Development of a System to Deliver Inhalational Antibiotics to Marmosets
Abstract
:1. Introduction
2. Results
2.1. Establishment of the Marmoset Inhalational Therapy System (MITS)
2.2. Establishing a Novel Anaesthetic Protocol for Marmosets
2.3. Characterisation of Aerosolised Apulmiq in the Lungs of Marmosets
2.4. Pharmacokinetics of Apulmiq in the Plasma and Lungs of Marmosets
2.5. Phenotype Characterisation of Alveolar Macrophages in the Lungs of Marmosets Following Aerosolisation of Apulmiq
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Administration of Sedation
4.3. Inhalational Delivery of Antibiotics
4.4. Antibiotic
4.5. Determination of the Pharmacokinetics of Apulmiq in the Plasma and Lungs of Marmosets
4.6. Immunology
4.7. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Crown copyright (2024)
References
- Elborn, J.S.; Francesco, B.; Pierre-Régis, B.; Daniel, P. Role of inhaled antibiotics in the era of highly effective CFTR modulators. Eur. Respir. Rev. 2023, 32, 220154. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.E.; Eagle, G.; Thomson, R.; Aksamit, T.R.; Hasegawa, N.; Morimoto, K.; Addrizzo-Harris, D.J.; O’Donnell, A.E.; Marras, T.K.; Flume, P.A.; et al. Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study. Am. J. Respir. Crit Care Med. 2018, 198, 1559–1569. [Google Scholar] [CrossRef]
- Hay, A.D.; Bolhuis, A.; Huntley, A.L.; Jones, M.D. Inhaled antibiotics for acute lower respiratory tract infections in primary care: A hypothesis. Lancet Respir. Med. 2022, 10, 731–732. [Google Scholar] [CrossRef] [PubMed]
- Cipolla, D.; Blanchard, J.; Gonda, I. Development of Liposomal Ciprofloxacin to Treat Lung Infections. Pharmaceutics 2016, 8, 6. [Google Scholar] [CrossRef]
- Hamblin, K.A.; Armstrong, S.J.; Barnes, K.B.; Davies, C.; Laws, T.; Blanchard, J.D.; Harding, S.V.; Atkins, H.S. Inhaled Liposomal Ciprofloxacin Protects against a Lethal Infection in a Murine Model of Pneumonic Plague. Front. Microbiol. 2017, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Gomez, A.; Hosseinidoust, Z. Liposomes for Antibiotic Encapsulation and Delivery. ACS Infect Dis 2020, 6, 896–908. [Google Scholar] [CrossRef]
- Liao, W.-C.; Wang, C.-H.; Sun, T.-H.; Su, Y.-C.; Chen, C.-H.; Chang, W.-T.; Chen, P.-L.; Shiue, Y.-L. The Antimicrobial Effects of Colistin Encapsulated in Chelating Complex Micelles for the Treatment of Multi-Drug-Resistant Gram-Negative Bacteria: A Pharmacokinetic Study. Antibiotics 2023, 12, 836. [Google Scholar] [CrossRef]
- Medicines and Healthcare Products Regulatory Agency. Fluoroquinolone Antibiotics: Must Now Only Be Prescribed When Other Commonly Recommended Antibiotics Are Inappropriate. Available online: https://www.gov.uk/drug-safety-update/fluoroquinolone-antibiotics-must-now-only-be-prescribed-when-other-commonly-recommended-antibiotics-are-inappropriate#:~:text=The%20MHRA%20has%20now%20taken,commonly%20recommended%20antibiotics%20are%20inappropriate. (accessed on 25 April 2024).
- Dolovich, M.B.; Dhand, R. Aerosol drug delivery: Developments in device design and clinical use. Lancet 2011, 377, 1032–1045. [Google Scholar] [CrossRef]
- Geller, D.E.; Rosenfeld, M.; Waltz, D.A.; Wilmott, R.W. Efficiency of pulmonary administration of tobramycin solution for inhalation in cystic fibrosis using an improved drug delivery system. Chest 2003, 123, 28–36. [Google Scholar] [CrossRef]
- Retsch-Bogart, G.Z.; Burns, J.L.; Otto, K.L.; Liou, T.G.; McCoy, K.; Oermann, C.; Gibson, R.L. A phase 2 study of aztreonam lysine for inhalation to treat patients with cystic fibrosis and Pseudomonas aeruginosa infection. Pediatr. Pulmonol. 2008, 43, 47–58. [Google Scholar] [CrossRef]
- Schwarz, C.; Procaccianti, C.; Costa, L.; Brini, R.; Friend, R.; Caivano, G.; Sadafi, H.; Mussche, C.; Schwenck, N.; Hahn, M.; et al. Differential Performance and Lung Deposition of Levofloxacin with Different Nebulisers Used in Cystic Fibrosis. Int. J. Mol. Sci. 2022, 23, 9597. [Google Scholar] [CrossRef] [PubMed]
- Boisson, M.; Jacobs, M.; Grégoire, N.; Gobin, P.; Marchand, S.; Couet, W.; Mimoz, O. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients. Antimicrob. Agents Chemother. 2014, 58, 7331–7339. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.S.; Bilton, D.; Chalmers, J.D.; Davis, A.M.; Froehlich, J.; Gonda, I.; Thompson, B.; Wanner, A.; O’Donnell, A.E. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): Two phase 3, randomised controlled trials. Lancet Respir. Med. 2019, 7, 213–226. [Google Scholar] [CrossRef]
- Nelson, M.; Nunez, A.; Ngugi, S.A.; Sinclair, A.; Atkins, T.P. Characterization of lesion formation in marmosets following inhalational challenge with different strains of Burkholderia pseudomallei. Int. J. Exp. Pathol. 2015, 96, 414–426. [Google Scholar] [CrossRef]
- Nelson, M.; Salguero, F.J.; Hunter, L.; Atkins, T.P. A Novel Marmoset (Callithrix jacchus) Model of Human Inhalational Q Fever. Front. Cell. Infect. Microbiol. 2021, 10, 621635. [Google Scholar] [CrossRef]
- Bertrand, H.G.; Ellen, Y.C.; O’Keefe, S.; Flecknell, P.A. Comparison of the effects of ketamine and fentanyl-midazolam-medetomidine for sedation of rhesus macaques (Macaca mulatta). BMC Vet. Res. 2016, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, K.A.; Armstrong, S.J.; Barnes, K.B.; Davies, C.; Wong, J.P.; Blanchard, J.D.; Harding, S.V.; Simpson, A.J.; Atkins, H.S. Liposome encapsulation of ciprofloxacin improves protection against highly virulent Francisella tularensis strain Schu S4. Antimicrob. Agents Chemother. 2014, 58, 3053–3059. [Google Scholar] [CrossRef]
- Palmer, L.B.; Smaldone, G.C.; Chen, J.J.; Baram, D.; Duan, T.; Monteforte, M.; Varela, M.; Tempone, A.K.; O’Riordan, T.; Daroowalla, F.; et al. Aerosolized antibiotics and ventilator-associated tracheobronchitis in the intensive care unit. Crit. Care Med. 2008, 36, 2008–2013. [Google Scholar] [CrossRef]
- Szychowiak, P.; Desgrouas, M.; Ehrmann, S. Inhaled antibiotics in critical care: State of the art and future perspectives. Infect. Dis. Now 2022, 52, 327–333. [Google Scholar] [CrossRef]
- Ireland, R.E.; Davies, C.D.; Keyser, E.; Findlay, J.S.F.; Eastaugh, L.; Laws, T.R.; Salguero, F.J.; Hunter, L.; Nelson, M. Histopathological and Immunological Findings in the Common Marmoset Following Exposure to Aerosolized SARS-CoV-2. Viruses 2022, 14, 1580. [Google Scholar] [CrossRef]
- Vermillion, M.S.; Murakami, E.; Ma, B.; Pitts, J.; Tomkinson, A.; Rautiola, D.; Babusis, D.; Irshad, H.; Seigel, D.; Kim, C.; et al. Inhaled remdesivir reduces viral burden in a nonhuman primate model of SARS-CoV-2 infection. Sci. Transl. Med. 2022, 14, eabl8282. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.J.; Irshad, H.; Chand, R.; Kuehl, P.J. Deposition of Aerosolized Lucinactant in Nonhuman Primates. J. Aerosol. Med. Pulm. Drug Deliv. 2020, 33, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Le Pennec, D.; Le Guellec, S.; Pardessus, J.; Ehrmann, S.; MacLoughlin, R.; Heuzé-Vourc’h, N.; Vecellio, L. Influence of mesh nebulizer characteristics on aerosol delivery in non-human primates. Eur. J. Pharm. Sci. 2023, 191, 106606. [Google Scholar] [CrossRef]
- Rottier, B.L.; van Erp, C.J.; Sluyter, T.S.; Heijerman, H.G.; Frijlink, H.W.; Boer, A.H. Changes in performance of the Pari eFlow rapid and Pari LC Plus during 6 months use by CF patients. J. Aerosol. Med. Pulm. Drug Deliv. 2009, 22, 263–269. [Google Scholar] [CrossRef]
- Coates, A.L.; Green, M.; Leung, K.; Chan, J.; Ribeiro, N.; Ratjen, F.; Charron, M. A comparison of amount and speed of deposition between the PARI LC STAR® jet nebulizer and an investigational eFlow® nebulizer. J. Aerosol. Med. Pulm. Drug. Deliv. 2011, 24, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Pham, S.; Ferguson, G.T.; Kerwin, E.; Goodin, T.; Wheeler, A.; Bauer, A. In Vitro Characterization of the eFlow Closed System Nebulizer with Glycopyrrolate Inhalation Solution. J. Aerosol. Med. Pulm. Drug. Deliv. 2018, 31, 162–169. [Google Scholar] [CrossRef]
- Köbrich, R.; Rudolf, G.; Stahlhofen, W. A Mathematical Model of Mass Deposition in Man. Ann. Occup. Hyg. 1994, 38, 15–23. [Google Scholar] [CrossRef]
- Wright, D.H.; Brown, G.H.; Peterson, M.L.; Rotschafer, J.C. Application of fluoroquinolone pharmacodynamics. J. Antimicrob. Chemother. 2000, 46, 669–683. [Google Scholar] [CrossRef]
- Nelson, M.; Stagg, A.J.; Stevens, D.J.; Brown, M.A.; Pearce, P.C.; Simpson, A.J.; Lever, M.S. Post-exposure therapy of inhalational anthrax in the common marmoset. Int. J. Antimicrob. Agents 2011, 38, 60–64. [Google Scholar] [CrossRef]
- Justo, J.A.; Danziger, L.H.; Gotfried, M.H. Efficacy of inhaled ciprofloxacin in the management of non-cystic fibrosis bronchiectasis. Ther. Adv. Respir. Dis. 2013, 7, 272–287. [Google Scholar] [CrossRef]
- Swenson, C.E.; Stewart, K.A.; Hammett, J.L.; Fitzsimmons, W.E.; Ginsberg, R.S. Pharmacokinetics and in vivo activity of liposome-encapsulated gentamicin. Antimicrob. Agents Chemother. 1990, 34, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A.; Shalit, I. Immunomodulatory effects of quinolones. Lancet Infect. Dis. 2003, 3, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.P.; Schnell, G.; Simpson, M.; Saravolac, E. Effects of liposome-encapsulated ciprofloxacin on phagocytosis, nitric oxide and intracellular killing of Staphylcoccus aureus by murine macrophages. Artif. Cells Blood Substit. Immobil. Biotechnol. 2000, 28, 415–428. [Google Scholar] [CrossRef] [PubMed]
Species | Lung Dose (mg/kg) | Plasma | Lung Homogenates | ||||||
---|---|---|---|---|---|---|---|---|---|
Cmax (μg/mL) | Tmax (h) | AUC (μg·h/mL) | T1/2 (h) | Cmax (μg/mL) | Tmax (h) | AUC (μg·h/mL) | T1/2 (h) | ||
1 Marmoset (60 min) | 1.94 | 1.05 | 2 | 6.20 | 6.03 | 226.5 | 1 | 1654 | 5.6 |
2 Marmoset (30 min) | 0.80 | 0.43 | 2 | 2.51 | 6.03 | 93.4 | 1 | 682 | 5.6 |
3 Human | 0.57 | 0.195 | 1.645 | 2.03 ± 1.90 | 9.22 ± 1.16 | ND | ND | ND | ND |
4 Mouse (30 min) | 0.86 | 0.40 | 0.06 | 1.76 | 3 | 100.8 | 0.02 | 710 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ireland, R.E.; Armstrong, S.J.; Davies, C.; Blanchard, J.D.; Dayton, F.; Gonda, I.; Harding, S.V.; Nelson, M. Development of a System to Deliver Inhalational Antibiotics to Marmosets. Antibiotics 2025, 14, 554. https://doi.org/10.3390/antibiotics14060554
Ireland RE, Armstrong SJ, Davies C, Blanchard JD, Dayton F, Gonda I, Harding SV, Nelson M. Development of a System to Deliver Inhalational Antibiotics to Marmosets. Antibiotics. 2025; 14(6):554. https://doi.org/10.3390/antibiotics14060554
Chicago/Turabian StyleIreland, Rachel E., Stuart J. Armstrong, Carwyn Davies, James D. Blanchard, Francis Dayton, Igor Gonda, Sarah V. Harding, and Michelle Nelson. 2025. "Development of a System to Deliver Inhalational Antibiotics to Marmosets" Antibiotics 14, no. 6: 554. https://doi.org/10.3390/antibiotics14060554
APA StyleIreland, R. E., Armstrong, S. J., Davies, C., Blanchard, J. D., Dayton, F., Gonda, I., Harding, S. V., & Nelson, M. (2025). Development of a System to Deliver Inhalational Antibiotics to Marmosets. Antibiotics, 14(6), 554. https://doi.org/10.3390/antibiotics14060554