Assessing the Spatial–Temporal Pattern of Spring Maize Drought in Northeast China Using an Optimised Remote Sensing Index
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data Sources and Data Processing
2.2.1. NDVI, EVI, and LST Time-Series Data
2.2.2. Spring Maize Area
2.2.3. Relative Soil Moisture Data
2.2.4. Validation Data
2.2.5. Other Data
2.3. Method
2.3.1. Selection of Remote Sensing Indices
2.3.2. Selection of the Optimal Remote Sensing Index and Parameter Optimisation
- (1)
- Wen [49] observed that the roots with high water absorption capacity of spring maize during the seedling stage were primarily located at a depth of 10 cm. Consequently, we established two RF models for different stages of spring maize growth: one for the seedling stage and another for the remaining period. We used the seven remote sensing indices as independent variables in both models. The dependent variables were RSM10 and RSM20 for soil depths of 10 cm and 20 cm, respectively.
- (2)
- The RF model was utilised to ascertain the importance of the remote sensing indices in responding to changes in the RSM at various developmental stages of spring maize. The weighting factor P (Equation (1)) was determined, and the index weights during different developmental phases of spring maize were analysed to assess which indices were the most suitable for different developmental stages of spring maize.
- (3)
- When the construction parameter of the optimal remote sensing index contains VI, we will calculate the optimal remote sensing index constructed by different VIs. The optimal remote sensing index in different developmental phases of spring maize was determined by comparing the coefficient of determination (R2) of the regression between the optimal remote sensing index and the RSM. The calculation steps were performed in the ENVI + IDL programming environment.
- (4)
- The optimal remote sensing index was used to analyse the spatial–temporal patterns of spring maize drought in northeast China from 2003 to 2020.
2.3.3. Drought Levels and Validation
2.3.4. Evaluation of the Multiyear Drought Trend in the Spring Maize Area of Northeast China
2.3.5. Determination of Frequent Drought Periods in the Spring Maize Area of Northeast China
3. Result
3.1. Selecting the Optimal Remote Sensing Index
3.2. Comparison of NDIV- and EVI-based TVDI
3.2.1. Comparison of Drought Sensitivity of NDIV- and EVI-Based TVDI
3.2.2. Comparison of TVDI Monitoring Accuracy in Different Farmland Environments
3.3. Spatial–Temporal Pattern of Spring Maize Drought in Northeast China
3.3.1. Temporal and Spatial Evolution Trend of Drought in the Study Area
3.3.2. Interannual Comparison of Drought during the Growth Period of Spring Maize
3.4. Frequent Drought Periods in the Study Area
4. Discussion
4.1. Applicability of TVDI for Monitoring Spring Maize Drought in Northeast China
4.2. Spatial–Temporal Pattern of Drought in the Study Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef]
- Du, Y.; Feng, G.; Li, Z.; Peng, X.; Zhu, J.; Ren, Z. Effects of External Digital Elevation Model Inaccuracy on StaMPS-PS Processing: A Case Study in Shenzhen, China. J. Remote Sens. 2017, 9, 1115. [Google Scholar] [CrossRef]
- Dang, Y.; Qin, L.; Huang, L.; Wang, J.; Li, B.; He, H. Water footprint of rain-fed maize in diferent growth stages and associated climatic driving forces in Northeast China. Agric. Water Manag. 2022, 263, 107463. [Google Scholar] [CrossRef]
- Sun, P.; Ma, Z.; Zhang, Q.; Singh, V.P.; Xu, C.-Y. Modified drought severity index: Model improvement and its application in drought monitoring in China. J. Hydrol. 2022, 612, 128097. [Google Scholar] [CrossRef]
- Du, C.; Chen, J.; Nie, T.; Dai, C. Spatial–temporal changes in meteorological and agricultural droughts in Northeast China: Change patterns, response relationships and causes. Nat. Hazards 2021, 110, 155–173. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, R.; Xu, C.-Y.; Sun, P.; Yu, H.; Zhao, J. Multisource data-based integrated drought monitoring index: Model development and application. J. Hydrol. 2022, 615, 128644. [Google Scholar] [CrossRef]
- Wang, Q.; Huo, Z.; Zhang, L.; Wang, J.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric. Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Feng, G.Z.; He, X.L.; Coulter, J.A.; Chen, Y.L.; Gao, Q.; Mi, G.H. Efect of limiting vertical root growth on maize yield and nitrate migration in clay and sandy soils in Northeast China. Soil Tillage Res. 2019, 195, 104407. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; He, Q.; Wang, L. The efect of climate change on spring maize (Zea mays L.) suitability across China. Sustainability 2018, 10, 3804. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, L.; Liu, H.; Luo, C.; Bao, Y.; Qi, B.; Zhang, X. Construction and Assessment of a Drought-Monitoring Index Based on Multi-Source Data Using a Bias-Corrected Random Forest (BCRF) Model. Remote Sens. 2023, 15, 2477. [Google Scholar] [CrossRef]
- Jürgens, C. The modifed normalization diference vegetation index (mNDVI): A new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens. 1997, 18, 3583–3594. [Google Scholar] [CrossRef]
- Kent, C.; Pope, E.; Dunstone, N.; Scaife, A.A.; Tian, Z.; Clark, R.; Zhang, L.; Davie, J.; Lewis, K. Maize Drought Hazard in the Northeast Farming Region of China: Unprecedented Events in the Current Climate. J. Appl. Meteorol. Clim. 2019, 58, 2247–2258. [Google Scholar] [CrossRef]
- Zhong, R.; Zhao, T.; Chen, X.; Jin, H. Monitoring drought in ungauged areas using satellite altimetry: The Standardized River Stage Index. J. Hydrol. 2022, 612, 128308. [Google Scholar] [CrossRef]
- Kourouma, J.M.; Eze, E.; Negash, E.; Phiri, D.; Vinya, R.; Girma, A.; Zenebe, A. Assessing the spatio-temporal variability of NDVI and VCI as indices of crops productivity in Ethiopia: A remote sensing approach. Geomat. Nat. Hazards Risk 2021, 12, 2880–2903. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Qin, D.; Wang, C. Large-scale monitoring of soil moisture using Temperature Vegetation Quantitative Index (TVQI) and exponential filtering: A case study in Beijing. Agric. Water Manag. 2021, 252, 106896. [Google Scholar] [CrossRef]
- Tagesson, T.; Horion, S.; Nieto, H.; Fornies, V.Z.; González, G.M.; Bulgin, C.; Ghent, D.; Fensholt, R. Disaggregation of SMOS soil moisture over West Africa using the Temperature and Vegetation Dryness Index based on SEVIRI land surface parameters. Remote Sens. Environ. 2018, 206, 424–441. [Google Scholar] [CrossRef]
- Mu, S.; Yang, G.; Xu, X.; Wan, R.; Li, B. Assessing the inundation dynamics and its impacts on habitat suitability in Poyang Lake based on integrating Landsat and MODIS observations. Sci. Total Environ. 2022, 834, 154936. [Google Scholar] [CrossRef]
- Wan, W.; Liu, Z.; Li, K.; Wang, G.; Wu, H.; Wang, Q. Drought monitoring of the maize planting areas in Northeast and North China Plain. Agric. Water Manag. 2021, 245, 106636. [Google Scholar] [CrossRef]
- Lv, S.; Li, X.; Wang, R.; Wang, Y.; Dong, Z.; Zhou, T.; Liu, Y.; Lin, K.; Liu, L. Autochthonous sources and drought conditions drive anomalous oxygen-consuming pollution increase in a sluice-controlled reservoir in eastern China. Sci. Total Environ. 2022, 841, 156739. [Google Scholar] [CrossRef]
- Tucker, C.J.; Justice, C.O.; Prince, S.D. Monitoring the grasslands of the Sahel 1984–1985. Int. J. Remote Sens. 1986, 7, 1571–1581. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Qing Liu, H.; Huete, A. A feedback based modifification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Abbas, S.; Nichol, J.E.; Qamer, F.M.; Xu, J. Characterization of Drought Development through Remote Sensing: A Case Study in Central Yunnan, China. Remote Sens. 2014, 6, 4998–5018. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water defificit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Wan, W.; Liu, Z.; Li, J.; Xu, J.; Wu, H.; Xu, Z. Spatiotemporal patterns of maize drought stress and their efects on biomass in the Northeast and North China Plain from 2000 to 2019. Agric. For. Meteorol. 2022, 315, 108821. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Zhang, S.; Wang, J.; Niesel, J. Spatial Downscaling of Satellite Soil Moisture Data Using a Vegetation Temperature Condition Index. IEEE Trans. Geosci. Remote Sens. 2016, 54, 558–566. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A.; Emmerton, C.A.; Springer, K.R.; Yu, R.; Hmimina, G. Detecting intra- and inter-annual variability in gross primary productivity of a North American grassland using MODIS MAIAC data. Agric. For. Meteorol. 2020, 281, 107859. [Google Scholar] [CrossRef]
- Sun, B.; Qian, J.; Chen, X.; Zhou, Q. Comparison and Evaluation of Remote Sensing Indices for Agricultural Drought Monitoring over Kazakhstan. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 899–903. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Chen, X.; Wang, H.; Yao, N.; Liu, F. Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theor. Appl. Clim. 2020, 143, 159–176. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Jia, S.; Liang, A.; Zhang, X.; Yang, X.; Wei, S.; Sun, B.; Huang, D.; Zhou, G. The potential mechanism of long-term conservation tillage efects on maize yield in the black soil of Northeast China. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Heim, R.R., Jr. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Li, S.; Xu, Q.; Yi, J.; Liu, J. Construction and application of comprehensive drought monitoring model considering the influence of terrain factors: A case study of southwest Yunnan, China. Environ. Sci. Pollut. Res. 2022, 29, 72655–72669. [Google Scholar] [CrossRef] [PubMed]
- Trisasongko, B.H.; Panuju, D.R.; Shiddiq, D.; Iman, L.O.S.; Sholihah, R.I.; Kusdaryanto, S. Constraints of VSWI in the Estimation of Drought Extent Using Landsat Data: A Case of Tuban, Indonesia. Procedia Environ. Sci. 2015, 24, 25–28. [Google Scholar] [CrossRef]
- Kleshchenko, A.D.; Asmus, V.V.; Strashnaya, A.I.; Krovotyntsev, V.A.; Virchenko, O.V.; Savitskaya, O.V.; Bereza, O.V.; Vasilenko, E.V.; Sukhareva, V.V.; Morgunov, Y.A.; et al. Drought Monitoring Based on Ground and Satellite Data. Russ. Meteorol. Hydrol. 2019, 44, 772–781. [Google Scholar] [CrossRef]
- Fu, R.; Chen, R.; Wang, C.; Chen, X.; Gu, H.; Wang, C.; Xu, B.; Liu, G.; Yin, G. Generating High-Resolution and Long-Term SPEI Dataset over Southwest China through Downscaling EEAD Product by Machine Learning. Remote Sens. 2022, 14, 1662. [Google Scholar] [CrossRef]
- Liu, L.; Liao, J.; Chen, X.; Zhou, G.; Su, Y.; Xiang, Z.; Wang, Z.; Liu, X.; Li, Y.; Wu, J.; et al. The Microwave Temperature Vegetation Drought Index(MTVDI) based on AMSR-E, brightness temperatures for long-term drought asses-sment across China(2003–2010). J. Remote Sens. Environ. 2017, 199, 302–320. [Google Scholar] [CrossRef]
- Guo, P.-T.; Li, M.-F.; Luo, W.; Tang, Q.-F.; Liu, Z.-W.; Lin, Z.-M. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma 2015, 237–238, 49–59. [Google Scholar] [CrossRef]
- Guo, H.; Li, M.; Nzabarinda, V.; Bao, A.; Meng, X.; Zhu, L.; De Maeyer, P. Assessment of Three Long-Term Satellite-Based Precipitation Estimates against Ground Observations for Drought Characterization in Northwestern China. Remote Sens. 2022, 14, 828. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Z. Assessment of drought during corn growing season in Northeast China. Theor. Appl. Clim. 2018, 133, 1315–1321. [Google Scholar] [CrossRef]
- Zhu, L.; Cooper, D.J.; Han, S.; Yang, J.; Zhang, Y.; Li, Z.; Zhao, H.; Wang, X. Influence of the atlantic multidecadal oscillation on drought in northern Daxing’an mountains, Northeast China. Catena 2020, 198, 105017. [Google Scholar] [CrossRef]
- Duan, Y.; Zhong, J.; Shuai, G.; Zhu, S.; Gu, X. Time-Scale Transferring Deep Convolutional Neural Network for Mapping Early Rice. In IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium; Valencia, C., Ed.; IEEE: Piscataway, NJ, USA, 2018; pp. 1136–1139. [Google Scholar] [CrossRef]
- Schepaschenko, D.; See, L.; Lesiv, M.; McCallum, I.; Fritz, S.; Salk, C.; Moltchanova, E.; Perger, C.; Shchepashchenko, M.; Shvidenko, A.; et al. Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. J. Remote Sens. Environ. 2015, 162, 208–220. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, X.; Meng, X.; Zhu, H.; Ni, C.; Chen, M.; Liu, H. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine. Catena 2022, 209, 105842. [Google Scholar] [CrossRef]
- Javed, T.; Li, Y.; Rashid, S.; Li, F.; Hu, Q.; Feng, H.; Chen, X.; Ahmad, S.; Liu, F.; Pulatov, B. Performance and relationship of four different agricultural drought indices for drought monitoring in China’s mainland using remote sensing data. Sci. Total Environ. 2020, 759, 143530. [Google Scholar] [CrossRef]
- Wen, Z.; Shen, J.; Blackwell, M.; Li, H.; Zhao, B.; Yuan, H. Combined Applications of Nitrogen and Phosphorus Fertilizers with Manure Increase Maize Yield and Nutrient Uptake via Stimulating Root Growth in a Long-Term Experiment. Pedosphere 2016, 26, 62–73. [Google Scholar] [CrossRef]
- Ma, M.; Ren, L.; Singh, V.P.; Tu, X.; Jiang, S.; Liu, Y. Evaluation andapplication of the SPDI-JDI for droughtsin Texas, USA. J. Hydrol. 2015, 521, 34–35. [Google Scholar] [CrossRef]
- Rek, Z.; Sarler, B. Engineering analysis with boundary elements the method of fundamental solutions for the Stokes flow with the subdomain technique. Eng. Anal. Bound. Elem. 2021, 128, 80–89. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscal.ar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Xin, J.; Tian, G.; Liu, Q.; Chen, L. Combining vegetation index and remotely sensed temperature for estimation of soil moisture in China. Int. J. Remote Sens. 2006, 27, 2071–2075. [Google Scholar] [CrossRef]
- Ciężkowski, W.; Szporak-Wasilewska, S.; Kleniewska, M.; Jóźwiak, J.; Gnatowski, T.; Dąbrowski, P.; Góraj, M.; Szatyłowicz, J.; Ignar, S.; Chormański, J. Remotely Sensed Land Surface Temperature-Based Water Stress Index for Wetland Habitats. Remote Sens. 2020, 12, 631. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, S.; Huang, Q.; Leng, G.; Wang, H.; Wang, L. Assessment of drought evolution characteristics based on a nonparametric and trivariate integrated drought index-Science Direct. J. Hydrol. 2019, 579, 124230. [Google Scholar] [CrossRef]
- He, D.; Yi, G.; Zhang, T.; Miao, J.; Li, J.; Bie, X. Temporal and Spatial Characteristics of EVI and Its Response to Climatic Factors in Recent 16 years Based on Grey Relational Analysis in Inner Mongolia Autonomous Region, China. Remote Sens. 2018, 10, 961. [Google Scholar] [CrossRef]
- Testa, S.; Soudani, K.; Boschetti, L.; Mondino, E.B. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wang, X.; Wang, L.; Guo, Y. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-Arid Regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef]
- Wan, W.; Liu, Z.; Li, B.; Fang, H.; Wu, H.; Yang, H. Evaluating soil erosion by introducing crop residue cover and anthropogenic disturbance intensity into cropland C-factor calculation: Novel estimations from a cropland-dominant region of Northeast China. Soil Tillage Res. 2022, 219, 105343. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Wigneron, J.-P.; Ciais, P.; Canadell, J.G.; Brandt, M.; Li, X.; Fan, L.; Wu, X.; Tang, H.; et al. Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sens. Environ. 2022, 278, 113087. [Google Scholar] [CrossRef]
Remote Sensing Index | Formula | Index Type | Reference |
---|---|---|---|
TVDI | Vegetation Index Canopy Temperature | Sandholt et al. (2002) [25] | |
VSWI | Vegetation Index Canopy Temperature | Carlson et al. (1994) [24] | |
VCI | Vegetation Index | Kogan (1990) [21] | |
TCI | Canopy Temperature | Tja et al. (2020) [48] | |
VHI | Vegetation Index Canopy Temperature | Kogan (1995) [23] | |
MBDI | Canopy Water Content Canopy Temperature | Li et al. (2022) [36] | |
NDDI | Vegetation Index Canopy Water Content | Trisasongko et al. (2015) [37] |
β | Z | Trend Features |
β > 0 | 2.58 < Z | Highly significant increase |
1.96 < Z ≤ 2.58 | Significant increase | |
1.65 < Z ≤ 1.96 | Slightly significant increase | |
Z ≤ 1.96 | Non-significant increase | |
β = 0 | Z | No change |
β < 0 | Z ≤ 1.96 | Insignificant decrease |
1.65 < Z ≤ 1.96 | Slightly significant decrease | |
1.96 < Z ≤ 2.58 | Significant decrease | |
2.58 < Z | Highly significant decrease |
Item | Accuracy/% | Consistency/% | |||
---|---|---|---|---|---|
TVDIN | TVDIE | TVDIN | TVDIE | ||
Developmental stage | Emergence | 84.62 | 78.85 | 84.62 | 50.00 |
Big flare | 67.31 | 80.77 | 63.46 | 63.46 | |
Milk stage | 73.08 | 82.69 | 40.39 | 78.85 | |
Slope/° | 0–0.5 | 69.20 | 75.00 | 50.00 | 61.53 |
0.5–2.0 | 81.80 | 90.38 | 46.15 | 73.08 | |
Soil texture | Loam | 69.20 | 86.54 | 63.46 | 73.07 |
Sand | 67.31 | 67.31 | 50.00 | 67.31 | |
Elevation/m | 0–150 | 63.46 | 71.15 | 71.15 | 78.85 |
150–300 | 84.62 | 86.54 | 50.00 | 67.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, Y.; Ji, L.; Zhang, J.; Meng, L. Assessing the Spatial–Temporal Pattern of Spring Maize Drought in Northeast China Using an Optimised Remote Sensing Index. Remote Sens. 2023, 15, 4171. https://doi.org/10.3390/rs15174171
Wang Y, Wu Y, Ji L, Zhang J, Meng L. Assessing the Spatial–Temporal Pattern of Spring Maize Drought in Northeast China Using an Optimised Remote Sensing Index. Remote Sensing. 2023; 15(17):4171. https://doi.org/10.3390/rs15174171
Chicago/Turabian StyleWang, Yihao, Yongfeng Wu, Lin Ji, Jinshui Zhang, and Linghua Meng. 2023. "Assessing the Spatial–Temporal Pattern of Spring Maize Drought in Northeast China Using an Optimised Remote Sensing Index" Remote Sensing 15, no. 17: 4171. https://doi.org/10.3390/rs15174171
APA StyleWang, Y., Wu, Y., Ji, L., Zhang, J., & Meng, L. (2023). Assessing the Spatial–Temporal Pattern of Spring Maize Drought in Northeast China Using an Optimised Remote Sensing Index. Remote Sensing, 15(17), 4171. https://doi.org/10.3390/rs15174171