Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = NDDI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6962 KiB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 192
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

17 pages, 6068 KiB  
Article
Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan
by Youg-Sin Cheng, Jiay-Rong Lu and Hsin-Fu Yeh
Environments 2024, 11(11), 233; https://doi.org/10.3390/environments11110233 - 24 Oct 2024
Cited by 1 | Viewed by 1200
Abstract
In recent years, increasing drought events due to climate change have led to water scarcity issues in Taiwan, severely impacting the economy and ecosystems. Understanding drought is crucial. This study used Landsat 8 satellite imagery, rainfall, and temperature data to calculate four drought [...] Read more.
In recent years, increasing drought events due to climate change have led to water scarcity issues in Taiwan, severely impacting the economy and ecosystems. Understanding drought is crucial. This study used Landsat 8 satellite imagery, rainfall, and temperature data to calculate four drought indices, including the Temperature Vegetation Dryness Index (TVDI), improved Temperature Vegetation Dryness Index (iTVDI), Normalized Difference Drought Index (NDDI), and Standardized Precipitation Index (SPI), to investigate spatiotemporal drought variations in the Choushui River Alluvial Fan over the past decade. The findings revealed differences between TVDI and iTVDI in mountainous areas, with iTVDI showing higher accuracy based on soil moisture data. Correlation analysis indicated that drought severity increased with decreasing rainfall or vegetation. The study highlights the significant role of vegetation and precipitation in influencing drought conditions, providing valuable insights for water resource management. Full article
Show Figures

Figure 1

22 pages, 4548 KiB  
Article
MODIS Evapotranspiration Forecasting Using ARIMA and ANN Approach at a Water-Stressed Irrigation Scheme in South Africa
by Mbulelo Phesa, Nkanyiso Mbatha and Akinola Ikudayisi
Hydrology 2024, 11(10), 176; https://doi.org/10.3390/hydrology11100176 - 21 Oct 2024
Cited by 1 | Viewed by 1591
Abstract
The forecasting of evapotranspiration (ET) in some water-stressed regions remains a major challenge due to the lack of reliable and sufficient historical datasets. For efficient water balance, ET remains the major component and its proper forecasting and quantifying is of the utmost importance. [...] Read more.
The forecasting of evapotranspiration (ET) in some water-stressed regions remains a major challenge due to the lack of reliable and sufficient historical datasets. For efficient water balance, ET remains the major component and its proper forecasting and quantifying is of the utmost importance. This study utilises the 18-year (2001 to 2018) MODIS ET obtained from a drought-affected irrigation scheme in the Eastern Cape Province of South Africa. This study conducts a teleconnection evaluation between the satellite-derived evapotranspiration (ET) time series and other related remotely sensed parameters such as the Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI), Normalised Difference Drought Index (NDDI), and precipitation (P). This comparative analysis was performed by adopting the Mann–Kendall (MK) test, Sequential Mann–Kendall (SQ-MK) test, and Multiple Linear Regression methods. Additionally, the ET detailed time-series analysis with the Keiskamma River streamflow (SF) and monthly volumes of the Sandile Dam, which are water supply sources close to the study area, was performed using the Wavelet Analysis, Breaks for Additive Seasonal and Trend (BFAST), Theil–Sen statistic, and Correlation statistics. The MODIS-obtained ET was then forecasted using the Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANNs) for a period of 5 years and four modelling performance evaluations such as the Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and the Pearson Correlation Coefficient (R) were used to evaluate the model performances. The results of this study proved that ET could be forecasted using these two time-series modeling tools; however, the ARIMA modelling technique achieved lesser values according to the four statistical modelling techniques employed with the RMSE for the ARIMA = 37.58, over the ANN = 44.18; the MAE for the ARIMA = 32.37, over the ANN = 35.88; the MAPE for the ARIMA = 17.26, over the ANN = 24.26; and for the R ARIMA = 0.94 with the ANN = 0.86. These results are interesting as they give hope to water managers at the irrigation scheme and equally serve as a tool to effectively manage the irrigation scheme. Full article
Show Figures

Figure 1

19 pages, 5394 KiB  
Article
Examining the Sensitivity of Satellite-Derived Vegetation Indices to Plant Drought Stress in Grasslands in Poland
by Maciej Bartold, Konrad Wróblewski, Marcin Kluczek, Katarzyna Dąbrowska-Zielińska and Piotr Goliński
Plants 2024, 13(16), 2319; https://doi.org/10.3390/plants13162319 - 20 Aug 2024
Cited by 11 | Viewed by 2277
Abstract
In this study, the emphasis is on assessing how satellite-derived vegetation indices respond to drought stress characterized by meteorological observations. This study aimed to understand the dynamics of grassland vegetation and assess the impact of drought in the Wielkopolskie (PL41) and Podlaskie (PL84) [...] Read more.
In this study, the emphasis is on assessing how satellite-derived vegetation indices respond to drought stress characterized by meteorological observations. This study aimed to understand the dynamics of grassland vegetation and assess the impact of drought in the Wielkopolskie (PL41) and Podlaskie (PL84) regions of Poland. Spatial and temporal characteristics of grassland dynamics regarding drought occurrences from 2020 to 2023 were examined. Pearson correlation coefficients with standard errors were used to analyze vegetation indices, including NDVI, NDII, NDWI, and NDDI, in response to drought, characterized by the meteorological parameter the Hydrothermal Coefficient of Selyaninov (HTC), along with ground-based soil moisture measurements (SM). Among the vegetation indices studied, NDDI showed the strongest correlations with HTC at r = −0.75, R2 = 0.56, RMSE = 1.58, and SM at r = −0.82, R2 = 0.67, and RMSE = 16.33. The results indicated drought severity in 2023 within grassland fields in Wielkopolskie. Spatial–temporal analysis of NDDI revealed that approximately 50% of fields were at risk of drought during the initial decades of the growing season in 2023. Drought conditions intensified, notably in western Poland, while grasslands in northeastern Poland showed resilience to drought. These findings provide valuable insights for individual farmers through web and mobile applications, assisting in the development of strategies to mitigate the adverse effects of drought on grasslands and thereby reduce associated losses. Full article
Show Figures

Figure 1

20 pages, 4710 KiB  
Article
Assessing the Spatial–Temporal Pattern of Spring Maize Drought in Northeast China Using an Optimised Remote Sensing Index
by Yihao Wang, Yongfeng Wu, Lin Ji, Jinshui Zhang and Linghua Meng
Remote Sens. 2023, 15(17), 4171; https://doi.org/10.3390/rs15174171 - 25 Aug 2023
Cited by 2 | Viewed by 2132
Abstract
Northeast China plays a pivotal role in producing commodity grains. The precipitation and temperature distribution during the growth season is impacted by geographical and climate factors, rendering the region vulnerable to drought. However, relying on a single index does not reflect the severity [...] Read more.
Northeast China plays a pivotal role in producing commodity grains. The precipitation and temperature distribution during the growth season is impacted by geographical and climate factors, rendering the region vulnerable to drought. However, relying on a single index does not reflect the severity and extent of drought in different regions. This research utilised the random forest (RF) model for screening remote sensing indices. Relative soil moisture (RSM) was employed to compare seven commonly used indices: the temperature vegetation dryness index (TVDI), vegetation supply water index (VSWI), vegetation condition index (VCI), temperature condition index (TCI), vegetation health index (VHI), multi-band drought index (MBDI), and normalised difference drought index (NDDI). The effectiveness of these indices for monitoring drought during different developmental stages of spring maize was evaluated. Trend rates were employed to investigate the temporal changes in drought patterns of spring maize from 2003 to 2020, and the Sen + Mann–Kendall test was used to analyse spatial variations. The results showed the following: (1) The seven remote sensing indices could accurately track drought during critical growth stages with the TVDI demonstrating higher applicability than the other six indices. (2) The application periods of two TVDIs with different parameters differed for the drought monitoring of spring maize in different developmental periods. The consistency and accuracy of the normalised difference vegetation index (NDVI)-based TVDI (TVDIN) were 5.77% and 34.62% higher than those of the enhanced vegetation index (EVI)-based TVDI (TVDIE), respectively, in the early stage. In contrast, the TVDIE exhibited 13.46% higher consistency than the TVDIN in the middle stage, and the accuracy was the same. During the later stage, the TVDIE showed significantly higher consistency and accuracy than the TVDIN with consistency increases of 9.61% and 38.64%, respectively. (3) The drought trend in northeast China increased from 2003 to 2020, exhibiting severe spring drought and a weakening of the drought in summer. The southern, southwestern, and northwestern parts of northeast China showed an upward drought trend; the drought-affected areas accounted for 37.91% of the study area. This paper identified the most suitable remote sensing indices for monitoring drought in different developmental stages of spring maize. The results provide a comprehensive understanding of the spatial–temporal patterns of drought during the past 18 years. These findings can be used to develop a dynamic agricultural drought monitoring model to ensure food security. Full article
(This article belongs to the Special Issue Remote Sensing for Soil Moisture and Vegetation Parameters Retrieval)
Show Figures

Figure 1

17 pages, 18972 KiB  
Article
Analysis of Dust Detection Algorithms Based on FY-4A Satellite Data
by Lu Yang, Lu She, Yahui Che, Xingwei He, Chen Yang and Zixian Feng
Appl. Sci. 2023, 13(3), 1365; https://doi.org/10.3390/app13031365 - 19 Jan 2023
Cited by 7 | Viewed by 3365
Abstract
Dust detection is essential for environmental protection, climate change assessment, and human health issues. Based on the Fengyun-4A (FY-4A)/Advance Geostationary Radiation Imager (AGRI) images, this paper aimed to examine the performances of two classic dust detection algorithms (i.e., the brightness temperature difference (BTD) [...] Read more.
Dust detection is essential for environmental protection, climate change assessment, and human health issues. Based on the Fengyun-4A (FY-4A)/Advance Geostationary Radiation Imager (AGRI) images, this paper aimed to examine the performances of two classic dust detection algorithms (i.e., the brightness temperature difference (BTD) and normalized difference dust index (NDDI) thresholding algorithms) as well as two dust products (i.e., the infrared differential dust index (IDDI) and Dust Score products (DST) developed by the China Meteorological Administration). Results show that a threshold below −0.4 for BTD (11–12 µm) is appropriate for dust identification over China and that there is no fixed threshold for NDDI due to its limitations in distinguishing dust from bare ground. The IDDI and DST products presented similar results, where they are capable of detecting dust over all study areas only for daytime. A validation of these four dust detection algorithms has also been conducted with ground-based particulate matter (PM10) concentration measurements for the spring (March to May) of 2021. Results show that the average probability of correct detection (POCD) for BTD, NDDI, IDDI, and DST were 56.15%, 39.39%, 48.22%, and 46.75%, respectively. Overall, BTD performed the best on dust detection over China with its relative higher accuracy followed by IDDI and DST in the spring of 2021. A single threshold for NDDI led to a lower accuracy than those for others. Additionally, we integrated the BTD and IDDI algorithms for verification. The POFD after integration was only 56.17%, and the fusion algorithm had certain advantages over the single algorithm verification. Full article
(This article belongs to the Special Issue Remote Sensing in Meteorology)
Show Figures

Figure 1

22 pages, 2755 KiB  
Article
Development of Spatial Model for Food Security Prediction Using Remote Sensing Data in West Java, Indonesia
by Riantini Virtriana, Akhmad Riqqi, Tania Septi Anggraini, Kamal Nur Fauzan, Kalingga Titon Nur Ihsan, Fatwa Cahya Mustika, Deni Suwardhi, Agung Budi Harto, Anjar Dimara Sakti, Albertus Deliar, Budhy Soeksmantono and Ketut Wikantika
ISPRS Int. J. Geo-Inf. 2022, 11(5), 284; https://doi.org/10.3390/ijgi11050284 - 28 Apr 2022
Cited by 19 | Viewed by 6190
Abstract
The food crisis is a problem that the world will face. The availability of growing areas that continues to decrease with the increase in food demand will result in a food crisis in the future. Good planning is needed to deal with future [...] Read more.
The food crisis is a problem that the world will face. The availability of growing areas that continues to decrease with the increase in food demand will result in a food crisis in the future. Good planning is needed to deal with future food crises. The absence of studies on the development of spatial models in estimating an area’s future food status has made planning for handling the food crisis suboptimal. This study aims to predict food security by integrating the availability of paddy fields with environmental factors to determine the food status in West Java Province. Food status modeling is done by integrating land cover, population, paddy fields productivity, and identifying the influence of environmental factors. The land cover prediction will be developed using the CA-Markov model. Meanwhile, to identify the influence of environmental factors, multivariable linear regression (MLR) was used with environmental factors from remote sensing observations. The data used are in the form of the NDDI (Normalized Difference Drought Index), NDVI (Normalized Difference Vegetation Index), land surface temperature (LST), soil moisture, precipitation, altitude, and slopes. The land cover prediction has an overall accuracy of up to 93%. From the food status in 2005, the flow of food energy in West Java was still able to cover the food needs and obtain an energy surplus of 6.103 Mcal. On the other hand, the prediction of the food energy flow from the food status in 2030 will not cover food needs and obtain an energy deficit of up to 13,996,292.42 Mcal. From the MLR results, seven environmental factors affect the productivity of paddy fields, with the determination coefficient reaching 50.6%. Thus, predicting the availability of paddy production will be more specific if it integrates environmental factors. With this study, it is hoped that it can be used as planning material for mitigating food crises in the future. Full article
Show Figures

Figure 1

22 pages, 14265 KiB  
Article
Drought Extent and Severity on Arable Lands in Romania Derived from Normalized Difference Drought Index (2001–2020)
by Radu-Vlad Dobri, Lucian Sfîcă, Vlad-Alexandru Amihăesei, Liviu Apostol and Simona Țîmpu
Remote Sens. 2021, 13(8), 1478; https://doi.org/10.3390/rs13081478 - 12 Apr 2021
Cited by 30 | Viewed by 5494
Abstract
The aim of this study was to evaluate the frequency and severity of drought over the arable lands of Romania using the Normalized Difference Drought Index (NDDI). This index was obtained from the Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensor of the Terra satellite. [...] Read more.
The aim of this study was to evaluate the frequency and severity of drought over the arable lands of Romania using the Normalized Difference Drought Index (NDDI). This index was obtained from the Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensor of the Terra satellite. The interval between March and September was investigated to study the drought occurrence from the early stage of crop growth to its harvest time. The study covered a long period (2001–2020), hence it is able to provide a sound climatological image of crop vegetation conditions. Corine Land Cover 2018 (CLC) was used to extract the arable land surfaces. According to this index, the driest year was 2003 with 25.6% of arable land affected by drought. On the contrary, the wettest year was 2016, with only 10.8% of arable land affected by drought. Regarding the multiannual average of the period 2001–2020, it can be seen that drought is not a phenomenon that occurs consistently each year, therefore only 11.7% of arable land was affected constantly by severe and extreme drought. The correlation between NDDI and precipitation amount was also investigated. Although the correlations at weekly or monthly levels are more complicated, the annual regional mean NDDI is overall negatively correlated with annual rainfall. Thus, from a climatic perspective, we consider that NDDI is a reliable and valuable tool for the assessment of droughts over the arable lands in Romania. Full article
(This article belongs to the Special Issue Temporal Resolution, a Key Factor in Environmental Risk Assessment)
Show Figures

Graphical abstract

27 pages, 5509 KiB  
Article
Differential Law and Influencing Factors of Groundwater Depth in the Key Agricultural and Pastoral Zones Driven by the Minimum Hydrological Response Unit
by Teng Niu, Jiaxin Yu, Depeng Yue, Qiang Yu, Yahui Hu, Qianqian Long, Song Li and Xueqing Mao
Appl. Sci. 2020, 10(20), 7105; https://doi.org/10.3390/app10207105 - 13 Oct 2020
Cited by 2 | Viewed by 2398
Abstract
The water cycle in the key agricultural and pastoral zones (KAPZs) is an important factor for maintaining the stability of the ecosystem. Groundwater collection and lateral seepage are indispensable parts of the water cycle, and it is difficult to monitor the groundwater situation [...] Read more.
The water cycle in the key agricultural and pastoral zones (KAPZs) is an important factor for maintaining the stability of the ecosystem. Groundwater collection and lateral seepage are indispensable parts of the water cycle, and it is difficult to monitor the groundwater situation in each area. The strength of the alternate circulation of groundwater is directly related to the utilization value and development prospects of groundwater; therefore, creating an effective method for the detection of groundwater burial depth has become an issue of increasing concern. In this paper, we attempt to create a method for the detection of groundwater burial depth that combines cokriging interpolation, spatial autocorrelation, geographically weighted regression, and other methods to construct a quantitative relationship between different land cover types and groundwater depth. By calculating the band index of the land cover type, the groundwater depthinformation of the unknown area can be obtained more accurately. Through collaborative kriging interpolation, normalized difference vegetation index (NDVI), precipitation, and hydrogeological conditions were used as covariates. The groundwater burial depth of Wengniute Banner in 2005, 2009, 2013, and 2017 was the response variable, and the groundwater burial depth in the study area was calculated. The groundwater burial depth data after the cokriging interpolation was used to transform the raster data into vector data in space using the improved hydrological response unit (HRU) model to make it more suitable for the actual groundwater confluence. Subsequently, 551 minimum response units (MHRUs) were obtained by division, and the spatial autocorrelation analysis was performed accordingly. The groundwater burial depth in the study area is spatially distinct from east to west, and the groundwater level shows a trend of being high in the west and low in the east, gradually increasing due to precipitation and rivers. The average change of groundwater depth in the time series is not significant, but it does gradually show a trend of accumulation. According to the aggregation characteristics of spatial autocorrelation analysis, a geographically weighted regression model of groundwater depth and NDVI, normalized difference drought index (NDDI), and net relatedness index (NRI) was established. The NDVI representing the forest land and the Adjusted R2 of the groundwater depth is 0.67. The NRI representing the cultivated land and the Adjusted R2 of the groundwater depth is 0.8675. The NDDI representing the bare land and the Adjusted R2 of the groundwater depth is 0.7875. It shows that the band index representing the ground type has a good fitting effect with the groundwater burial depth. Full article
(This article belongs to the Special Issue Advances in Geohydrology: Methods and Applications)
Show Figures

Graphical abstract

21 pages, 4668 KiB  
Article
Determination of Appropriate Remote Sensing Indices for Spring Wheat Yield Estimation in Mongolia
by Battsetseg Tuvdendorj, Bingfang Wu, Hongwei Zeng, Gantsetseg Batdelger and Lkhagvadorj Nanzad
Remote Sens. 2019, 11(21), 2568; https://doi.org/10.3390/rs11212568 - 1 Nov 2019
Cited by 54 | Viewed by 7833
Abstract
In Mongolia, the monitoring and estimation of spring wheat yield at the regional and national levels are key issues for the agricultural policy and food management as well as for the economy and society as a whole. The remote sensing data and technique [...] Read more.
In Mongolia, the monitoring and estimation of spring wheat yield at the regional and national levels are key issues for the agricultural policy and food management as well as for the economy and society as a whole. The remote sensing data and technique have been widely used for the estimation of crop yield and production in the world. For the current research, nine remote sensing indices were tested that include normalized difference drought index (NDDI), normalized difference water index (NDWI), vegetation condition index (VCI), temperature condition index (TCI), vegetation health index (VHI), normalized multi-band drought index (NMDI), visible and shortwave infrared drought index (VSDI), and vegetation supply water index (VSWI). These nine indices derived from MODIS/Terra satellite have so far not been used for crop yield prediction in Mongolia. The primary objective of this study was to determine the best remote sensing indices in order to develop an estimation model for spring wheat yield using correlation and regression method. The spring wheat yield data from the ground measurements of eight meteorological stations in Darkhan and Selenge provinces from 2000 to 2017 have been used. The data were collected during the period of the growing season (June–August). Based on the analysis, we constructed six models for spring wheat yield estimation. The results showed that the range of the root-mean-square error (RMSE) values of estimated spring wheat yield was between 4.1 (100 kg ha−1) to 4.8 (100 kg ha−1), respectively. The range of the mean absolute error (MAE) values was between 3.3 to 3.8 and the index of agreement (d) values was between 0.74 to 0.84, respectively. The conclusion was that the best model would be (R2 = 0.55) based on NDWI, VSDI, and NDVI out of the nine indices and could serve as the most effective predictor and reliable remote sensing indices for monitoring the spring wheat yield in the northern part of Mongolia. Our results showed that the best timing of yield prediction for spring wheat was around the end of June and the beginning of July, which is the flowering stage of spring wheat in this study area. This means an accurate yield prediction for spring wheat can be achieved two months before the harvest time using the regression model. Full article
(This article belongs to the Special Issue Remote Sensing in Agriculture: State-of-the-Art)
Show Figures

Graphical abstract

11 pages, 3462 KiB  
Article
Monitoring Dust Storms in Iraq Using Satellite Data
by Reyadh Albarakat and Venkataraman Lakshmi
Sensors 2019, 19(17), 3687; https://doi.org/10.3390/s19173687 - 24 Aug 2019
Cited by 23 | Viewed by 6535
Abstract
Dust storms can suspend large quantities of sand and cause haze in the boundary layer over local and regional scales. Iraq is one of the countries that is often impacted to a large degree by the occurrences of dust storms. The time between [...] Read more.
Dust storms can suspend large quantities of sand and cause haze in the boundary layer over local and regional scales. Iraq is one of the countries that is often impacted to a large degree by the occurrences of dust storms. The time between June 29 to July 8, 2009 is considered one of the worst dust storm periods of all times and many Iraq is suffered medical problems as a result. We used data from the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS Surface Reflectance Daily L2G Global 1 km and 500 m data were utilized to calculate the Normalized Difference Dust Index (NDDI). The MYD09GA V006 product was used to monitor, map, and assess the development and spread of dust storms over the arid and semi-arid territories of Iraq. We set thresholds for NDDI to distinguish between water and/or ice cloud and ground features and dust storms. In addition; brightness temperature data (TB) from the Aqua /MODIS thermal band 31 were analyzed to distinguish sand on the land surface from atmospheric dust. We used the MODIS level 2 MYD04 deep blue 550 nm Aerosol Option Depth (AOD) data that maintains accuracy even over bright desert surfaces. We found NDDI values lower than 0.05 represent clouds and water bodies, while NDDI greater than 0.18 correspond to dust storm regions. The threshold of TB of 310.5 K was used to distinguish aerosols from the sand on the ground. Approximately 75% of the territory was covered by a dust storm in 5 July 2009 due to strong and dry northwesterly winds. Full article
(This article belongs to the Special Issue Remote Sensing Image Processing and Analysis)
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Evaluating MODIS Dust-Detection Indices over the Arabian Peninsula
by Sarah Albugami, Steven Palmer, Jeroen Meersmans and Toby Waine
Remote Sens. 2018, 10(12), 1993; https://doi.org/10.3390/rs10121993 - 8 Dec 2018
Cited by 23 | Viewed by 6672
Abstract
Sand and dust storm events (SDEs), which result from strong surface winds in arid and semi-arid areas, exhibiting loose dry soil surfaces are detrimental to human health, agricultural land, infrastructure, and transport. The accurate detection of near-surface dust is crucial for quantifying the [...] Read more.
Sand and dust storm events (SDEs), which result from strong surface winds in arid and semi-arid areas, exhibiting loose dry soil surfaces are detrimental to human health, agricultural land, infrastructure, and transport. The accurate detection of near-surface dust is crucial for quantifying the spatial and temporal occurrence of SDEs globally. The Arabian Peninsula is an important source region for global dust due to the presence of extensive deserts. This paper evaluates the suitability of five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula: (a) Normalized Difference Dust Index (NDDI); (b) Brightness Temperature Difference (BTD) (31–32); (c) BTD (20–31); (d) Middle East Dust Index (MEDI) and (e) Reflective Solar Band (RSB). We derive detection thresholds for each index by comparing observed values for ‘dust-present’ versus ‘dust-free’ conditions, taking into account various land cover settings and analyzing associated temporal trends. Our results suggest that the BTD (31–32) method and the RSB index are the most suitable indices for detecting dust storms over different land-cover types across the Arabian Peninsula. The NDDI and BTD (20–31) methods have limitations in identifying dust over multiple land-cover types. Furthermore, the MEDI has been found to be unsuitable for detecting dust in the study area across all land-cover types. Full article
(This article belongs to the Special Issue Remote Sensing of Air Quality)
Show Figures

Graphical abstract

24 pages, 7333 KiB  
Article
Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam
by Tien Le Thuy Du, Duong Du Bui, Minh Duc Nguyen and Hyongki Lee
Water 2018, 10(5), 659; https://doi.org/10.3390/w10050659 - 18 May 2018
Cited by 70 | Viewed by 9313
Abstract
Characterization of droughts using satellite-based data and indices in a steep, highly dynamic tropical catchment, like Vu Gia Thu Bon, which is the most important basin in central Vietnam, has remained a challenge for many years. This study examined the six widely used [...] Read more.
Characterization of droughts using satellite-based data and indices in a steep, highly dynamic tropical catchment, like Vu Gia Thu Bon, which is the most important basin in central Vietnam, has remained a challenge for many years. This study examined the six widely used vegetation indices (VIs) to effectively monitor droughts that are based on their sensitivity with precipitation, soil moisture, and their linkage with the impacts on agricultural crop production and forest fires. Six VIs representing the four main groups, including greenness-based VIs (Vegetation Condition Index), water-based VIs (Normalized Difference Water Index, Land Surface Water Index), temperature-based VIs (Temperature Condition Index), and combined VIs (Vegetation Health Index, Normalized Difference Drought Index) were tested using MODIS data from January 2001 to December 2016 with the support of cloud-based Google Earth Engine computational platform. Results showed that droughts happened almost every year, but with different intensity. Vegetation stress was found to be mainly attributed to precipitation in the rice paddy fields and to temperature in the forest areas. Findings revealed that combined vegetation indices were more sensitive drought indicators in the basin, whereas their performance was different by vegetation type. In the rice paddy fields, NDDI was more sensitive to precipitation than other indices; it better captured droughts and their impacts on crop yield. In the forest areas, VHI was more sensitive to temperature, and thus had better performance than other VIs. Accordingly, NDDI and VHI were recommended for monitoring droughts in the agricultural and forest lands, respectively. The findings from this study are crucial to map drought risks and prepare an effective mitigation plan for the basin. Full article
(This article belongs to the Special Issue Applications of Remote Sensing and GIS in Hydrology)
Show Figures

Figure 1

Back to TopTop