V003 demonstrates a favorable safety profile and induces robust protective immunity against RSV. Full article
(This article belongs to the Special Issue The Development of mRNA Vaccines)
Show Figures

Figure 1

17 pages, 836 KiB  
Review
Vaccines and Animal Models of Nipah Virus: Current Situation and Future Prospects
by Chaoxiang Lv, Jiayue He, Qiqi Zhang and Tiecheng Wang
Vaccines 2025, 13(6), 608; https://doi.org/10.3390/vaccines13060608 - 4 Jun 2025
Viewed by 987
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus characterized by zoonotic infection, high mortality, and a lack of effective treatment, posing a serious threat to global public health security. Currently, it still lacks specific treatments or approved vaccines, and is listed as a [...] Read more.
Nipah virus (NiV) is a highly pathogenic paramyxovirus characterized by zoonotic infection, high mortality, and a lack of effective treatment, posing a serious threat to global public health security. Currently, it still lacks specific treatments or approved vaccines, and is listed as a potential pandemic threat pathogen by the World Health Organization. This paper systematically reviews the core progress and challenges of NiV investigation, with a focus on the development of animal models, vaccine development strategies, treatment strategy, and bottlenecks in translational medicine. Additionally, we discuss the strengths and limitations of existing animal models, including ferrets, hamsters, mice, and non-human primates (NHPs), and assess advances in vaccine platforms such as viral vectors, subunit vaccines, and mRNA-based vaccine candidates. The paper critically reviews the challenges facing translational research, conservation correlates, and outbreak preparedness, while also providing future research directions for pandemic preparedness and public health security strategies. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

14 pages, 1369 KiB  
Article
Development of a System to Deliver Inhalational Antibiotics to Marmosets
by Rachel E. Ireland, Stuart J. Armstrong, Carwyn Davies, James D. Blanchard, Francis Dayton, Igor Gonda, Sarah V. Harding and Michelle Nelson
Antibiotics 2025, 14(6), 554; https://doi.org/10.3390/antibiotics14060554 - 29 May 2025
Viewed by 432
Abstract
Background: Inhalational antibiotics have been used effectively to treat chronic diseases such as Pseudomonas aeruginosa infections associated with cystic fibrosis. This approach may enhance treatment options for difficult-to-treat, acute pneumonic diseases. Liposomal encapsulated ciprofloxacin (Lipoquin and/or Apulmiq) has provided protection in murine models [...] Read more.
Background: Inhalational antibiotics have been used effectively to treat chronic diseases such as Pseudomonas aeruginosa infections associated with cystic fibrosis. This approach may enhance treatment options for difficult-to-treat, acute pneumonic diseases. Liposomal encapsulated ciprofloxacin (Lipoquin and/or Apulmiq) has provided protection in murine models of plague, anthrax, Q fever and tularemia. Development of the ability to deliver these drugs to nonhuman primates (NHPs) would enable further extrapolation of the data observed in small animal models of infection to humans. Methods: In this study, the methodology was established to deliver Apulmiq to common marmosets (Callithrix jacchus). Marmosets were anaesthetised with a novel, reversible anaesthetic comprising fentanyl, medetomidine and midazolam (FMM). They were placed into plethysmography tubes with their heads in an exposure chamber. The LC Sprint jet nebuliser or Pari eFlow Rapid nebuliser were used to aerosolise Apulmiq into the exposure chamber. Animals were euthanised after dosing and the concentration of ciprofloxacin was assessed in the plasma and lungs of the animals. Results: Non-compartmental pharmacokinetic analysis determined that a 30 min exposure of drug was required to reach a human-equivalent target dose of 0.8 mg/kg body weight in the lungs. Conclusions: This approach can now be used to assess the efficacy of inhalational liposomal ciprofloxacin in NHP infection models. Full article
Show Figures

Figure 1

10 pages, 1882 KiB  
Brief Report
Human Herpesvirus 1 Associated with Epizootics in Belo Horizonte, Minas Gerais, Brazil
by Gabriela Fernanda Garcia-Oliveira, Mikaelly Frasson Biccas, Daniel Jacob, Marcelle Alves Oliveira, Ana Maria de Oliveira Paschoal, Pedro Augusto Alves, Cecília Barreto, Daniel Ambrósio da Rocha Vilela, Érika Procópio Tostes Teixeira, Thiago Lima Stehling, Thais Melo Mendes, Marlise Costa Silva, Munique Guimarães Almeida, Ivan Vieira Sonoda, Érica Munhoz Mello, Francisco Elias Nogueira Gama, Kathryn A. Hanley, Nikos Vasilakis and Betania Paiva Drumond
Viruses 2025, 17(5), 660; https://doi.org/10.3390/v17050660 - 30 Apr 2025
Cited by 1 | Viewed by 429
Abstract
Human activity in sylvatic environments and resulting contact with wildlife, such as non-human primates (NHPs), can lead to pathogen spillover or spillback. Both NHPs and humans host a variety of herpesviruses. While these viruses typically cause asymptomatic infections in their natural hosts, they [...] Read more.
Human activity in sylvatic environments and resulting contact with wildlife, such as non-human primates (NHPs), can lead to pathogen spillover or spillback. Both NHPs and humans host a variety of herpesviruses. While these viruses typically cause asymptomatic infections in their natural hosts, they can lead to severe disease or even death when they move into novel hosts. In early 2024, deaths of Callithrix penicillata, the black-tufted marmoset, were reported in an urban park in Belo Horizonte, Minas Gerais, Brazil. The epizootic was investigated in collaboration with CETAS/IBAMA and the Zoonoses Department of Belo Horizonte. Nine marmoset carcasses and four sick marmosets were found in the park; the latter exhibited severe neurological symptoms and systemic illness before succumbing within 48 h. Carcasses were tested for rabies virus and were all negative, and necropsy findings revealed widespread organ damage. In addition, the samples were tested for yellow fever virus, with negative results. Finally, molecular testing, viral isolation, and phylogenetic analysis demonstrated human herpesvirus 1 (HHV-1) as the causative agent. The likely source of infection was human-to-marmoset transmission, facilitated by close interactions such as feeding and handling. This study highlights the risks of pathogen spillover between humans and nonhuman primates, emphasizing the need for enhanced surveillance and public awareness to mitigate future epizootics. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

36 pages, 1680 KiB  
Review
Genotoxicity in Unconventional Mammalian Models of Wild, Urban, and Agricultural Ecosystems: A Systematic Review Under the One Health Approach
by Nora Bibiana M. Gorla, Mariela Nieves and Daniela Marisol Ferré
Genes 2025, 16(5), 525; https://doi.org/10.3390/genes16050525 - 29 Apr 2025
Cited by 1 | Viewed by 1227
Abstract
Background/Objectives: This systematic review evaluates unconventional mammalian models from wild, agricultural, and urban/domestic ecosystems for genotoxicity assessment under the One Health framework. Non-human primates (NHPs), cattle, and domestic dogs are analyzed as sentinel species due to their distinct environmental niches, unique human interactions, [...] Read more.
Background/Objectives: This systematic review evaluates unconventional mammalian models from wild, agricultural, and urban/domestic ecosystems for genotoxicity assessment under the One Health framework. Non-human primates (NHPs), cattle, and domestic dogs are analyzed as sentinel species due to their distinct environmental niches, unique human interactions, and species-specific traits. In conjunction with this, evidence is presented about the in vitro use of cells of these mammals for the genotoxicological evaluation of different chemical substances, such as veterinary drugs, environmental pollutants, and pesticides. The synthesis focuses on standardized genetic toxicology assays (e.g., chromosomal aberrations, micronucleus, comet assay) aligned with Organization for Economic Cooperation and Development (OECD) guidelines. Methods: A structured search of international literature identified studies employing OECD-compliant genotoxicity assays in NHPs, cattle, dogs, and others not listed in OECD. Data was categorized by species, assay type, chemical class evaluated, environmental context (wild, agricultural, urban), and merits of the papers. Results: NHPs, despite their phylogenetic proximity to humans, show limited genotoxicity data in contrast to biomedical research, which has been constrained by ethical concerns and fieldwork logistics. Cattle emerge as robust models in agricultural settings due to the abundance of studies on the genotoxic capacity of pesticides, veterinary drug, and environmental biomonitoring, with direct implications for food safety. Domestic dogs are recognized as powerful sentinels for human health due to shared exposomes, physiological similarities (e.g., shorter cancer latency), and reduced lifestyle confounders; however, genotoxicity studies in dogs remain sparse compared to chemical exposure monitoring or cancer research. Conclusions: This review advocates for expanded, integrated use of these models to address genotoxic threats across ecosystems, which would benefit both animal and human health. In the application of biomonitoring studies with sentinel animals, a critical gap persists: the frequent lack of integration between xenobiotic quantification in environmental and biological samples, along with genotoxicity biomarkers evaluation in sentinel populations, which hinders comprehensive environmental risk assessment. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Graphical abstract

31 pages, 398 KiB  
Review
Encephalomyocarditis Virus in Non-Domesticated Species
by Remco A. Nederlof, Bon-sang Koo, Cecilia Sierra Arqueros, Leonor Natividad Camacho Sillero, Francis Vercammen and Jaco Bakker
Pathogens 2025, 14(4), 397; https://doi.org/10.3390/pathogens14040397 - 20 Apr 2025
Cited by 1 | Viewed by 732
Abstract
Encephalomyocarditis virus (EMCV) causes sporadic and epizootic outbreaks among various domesticated and non-domesticated animal species worldwide. Although outbreaks are mostly reported in domestic pigs, mortality is reported in elephants, ungulates, nonhuman primates (NHPs), and rodents. Rats of the genus Rattus serve as primary [...] Read more.
Encephalomyocarditis virus (EMCV) causes sporadic and epizootic outbreaks among various domesticated and non-domesticated animal species worldwide. Although outbreaks are mostly reported in domestic pigs, mortality is reported in elephants, ungulates, nonhuman primates (NHPs), and rodents. Rats of the genus Rattus serve as primary reservoirs and vectors, but alternative infection routes have been proposed. Clinical disease is characterized by acute heart failure in most taxonomic groups, often culminating in rapid death. Due to the rapid progression of the disease, diagnostic confirmation is most commonly obtained postmortem. Pathological examination reveals interstitial lymphohistiocytic myocarditis and multiorgan congestion in most cases. EMCV is often demonstrated with RT-PCR or virus isolation techniques, but other methods, e.g., serology and immunohistochemistry, are available. The rapid progression of EMCV precludes effective therapeutic intervention, though agents such as interferon, verapamil, and curcumol have shown potential efficacy. Preventative strategies are crucial, emphasizing biosecurity measures to mitigate rodent contamination of feed and water. Inactivated vaccines have demonstrated protective efficacy in experimental models involving mice, pigs, and elephants, with analogous immunogenic responses observed in various zoological species. Live attenuated vaccines have conferred protection in pigs and NHPs, albeit with variable seroconversion rates in different species. Full article
(This article belongs to the Special Issue Current Challenges in Veterinary Virology)
17 pages, 2608 KiB  
Article
Inactivated Viral Vaccine BBV87 Protects Against Chikungunya Virus Challenge in a Non-Human Primate Model
by Sarah L. Kempster, Deborah Ferguson, Claire Ham, Joanna Hall, Adrian Jenkins, Elaine Giles, Simon L. Priestnall, Alejandro Suarez-Bonnet, Pierre Roques, Roger Le Grand, Sumathy Kandaswamy, Sushant Sahastrabuddhe, Libia Milena Hernandez, Sunee Chuasuwan, Hyeon Seon Ahn, Deok Ryun Kim, Anh Wartel, Raphaël M. Zellweger, Neil Berry and Neil Almond
Viruses 2025, 17(4), 550; https://doi.org/10.3390/v17040550 - 10 Apr 2025
Viewed by 831
Abstract
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that poses a threat to global public health and for which there is an urgent need for widespread access to globally licensed vaccines. Here, we demonstrate that an inactivated CHIKV vaccine (BBV87) protects against [...] Read more.
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitos that poses a threat to global public health and for which there is an urgent need for widespread access to globally licensed vaccines. Here, we demonstrate that an inactivated CHIKV vaccine (BBV87) protects against systemic infection with CHIKV in a non-human primate (NHP) challenge model. Groups of five cynomolgus macaques received two doses of 20 µg BBV87 vaccine or saline alone (28 days apart). Twenty-eight days after the second immunisation, all animals were challenged with CHIKV. All controls were productively infected with detectable viremia and pathological responses following challenge, including altered thermoregulation, haematological and cytokine changes. Critically, the histopathological analysis of finger joints identified areas of inflammation in the synovium. By contrast vaccinated macaques had no detectable viremia and none of the pathological changes were reported in control animals. This study demonstrates that a 20 µg dose of BBV87 vaccine confers robust protection in vivo, both on the acquisition of infection and pathology. Full article
(This article belongs to the Special Issue Antiviral Development for Emerging and Re-Emerging Viruses)
Show Figures

Figure 1

24 pages, 919 KiB  
Review
Yellow Fever in Non-Human Primates: A Veterinary Guide from a One Health Perspective
by Remco A. Nederlof, Tommaso Virgilio, Hendrickus J. J. Stemkens, Luiz C. C. Pereira da Silva, Daniela R. Montagna, Abdussamad M. Abdussamad, John Chipangura and Jaco Bakker
Vet. Sci. 2025, 12(4), 339; https://doi.org/10.3390/vetsci12040339 - 6 Apr 2025
Cited by 1 | Viewed by 2154
Abstract
Yellow fever (YF) causes severe morbidity and mortality in Africa and South America. It is an arthropod-borne viral disease endemic to tropical regions of Africa and South America. Yellow fever virus (YFV) is transmitted by mosquitoes and frequently affects both non-human primates (NHPs) [...] Read more.
Yellow fever (YF) causes severe morbidity and mortality in Africa and South America. It is an arthropod-borne viral disease endemic to tropical regions of Africa and South America. Yellow fever virus (YFV) is transmitted by mosquitoes and frequently affects both non-human primates (NHPs) and humans. Neotropical primates (NTPs) are generally more severely afflicted by YFV than African primates. Asian primates appear not to be susceptible to this disease. Susceptibility varies among NTP species: asymptomatic infections are described in some NTP species, whereas severe epizootic mortality events are described in others. The genus Alouatta (howler monkeys) is considered to be the most susceptible among the NTPs. Epizootic events resulting in the death of thousands of NTPs have been recorded in recent history. As a result, YFV poses a threat to the survival of some NTP species. In most cases, NTPs are found dead without showing prior clinical signs. In cases where clinical signs are observed, they are mostly non-specific. Due to their high susceptibility, epizootic events in NTPs are used as epidemiological predictors for human YF outbreaks. YFV infection may be diagnosed by means of virus isolation, reverse transcription polymerase chain reaction, serology, histopathology, or immunohistochemistry. Animals that survive the disease develop neutralizing antibodies to YFV. Currently, no specific treatment is available. Sustained YF control strategies must rely on surveillance and accurate diagnostics to allow for early detection of outbreaks and rapid implementation of control measures. Prophylaxis should be based on a One Health perspective that recognizes the intricate interplay between human health, primate health, and the environment. Vaccines for YF are available, with the human 17DD vaccine effectively preventing disease in primates. However, mitigation strategies continue to rely more and more on vector control, preferably using eco-friendly methods. Climate change and human activities, and their impact on local ecology, are assumed to increase the risk of YF transmission in the next decades. Full article
Show Figures

Figure 1

14 pages, 1103 KiB  
Article
One Health Surveillance for SARS-CoV-2 in Non-Human Primates and Small Mammals in Minas Gerais, Brazil
by Pedro Augusto Almeida-Souza, Thamires Gabriele Macedo Silva, Gabriele Barbosa Penha, Thaynara de Jesus Teixeira, Ramon Oliveira-Silva, Iago Alves Celestino, Maria Eduarda Gonçalves-dos-Santos, Cirilo Henrique de Oliveira, Alice dos Santos Nunes Ferreira, Emerson Márcio Gusmão, Vinícius de Oliveira Ottone, Danilo Simonini-Teixeira, Fabrício Souza Campos, Paulo Michel Roehe, Leonardo Camilo de Oliveira, Mauro Martins Teixeira, Filipe Vieira Santos de Abreu and Danilo Bretas de Oliveira
Pathogens 2025, 14(4), 356; https://doi.org/10.3390/pathogens14040356 - 6 Apr 2025
Viewed by 1332
Abstract
Although the SARS-CoV-2 pandemic primarily affected the human population, the virus has also been detected in various animal species worldwide, raising concerns about its potential to establish new animal reservoirs. This study aimed to investigate the presence of SARS-CoV-2 in non-human primates (NHPs) [...] Read more.
Although the SARS-CoV-2 pandemic primarily affected the human population, the virus has also been detected in various animal species worldwide, raising concerns about its potential to establish new animal reservoirs. This study aimed to investigate the presence of SARS-CoV-2 in non-human primates (NHPs) and synanthropic small mammals (SSMs) in the Jequitinhonha Valley and Northern Minas Gerais, Brazil. Between October 2021 and October 2023, 119 animals were sampled, 82 NHPs and 37 SSMs, across 22 municipalities. A total of 342 biological samples—including oral and nasal swabs, lungs, livers, spleens, blood, and feces—were collected and analyzed using RT-qPCR, while 37 serum samples were submitted to neutralization tests. Despite the diversity of sampled species, habitats, and biological materials, no evidence of SARS-CoV-2 infection or specific antibodies was detected in any of the individuals tested. The results suggest that NHPs and SSMs in these regions did not act as reservoirs for SARS-CoV-2 during the study period. This finding is particularly relevant given the high synanthropy of species such as Callithrix penicillata (black-tufted marmoset) and Rattus rattus (black rat), which frequently interact with human populations. Our study underscores the importance of integrating animal, human, and environmental health perspectives under a One Health framework to monitor emerging zoonotic threats. By providing baseline data on SARS-CoV-2 dynamics in wildlife, we emphasize the need for ongoing ecological and epidemiological surveillance to assess potential spillover events and their implications for biodiversity and public health in Brazil. Full article
(This article belongs to the Special Issue Epidemiology of Infectious Diseases in Wild Animals)
Show Figures

Figure 1

Back to TopTop