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Abstract: The food crisis is a problem that the world will face. The availability of growing areas that
continues to decrease with the increase in food demand will result in a food crisis in the future. Good
planning is needed to deal with future food crises. The absence of studies on the development of
spatial models in estimating an area’s future food status has made planning for handling the food
crisis suboptimal. This study aims to predict food security by integrating the availability of paddy
fields with environmental factors to determine the food status in West Java Province. Food status
modeling is done by integrating land cover, population, paddy fields productivity, and identifying the
influence of environmental factors. The land cover prediction will be developed using the CA-Markov
model. Meanwhile, to identify the influence of environmental factors, multivariable linear regression
(MLR) was used with environmental factors from remote sensing observations. The data used are
in the form of the NDDI (Normalized Difference Drought Index), NDVI (Normalized Difference
Vegetation Index), land surface temperature (LST), soil moisture, precipitation, altitude, and slopes.
The land cover prediction has an overall accuracy of up to 93%. From the food status in 2005, the
flow of food energy in West Java was still able to cover the food needs and obtain an energy surplus
of 6.103 Mcal. On the other hand, the prediction of the food energy flow from the food status in 2030
will not cover food needs and obtain an energy deficit of up to 13,996,292.42 Mcal. From the MLR
results, seven environmental factors affect the productivity of paddy fields, with the determination
coefficient reaching 50.6%. Thus, predicting the availability of paddy production will be more specific
if it integrates environmental factors. With this study, it is hoped that it can be used as planning
material for mitigating food crises in the future.

Keywords: food security; food crisis; spatial model; CA-Markov; MLR

1. Introduction

Food is the essential basic human need, because food contains nutrients used to
maintain reproduction and carry out activities in daily life [1]. Everyone deserves access to
decent food, because it is an aspect of human rights guaranteed by [2] as a fundamental
component for realizing quality human resources. In addition, the food aspect is listed
in the second point of the Sustainable Development Goals (SDGs)—namely, no poverty.
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Its main goal is to end all forms of hunger for all people in the world by 2030. The
availability of food and the ability of individuals to access that food is measured using
the food security index. Food security is defined as the condition of fulfilling food for the
state of individuals as reflected in the availability of sufficient food in quantity, quality,
safety, diversity, nutrition, equity, and affordability. It also does not conflict with the
beliefs and culture of the community to be able to live healthy, active, and productive
in a sustainable manner. Food security can be measured by calories ingested per person
per day, available by household budget [3]. Food security is viewed from three aspects,
namely the aspects of food availability, aspects of food affordability, and aspects of food
utilization. Various factors influence food security. According to [4], several factors cause
the decline in food security in an area, especially in Indonesia. These factors include
narrow land ownership and low incomes, extreme climatic phenomena, the disturbance of
plant-invading organisms, and uncontrolled land conversion.

As one of the national rice granaries, West Java has an essential role in the food
security sector. Over the past 30 years, about 22% of the national rice production volume
has been contributed from West Java. More than 95% of rice production is produced from
wetland agriculture, while the rest is from dry land agriculture. However, the rate of
increase in rice production since 1973 has continued to decline. In the decades 1973–1983
and 1983–1993, the rise in production decreased from 5.5% per year to 2.69% per year.
Furthermore, from 1993 to 2003, rice production increase only reached 0.83% per year of
the total rice production from the previous year [5]. In Indonesia, since 2005, it has been
estimated that there will be a conversion of 42.40% of irrigated paddy fields. The reduction
in agricultural land area is due to the conversion of agricultural land (paddy fields) into
built-up and industrial areas. This conversion of paddy fields from year to year continues
to increase, and it is feared that it can threaten rice food security in the long term. The
conversion of agricultural land is a serious threat to food security. In 2016, there was a
decrease in the paddy fields area in West Java by 17.35%, from 1,189,728.85 hectares in 2006
to 983,342.77 hectares [6].

On the other hand, economic growth in West Java demands infrastructure develop-
ment for transportation, industrial buildings, and settlements. Infrastructure development
is thought to have resulted in increased land conversion. Thus, many agricultural lands,
especially urban areas, have been converted to other uses, mainly built-up land. As a result,
the attractiveness of the agricultural sector continues to decline, which makes farmers tend
to give up their land ownership. This condition results in a decreased rice productivity in
the West Java region, resulting in a reduced food security index.

In addition to decreasing paddy fields for built-up land, rapid population growth
is also one factor that affects food security in the future. Currently, the population in
various regions, especially urban areas, has increased significantly. Many factors cause this
population growth. Population growth certainly has implications for future food needs.
West Java is the province with the largest population in Indonesia. Based on the results of the
2020 population census conducted by the Indonesian Central Statistics Agency, the people
in West Java are 48.27 million or more than 17% of the total population of 270.2 million
people, with a population growth rate for the 2010–2020 period of 1.1% per year. The
world’s population is estimated to reach 8 billion in 2030, so food production is a crucial
thing to achieve [7]. Climate change also plays an essential role in decreasing paddy field
productivity and affecting the food security index. This condition is because paddy fields
depend highly on water and soil moisture availability. In 2020, based on information from
the Head of the West Java Agriculture and Horticultural Food Crops Service, 13,000 hectares
of paddy fields in West Java were threatened with damage due to flooding. Meanwhile, the
drought caused damage to fields covering an area of 29,913 hectares in West Java.

Considering that rice is the primary commodity, the government, as a policymaker,
must guarantee food security for some time to come. The government must take the right
policies related to areas that need attention regarding food security. Therefore, information
on food security is essential to provide direction and recommendations for decision-makers
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in preparing programs, policies, and the implementation of interventions at the central
and regional levels. This study will predict food security using various geospatial data to
determine the food status in an area using specific models. The prediction of food security
is carried out for 2030 as the target year of the SDG policy. With the prediction of food
security in 2030, incumbents can take appropriate food policies for each region that will
experience a food deficit so that the second target of the SDGs can be achieved.

This paper consists of several parts; Section 1 explains the importance of calculating
food security predictions in 2030 and its benefits for stakeholders in West Java. Section 3.3
describes spatial methods for predicting food security and its factors. Section 4 explain the
results of the land cover predictions and paddy fields decline in West Java, food security
predictions obtained from land cover predictions, and an analysis of the environmental
factors that affect rice productivity.

2. Related Works

The Markov Chain (MC) concept describes a stochastic process involving discrete
steps in time and space. The probability of transition from one form to another in the
chain depends on the previous state [8]. The MC concept shows the nature of dependence
that can predict future land cover. The MC process states that changes in a state in the
future only depend on the state’s current state and do not depend on previous conditions
in obtaining the current state [9]. Cellular Automata (CA) can explore dynamic properties
through modeling various phenomena [10,11]. A cellular automaton is a concept that can
describe the transition (movement) of each element or object called an automaton. In simple
terms, an automaton (singular automata) is a discrete processing mechanism. Research
results [12] have used the CA-Markov model to simulate and predict changes in LULC.
The steps taken are to analyze the Markov Chain on land change data from 2002 to 2018 to
produce a transition area matrix. The next step is to build a map of the LULC transition
area and evaluate the model’s accuracy to simulate future changes based on the kappa
index. The last one predicts the spatial distribution of LULC in 2050. This study used a near
neighborhood filter with 5 × 5 pixels to assign the cell value, a land cover class, based on
the surrounding cells. Each pixel’s future land cover class depends on how close the center
cell’s pixel is to the surrounding pixels. This study attempts to simulate land use dynamics
processes and the effects of physical, demographic, and socioeconomic driving forces on
LULC in Thimpu, the capital city of Bhutan, using remote sensing and GIS technology.

A previous study related to food security capacity modeling was conducted by [13],
who reviewed food security from four aspects: availability, utilization, accessibility, and
food stability. The availability considers food demand and supply, aid distribution, food
and production subsidies, and food prices. Food accessibility considers food price stability,
per capita income, gender, social level, season, and climate influences. Food utilization con-
siders calorie needs per capita, nutritional status, macro- and micro-nutritional needs, and
anthropometry. Meanwhile, food stability considers food stock, production, import ratio,
and climate change variability. However, no spatial modeling of food security was carried
out in this study to support the visualization. It is hoped that it will become a starting
point in the dynamics of food security for reflection on vulnerabilities in methodological
implications and policy decisions using this approach.

Rahman et al. (2017) conducted a study on the impact of temperature and rainfall on
rice productivity in Bangladesh [14]. In their research, a multiple regression analysis was
carried out, which obtained a significant correlation between the Rice Productivity Index
(RPI), Standardized Precipitation Index (SPI), and Diurnal Temperature Range (DTR) with
values of 41%, 45%, and 49%, respectively, of the variability of the results in dry, terrace,
and coastal ecosystems. In addition, in monitoring and modeling rice field productivity,
remote sensing technology can be used. The research by [15,16] conducted the monitoring
and modeling of rice field productivity. In this case, one of the advantages of using remote
sensing data is continuous monitoring. Another study on the environmental effects on
rice production was conducted by [17], which analyzed terrain factors. In this research,
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several results were obtained. Namely, terrain factors affect the distribution of paddy fields
and rice development. However, terrain factors (except elevation) are not very visible
compared to paddy fields and rice development distribution. The research conducted
by [14] used dynamic data, which changes in value from time to time, while the study
of [17] used relatively constant values from time to time. Dynamic and relatively stable
environmental factors need to be combined to get a more comprehensive environmental
influence in identifying paddy field productivity.

Based on previous research, no research has integrated environmental factors into pre-
dicting food availability mapping. Therefore, the estimation of paddy fields productivity in
previous studies is still not optimal, because they do not involve the environmental factors.
The integration of future paddy fields availability data with the environmental factors
of the paddy fields will provide a more comprehensive predictive approach with remote
sensing data. This study will be the first research to develop predictions of future food
availability by integrating the future availability of paddy fields and environmental factors.

3. Data and Employed Methods
3.1. Study Area

The study area of this research is the Province of West Java, Indonesia, as shown in
Figure 1. The location for West Java was chosen because West Java Province is the third
national rice producer, with a contribution of 16.6% [18,19]. Furthermore, West Java is the
largest rice consumer, with about 21.1% of the total national rice consumption [20].
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3.2. Data

The data used is divided into 9 areas, as seen in Table 1.
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Table 1. Data used in the study.

No Data Product Temporal
Resolution

Spatial
Resolution References

1 Landsat-8 USGS Landsat 8 Level 2, Collection 2, Tier 1 16 Days 30 m
(Raster Data) [21]

2
Land Surface
Temperature

(LST) (Celsius)

MOD11A2.006 Terra Land Surface
Temperature and Emissivity 8-Day Global

1 km
8 Days 1 km

(Raster Data) [22]

3 Precipitation
(mm/day)

TerraClimate: Monthly Climate and
Climatic Water Balance for Global

Terrestrial Surfaces, University of Idaho
Monthly 4638.3 m

(Raster Data) [23]

4 Soil Moisture (%) NASA-USDA Enhanced SMAP Global Soil
Moisture Data 3 Days 10 km

(Raster Data) [24]

5 Normalized Difference
Vegetation Index

MOD13Q1.006 Terra Vegetation Indices
16-Day Global 250 m 16 Days 250 m

(Raster Data) [25]

6 Administrative
boundaries West Java Regional Planning Agency - 1:25,000

(Vector Data) [26]

7 West Java Land Cover West Java Regional Planning Agency 2005
2010 30 m [26]

8 West Java Paddy fields
Productivity (ton/km2)

Ministry of Agriculture Republic of
Indonesia Yearly

City/
District level

(Tabular Data)
[27]

9 West Java Population
(person) Indonesian Central Statistics Agency Yearly

City/
District level

(Tabular Data)
[28]

10
Digital Elevation Model

(DEM)
(meter)

NASA - 30 m
(Raster Data) [29]

3.3. Methods

This paper focuses on explaining food security in 2005–2030, focusing on the aspects of
availability and needs. It also discusses what factors influence it. In this study, there were
two significant parts carried out. The first part is the calculation of the spatial model of
food security, which was carried out in 2005 as a baseline condition and 2030 as a predictive
model and associated with the meteorological disaster conditions, such as climate data, etc.
The second part is to estimate the environmental factors that affect rice productivity.

The spatial model of forecasting food security was carried out under baseline con-
ditions in 2005 and predictions in 2030. The spatial model of forecasting food security
requires land cover data, so land cover data is required for the predictions in 2030. Land
cover data for West Java Province in 2030 is obtained by making prediction models using
the Cellular Automata-Markov Chain (CA-MC) method. Another factor that affects food
security in an area is food consumption. The value of food needs is derived from data on
the population of an administrative area. The population model for 2030 is obtained by
modeling a linear regression method from population data from 2005 to 2020.

On the other hand, land cover prediction data obtained from the CA-MC method is
also used to analyze the factors that affect rice productivity. Regression uses productivity
as the dependent variable and the factors that affect productivity as the independent
variables. The independent variables used included drought quantified by the Normalized
Difference Drought Index value, humidity, surface temperature (LST), vegetation fertility
level quantified by the Normalized Difference Vegetation Index (NDVI) value, precipitation,
elevation, and slope. Overall, the flow of the research carried out can be seen in Figure 2.
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3.3.1. Land Cover Change Methodology

One of the methods used to predict land cover is the Markov Chain (MC). This
method is a simple mechanism to determine future opportunities for land change based on
opportunities that occurred in the past [30,31].

P
{

Z(tn+1) = Ej
∣∣ Z(tn), Z(tn−1), . . . , Z(t0) = Ei

}
= P

{
Z(tn+1) = Ej

∣∣ Z(tn) = Ei
}

(1)

The magnitude of these changes can be obtained using satellite imagery data from
two different periods [32]. Then, the opportunity is used to predict the allocation of each
land classification for the next period based on the value of the land classification in the
last year.

In addition to the MC method, there is a Cellular Automata (CA) concept that has
been applied in GIS-based spatial modeling. Besides being easy to do, CA can develop
dynamic properties in modeling the processes of changing various phenomena [33]. Cellu-
lar Automata is a concept that can describe the transition (movement) of each element or
object called an automaton. In simple terms, an automaton (singular automata) is a discrete
processing mechanism. The mechanism in question is the ability to change based on rules
that are applied to itself (the object) and various inputs from outside [34].

In the context of geography, apart from input factors, there is one other factor that
can affect the automaton. This factor is the condition of the neighbor (neighborhood).
In this context, CA is a spatial system used to determine a set of automatons [33]. This
understanding shows that an automaton will also depend on the surrounding conditions.
The concept of the CA-MC can be seen in Figure 3.
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Figure 3. CA concept in determining the location of the automaton. An automaton is defined by the
presence of the automaton state factor (class or value of the automaton) itself, the transition rule factor
that will be imposed on the automaton, along with the neighboring factor of the automaton [35].

From the results of the land cover predictions generated from CA-MC, validation
of the prediction model will be carried out, which is intended to determine the accuracy
of the resulting land cover prediction model. Validation is done by using the confusion
matrix/error matrix. The confusion matrix is defined as a table of class comparison results
predicted through image classification analysis with reference data classification or field
data [36–38]. The principle of the confusion matrix, which compares the mapped land
classification with this reference data, can be collected through a sample-based approach.
In research, the spatial unit in sampling is pixels, and the number of samples used is based
on the Slovin formula, as seen in Equation (2):

Pn =
N

1 + ne2 (2)

where n is the number of samples, N is the number of populations, and e is error tolerance.
The confusion matrix can provide information on the accuracy of the whole or each class
related to land cover classification. The classification accuracy test can be done using
Equation (3):

Mapping Accuracy =
Xcr

Xcr + Xo + Xco
(3)

where Xcr is the correct number of pixels/sites of class X, Xo is the number of pixels/sites
of class X that belong to another class (omission), and Xco is the number of pixels/sites of
class X that are additional from other classes (commission).

The overall accuracy shows the overall proportions of areas that are classified correctly.
This condition means that randomly selected areas on the map are classified correctly [39].
The overall accuracy can be calculated based on Equation (4):

Overall Accuracy =
D
N

× 100% (4)

where D is the total value of the correct rows that have been added diagonally, and N is
the total value of the correct rows in the error matrix.

While the kappa coefficient measures the overall alignment of a matrix that considers
the nondiagonal elements of a matrix [40], the kappa coefficient has a maximum level of
correspondence between the number of rows and columns of 1.00. The kappa coefficient
formulation can be seen in Equation (5):

K̂ =
N ∑r

i=1 Xii − ∑r
i=1 Xi+X+i

N2 − ∑r
i=1 Xi+X+i

(5)

where r is the number of rows and columns in the confusion matrix/error matrix, N is the
total number of observations, Xii is the observations in row i and column i, Xi+ is the total
marginal of row i, and X+i is the total marginal of column i.
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3.3.2. Mapping Food Status

Based on Reference [41], food security (Food Security and Vulnerability Atlas) can
be viewed from three aspects: availability, access, utilization, and stability. However, this
research will focus more on the aspect of food availability. The availability aspect is the
aspect that considers the ratio of normative consumption per capita to food availability. In
the modeling of food availability, only paddy fields are considered that are rice producers,
namely the staple food in Indonesia.

The modeling of the food status is carried out using a grid system in its calculations.
The grid system is a two-dimensional structure that divides an area into contiguous cells.
Each cell has a unique identifier that is different for each cell that can be used for spatial
indexing [42]. This system can store spatial data and is very good at representing geograph-
ical phenomena that are continuous and change gradually, such as altitude, soil type, soil
moisture, vegetation, soil temperature, land use, air quality, etc.

In food demand modeling, briefly, the method used is to determine the population
density of each grid (30” × 30”) based on the weight of the land cover in a city/district
area. The weight is represented in Table 2. The population data used is Indonesian
Central Statistics Agency data, which is then predicted using a linear model to obtain the
population in 2030 for each city/regency. Therefore, in this study, the population increase
every year is assumed to have a linear trend. Next, the energy adequacy rate is calculated
based on the distribution of the population. Based on Reference [43], the recommended
nutritional adequacy rate for the people of Indonesia is 2100 calories, and 60% of it is
met from carbohydrate sources. In this case, for the Indonesian people, the staple foods
are dominated by rice. In addition, the energy demand and availability model are also
predicted for 2030 using a land cover map that was predicted for 2030.

Table 2. Land cover weight for the population distribution [44].

Skor Land Cover Skor Land Cover

0.328 Built up area 0.018 Shrubs

0.048 Rice field 0.009 Forest

0.038 Mine/Pond/Swamp 0.002 Plantation

0.029 Field/Moor 0 River/Lake/Reservoir

For the calculation of food needs using Equations (6)–(8), Equations (6) and (7) are
modified from the Nengsih (2015) [42] method. Meanwhile, Equation (8) is a calculation of
the energy needs every year based on the daily energy needs of the community based on
the Indonesian Ministry of Health [41].

Di = Ai × Wi (6)

where Di is the weight density, Ai is the area of land cover, and Wi is the land cover weight.

Pij =
Di

∑n
i=1 Di

Pj (7)

where Pij is the population density weight per grid, ∑n
i=1 Di is the total weight of the

population density, and Pj is the total population of each city/district.

KBij = Pij × AKE × 365 (8)

where KBij are the basic energy needs in one year, and AKE is the daily energy adequacy
rate of 2100 calories [43] (carbohydrate AKE is 60% AKE).

Since it only focuses on calculating staple food (rice) availability in food availability,
the only land cover considered is paddy fields. The method used is to calculate the
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energy produced from paddy fields based on agricultural productivity data for each grid
(30” × 30”). Based on the data from [45], the energy produced per 100 g of rice is around
357 calories.

3.3.3. Identification of Environmental Factors Influence on Paddy Fields Productivity

The productivity of paddy fields is not only influenced by the availability of paddy
fields but also influenced by the surrounding environment. This study will use several
environmental factors that affect the productivity of paddy fields based on [46]. The
environmental factors used are dynamic and environmental factors that are relatively
constant over time. The combined effect of dynamic and relatively constant factors can
be seen in paddy fields’ productivity. This study will show how much these factors
affect the productivity in West Java. The environmental factors used to identify agricultural
productivity are the NDVI [47], NDDI [48,49], LST [50], soil moisture [51], precipitation [52],
elevation [17], and slope [17].

In processing some data, some require processing before they can be used to analyze
paddy fields’ productivity. In determining the NDVI value, a red band and a NIR (near-
infrared) band are needed. The NDVI calculations can use Equation (9):

NDVI =
NIR − Red
NIR + Red

(9)

Furthermore, in performing NDDI calculations, NDVI and NDWI values are needed.
In determining the NDWI, NIR and SWIR (short-wave infrared) bands are needed. The
NDWI calculations can use Equation (10). After getting the NDVI and NDVI values, the
NDDI value can be calculated using Equation (11).

NDWI =
NIR − SWIR
NIR + SWIR

(10)

NDDI =
NDVI − NDWI
NDVI + NDWI

(11)

In addition to the NDVI and NDDI, already available data will be used. The data
used is sourced from remote sensing satellites with different temporal resolutions. In
this study, the average data for each parameter in a year will be used to equalize the
rice productivity data, which is the annual data. The average for each data pixel will be
calculated in determining the average. In calculating the average data, Equation (12) will
be used. Different temporal resolutions will impact the amount of data used.

x = ∑n
i=1

xi
n

(12)

where x is the average pixel value per year, n is the amount of data per year, and xi is the it
data value.

After getting the average value, the difference between the two timescales for the data
will be calculated between the two timescales of the paddy field productivity. In addition
to using dynamic data, where the data changes from time to time, we will also use data
whose changes take a long time to be considered constant, namely data on height and
slope. In determining the effect of environmental factors on paddy field productivity, the
correlation value (R) and coefficient of determination (R2) on paddy field productivity
will be calculated for each data. The calculations show the correlation of the data with
the productivity and its percentage representing the correlation coefficient. Furthermore,
after getting the effect of each data, the constant value of each data will be calculated
using multivariable linear regression on paddy field productivity. Multivariable linear
regression was chosen, because it can accommodate the estimation of the changes in rice
field productivity using several natural factors [53,54]. The multivariable linear regression
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equation that will be used is similar to Equation (13). This constant calculation is intended
to calculate the productivity predictions using the productivity factor data.

∆P = a∆t + b∆u + c∆v + d∆w + e∆x + f y + gz (13)

where

∆P = Changes in Paddy Productivity (tons/km2);
a = NDVI constant;
b = NDDI constant;
c = LST constant;
d = Soil moisture constant;
e= Precipitation constant;
f = Elevation constant;
g = Slope constant;
∆t = NDVI value change;
∆u= NDDI value change;
∆v = LST value change (Celsius);
∆w = Soil moisture value change (%);
∆x = Precipitation value change (mm/hari);
y = Elevation (m);
z = Slope (%).

3.3.4. Prediction of Food Availability by Integrating Paddy Fields Area and Environmental
Factors Methods

During the prediction of food availability by considering environmental factors using
land cover prediction data in 2020 and the results of the statistical calculations on the
effect of environmental factors on productivity, merging each parameter is done using
the Simple Additive Weighting (SAW) method. SAW is a method that is often used to
solve multi-attribute decision-making according to Equation (14) [55], which calculates the
weight of each pixel.

Weighti = ∑(Score × Weight) (14)

The Score and Weight values are calculated based on the correlation value (produc-
tivity and environmental factors). The score is calculated by dividing the value of each
parameter into five classes using the Natural Breaks method [56]. After that, each class
of parameters is graded 1–5 by adjusting the positive or negative value on the correlation
value. If it has a positive correlation value, then the provisions of the weight value are
as follows: the value 0 ≤ r ≤ 0.3 has a weight of 1, 0.3 < r ≤ 0.7 has a weight of 2, and
0.7 ≤ r ≤ 1 has a weight of 3 [57].

The paddy production of each city/regency (P) is calculated using Equation (15).
Next, to identify the value of paddy production in each pixel of each city/regency, (Pi) is
calculated using Equation (16) with ΣWeighti as the total weight in each city/regency.

P = Productivity × Paddy FIeld Area (15)

Pi =
Weighti

ΣWeighti
× P (16)

4. Results and Discussion
4.1. Land Change Model

The first product is a land cover prediction based on the land cover in 2005 and 2010.
Land cover predictions are carried out over five time periods, namely 2015, 2020, 2025, and
2030. The land cover predictions for every five years can be seen in Figure 4.

The first product produced is a land cover prediction based on the land cover in 2005
and 2010. Land cover prediction is carried out over five periods, namely 2015, 2020, 2025,
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and 2030. Based on these land cover predictions, there is a decrease in the area of paddy
fields from year to year. In 2030, the decrease in the paddy fields area was 31% from 2005.
This condition impacts the decline in rice productivity in the West Java Province. This
conclusion is directly proportional to the statement from [58], which stated that the land
cover area in Indonesia continuously decreases by 650,000 ha per year. The paddy fields
area decline in West Java has also been proven by [6]; there was an area decrease of 17.35%,
from 1,189,728.85 ha in 2006 to 983,342.77 ha in 2016 [6]. The graph of the decline in paddy
fields can be seen in Figure 5 and Table 3.
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The crosstabulation table for land cover predictions in West Java in 2030 can be seen in
Table 4. Based on the prediction results, many changes occur in vacant lands and urban
areas for paddy fields. The change of paddy fields into vacant land is 340.095 km sq, and the
change of paddy fields to built-up areas is 55.58 km2. Paddy field changes into settlements
imply rapid population growth in urban areas.

Table 4. The crosstabulation table for land cover predictions in West Java in 2030.

Cross Tabulation 2005 and 2030

Unit (km sq) Forest Field/Moor Plantation Urban Paddy
Fields Check/Shrub Rivers/Lakes/

Reservoirs Pond/Swamp

Forest 508.54491 4.70952 0.61047 0.00414 0.2106 2.29113 0 0

Field/Moor 114.94971 1276.56603 52.35633 5.05107 340.09515 48.49614 0.43515 0

Plantation 1.19673 5.81022 121.44402 0.01989 0.40959 6.65658 0.02052 0

Urban 3.93597 83.34171 6.48693 265.81608 55.58004 1.79244 0.02061 0.28854

Paddy Fields 8.68122 11.21238 2.44422 2.30094 672.36723 0.56376 0.05535 0.08199

Check/Shrub 1.0701 0.12555 0.00018 0 0..03213 7.22286 0.15219 0

Rivers/Lakes/
Reservoirs 0.01323 0.01125 0 0.00945 0.00639 0.01764 24.91749 0.00198

Pond/Swamp 0.06417 0.24057 0 0 0.39465 0 0.01035 69.49602

The 2015 land cover prediction results were then validated to obtain the accuracy of the
prediction model made. Validation was carried out using the confusion matrix/error matrix
by comparing the predicted land cover with 2015 satellite imagery data obtained from
Google Earth Pro. In determining the number of samples representing the research data
population, the Slovin formula is used, with a significance value of 0.1 or at a confidence
interval of 90%. From the results of the calculation of the Slovin formula, the required
sample points are 100 sample points. The distribution of the sample points was determined
using the stratified random sampling method. In this method, the population is divided
into several subgroups/strata, and then, samples from each stratum will be taken so that it
will produce a sample from each of these strata. The strata in this study are divided into four
strata, namely paddy fields, urban, vegetation, and water bodies. Thus, 100 sample points
will be divided into these four strata, so that, for each stratum, 25 samples are taken. Then,
the sample is validated with the existing cover of paddy fields, urban areas, vegetation, and
water bodies from Google Earth Pro. Almost all of the samples were classified. Accordingly,
7 points from the sample of water bodies were classified into another land cover, namely
5 points classified as paddy fields and 2 points as urban areas. There are similar pixel
values between wet paddy fields and water bodies, so there is a misclassification between
paddy fields and water bodies. The validation results can be seen in Table 5.

Table 5. The validation results of the land cover predictions.

Reference

Unit (km sq) Water
Bodies

Paddy
Fields Urban Vegetation Total Commission

Error
Mapping
Accuracy

Overall
Accuracy Kappa

C
la

ss
ifi

ca
ti

on

Water Bodies 18 5 2 0 25 28% 0.72000

93% 0.9067Paddy Fields 0 25 0 0 25 0% 0.83333

Urban 0 0 25 0 25 0% 0.92593

Vegetation 0 0 0 25 25 0% 1.00000

Total 18 30 27 0 100

Omission Error 0% 16.67% 7.41% 0%
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The overall accuracy value obtained is 93% based on the validation results. This value
indicates that the resulting map has good quality, because the classification map has 93%
suitability for field conditions. From the table above, it can also be seen that the resulting
kappa coefficient value is 0.9067. According to [59], a kappa coefficient value of between 0.8
and 1 is included in the excellent and reliable category. This value means that the accuracy
test on the classification results that have been carried out show that the results obtained
are of good accuracy, which is very reliable.

In this study, the land cover will focus on paddy fields, because it will be used to
calculate rice productivity, which impacts food security in an area. The mapping accuracy
value of paddy fields cover is 0.83 or 83.33%. This value indicates that the paddy fields
cover value obtained in the prediction is valid for use.

4.2. Food Status Model

The food status model on food availability produces two products: food availability
and food needs. The food needs (carbohydrates) in West Java can be seen in Figure 6.
Based on the results of the food needs, densely populated urban areas have a higher need
than other areas, with the energy needs reaching 4765 Mcal per capita in 2005. The urban
areas with higher energy needs are Bandung City, Bekasi City, Depok City, and Bogor
City, which are indicated by yellow to red colors. The suburban area also has moderate
food (carbohydrate) needs due to the expansion of food needs in urban areas, which is
indicated by the color yellow. In order to view the food status in the future, this study tries
to predict the food status in 2030. Based on the results, the need for food (carbohydrates) in
2030 is projected to experience a significant increase compared to 2005—namely the need
for food (carbohydrates) is expected to reach 7230 Mcal per capita in 2030. This result is
also in line with [27], which shows an increase in the population every year. Areas with
the highest demand are located in urban areas and their surroundings, such as Bandung,
City of Cirebon, City of Sukabumi, City of Bekasi, City of Cimahi, City of Depok, City of
Tasikmalaya, and the City of Banjar.
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The availability of food (carbohydrates) in 2005 in West Java reached 1975.995 Mcal
per capita. The distribution of food availability in West Java in 2005 was dominated in the
northern areas of West Java, namely Bekasi Regency, Karawang Regency, Subang Regency,
Indramayu Regency, and Cirebon Regency, with the color index tending to be light green
(medium). The prediction in food availability data (carbohydrates) in 2030 shows a decrease
in availability compared to 2005. However, in terms of the productivity per capita, it has
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increased compared to 2005, which reached 2212.33 Mcal/capita. This result means that,
although the land availability of food (carbohydrates) is reduced significantly, the paddy
fields’ productivity level will have increased significantly in 2030. This condition can
be due to several supporting factors, such as natural factors and agricultural technology,
supporting productivity. The flow of food energy in West Java in 2005 was still able to
cover food needs and obtain an energy surplus of 6.103 Mcal overall in West Java.

Based on food needs (carbohydrates) and food availability (carbohydrates), it can be
concluded that the status of food (carbohydrates) in West Java is as shown in Figure 7. The
food surplus status means that the food availability is greater than the amount needed. This
condition means that food availability in the region can still meet the current needs. On the
other hand, a region experiencing a deficit means that the availability in that area cannot
meet the current needs. Based on the results, most regions in West Java had a surplus
status in 2005. Urban areas with a reasonably high demand, such as Bekasi City, Depok
City, Bogor City, Bandung City, Sukabumi City, Tasikmalaya City, and Cirebon City, have
a deficit food status. The regencies such as Bandung Regency, Sukabumi Regency, and
Bogor Regency also have a deficit food status. This status is because the food availability is
relatively high and cannot meet the population’s needs.
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Based on the results of the food status (carbohydrates) prediction in 2030 above, as
shown in Figure 8, in 2030, the the food status in West Java will be dominated by the
deficit status. Only six (six) regions have a surplus food status, namely Karawang Regency,
Indramayu Regency, Subang Regency, Majalengka Regency, Purwakarta Regency, and
Cianjur Regency. It is also quite clear that these six areas have the highest availability
compared to the other areas. Although there is an increase in productivity in 2030, it still
cannot meet the high energy needs as a result of the increase in the population every year.
This increase means that reducing the paddy fields’ area every year is a significant threat
to food security. The surplus food status is expected to contribute to the food availability
in deficit areas (flowing energy from surplus to deficit areas). The flow of food energy in
West Java in 2005 was still able to cover the food needs and obtain an energy surplus of
6.103 Mcal. On the other hand, the prediction of the food energy flow in West Java in 2030
will not cover the food needs and will obtain an energy deficit of up to 13,996,292.42 Mcal.
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4.3. Identification of Factors Influencing Rice Productivity in West Java

Many factors affect the environmental conditions, one of which is caused by climate
change, which, in this study, is represented by the land surface temperature and precipi-
tation [60]. In this study, a correlation of the factor changes with data on changes in the
paddy fields’ productivity was carried out. In Figure 9, the correlation of the NDDI change
is negative, which means that the decrease in the drought index of an area will increase the
productivity of the area’s paddy fields. This statement is in line with the higher increase
in crop drought, which will make the paddy fields’ productivity decrease. The coefficient
of determination (R2) of the NDDI is 0.006, so only 0.6% of the effect of NDDI change on
paddy fields productivity change. Figure 9 shows that precipitation change has a negative
correlation with productivity change. The decrease in rainfall change will increase the
paddy fields’ productivity. This condition is because the paddy fields have an optimum
value of precipitation so that if there is an excess or lack of water, the productivity will be
reduced. The coefficient of determination shows that precipitation change affects 4.3% of
the paddy fields’ productivity change.
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Furthermore, the correlation between soil moisture changes and paddy field productiv-
ity change is negative, where the decrease in soil moisture changes will increase the paddy
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fields’ productivity change. This condition is because the soil moisture has an optimum
value in paddy fields productivity, so it will affect the productivity if it is more humid or
less humid. Soil moisture change has a coefficient of determination of 12.3% of the paddy
fields’ productivity change.

Furthermore, the LST change negatively correlates with the paddy fields’ productivity
change. The decrease in temperature changes increases the productivity change. This
condition is because LST has an optimum value in paddy fields productivity, so it will affect
the productivity if it is a higher temperature or less temperature. The LST change has the
highest coefficient of determination, reaching 27.3%. Furthermore, the NDVI change has a
positive correlation with the productivity change. Increasing the NDVI change increases
the productivity of the paddy fields change. The NDVI indicates paddy health, so the
high NDVI indicates a healthier paddy and is linear with the productivity of the rice field.
The coefficient of determination of NDVI change reaches 8.4%. The altitude data has a
negative correlation with land productivity change. It can be seen that the higher the
area, the lower the productivity change. This condition is because the altitude has an
optimum value in paddy fields productivity, so it will only be the optimum at several
altitudes. The effect of altitude on productivity change is 2.1%. The value of the dependency
coefficient of determination will be local in West Java only, and different regions will have
different values.

Furthermore, the last data is the slope, which negatively correlates with paddy fields
productivity. The steeper the slope, the lower the productivity change. This condition
is because the slope has an optimum value in paddy fields productivity, increasing the
optimum productivity in the optimum slope. The slope affects 18.04% of the paddy fields’
productivity changes.

Of all the natural factors investigated, LST has the most significant relationship;
this indicates that temperature increases in agricultural areas can harm paddy fields’
productivity. Using this information, various efforts need to be made so that temperature
increases around agricultural areas do not occur, such as switching to renewable energy,
designing good regional development, and reducing CO2 gas.

Equation (17) shows the results of multivariable linear regression using all data that
affect paddy fields’ productivity. From these results, the coefficient of determination value
is 0.5066, or it can be concluded that seven factors affect the productivity of paddy fields,
reaching 50.6% of all the factors that influence it. Other factors can come from technological
advances and local or random factors. If the residual value is calculated from the linear
regression that has been carried out, the result is 1,894 tons/km2. Furthermore, the RMSE
value is calculated for the equation made using four cities/districts of West Java, and a
value of 7012 tons/km2 is obtained.

∆P = 9.976∆t − 7.940∆u − 9.849∆v + 0.238∆w − 0.078∆x − 0.001y − 2.855z (17)

where

∆P = Changes in Paddy Productivity (ton/km2);
∆t = NDVI value change;
∆u = NDDI value change;
∆v = LST value change (Celsius);
∆w = Soil moisture value change (%);
∆x = Precipitation value change (mm/hari);
y = Elevation (m);
z = Slope (%).

In food security, the distribution of the food supply is essential. Using predictions of
changes in paddy fields productivity based on environmental factors shows the value of
paddy fields productivity in a year in a particular city. The results of this prediction can
be used as a reference in distributing paddy fields products to other areas in West Java
that experience a food deficit status. In this way, it is hoped that there will be no delay in
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the delivery of rice supplies from areas with a positive food status to areas with a food
deficit status.

4.4. Prediction of Food Availability by Integrating Paddy Fields Area and Environmental Factors

In predicting the availability of an area, it will be more specific if it integrates envi-
ronmental factors. The distribution of productivity in a city will be known by integrating
environmental factors. It can be seen in Figure 10a, where the food availability only con-
siders the paddy fields area, whereas the distribution of productivity in the area cannot
be known. While Figure 10b, which considers environmental factors, can be seen in the
distribution of food availability in each area. The average food availability per paddy fields
area of 30” × 30” (~1 km × 1 km) in West Java Province is around 2042.012 Mcal, with the
highest availability being 183,516.201 Mcal.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 18 of 22 
 

 

 

Figure 10. Food availability (a) without environmental factors and (b) with environmental factors. 

4.5. Limitation and Future Possible Direction 

This research has several limitations that need to be considered. First, in this study, 

the prediction of food security only looks at the availability pillar, which includes aspects 

of food needs and food availability, so that, in the context of food security related to the 

socioeconomic aspects, it only considers the social aspect in terms of the population and 

does not consider the economic aspect. The land cover prediction modeling does not con-

sider the driving factors, so it only considers changes from two different data. Prediction 

modeling of the food supply and demand also has limitations. In mapping, food availa-

bility predictions only consider paddy fields (agricultural sector) without considering 

food yields in other sectors such as plantations, fisheries, and livestock. Besides that, the 

population projection is approached linearly by assuming constant changes occur. At the 

same time, the predictive modeling of food needs does not consider the calorie needs of 

everyone based on age and gender. The last limitation calculates environmental factors 

using a linear regression model to find the relationship between each environmental fac-

tor and productivity, because not every parameter of productivity has a high match with 

linear regression. 

This research can be improved in the future by involving four pillars in predicting 

food security that includes the first pillar, namely food availability such as types of crops 

grown, land management, and aspects of food distribution [61,62]. The second pillar is 

food accessibility, which is everyone’s access to adequate food based on their ability to 

buy, so one of the things that limit accessibility to food is the socioeconomic aspect of each 

individual [61,63]. The third pillar is the utilization, which, in this pillar, considers aspects 

of food quality, so things that need to be considered are the availability of clean water, 

sanitation, the level of public health, etc. [61]. The fourth pillar is stability, where everyone 

must always have access to food at all times to achieve resilience; in this pillar, one must 

consider all things related to crop failures, such as natural disasters, disease outbreaks, 

and the climate [64,65]. The four pillars can be included and analyzed in the calculation 

of food security. Of course, combining the four pillars during the calculation of the food 

security index will be a challenge in the future, because it will certainly require a lot of 

data integration [66]. Then, the driving factors related to land cover prediction, such as 

road distance, river distance, land slope, altitude, population density, etc., can be used 

[67]. Other land covers can be added for analyzing food availability, especially in farm 

Figure 10. Food availability (a) without environmental factors and (b) with environmental factors.

With the availability of information on the distribution of food availability in an area, it
will be possible to increase productivity in areas that experience low availability. Handling
areas with low productivity can increase the value of food availability in a city. In addition,
knowing areas with high availability can be used for regional planning to determine areas
that focus on food production.

4.5. Limitation and Future Possible Direction

This research has several limitations that need to be considered. First, in this study,
the prediction of food security only looks at the availability pillar, which includes aspects
of food needs and food availability, so that, in the context of food security related to
the socioeconomic aspects, it only considers the social aspect in terms of the population
and does not consider the economic aspect. The land cover prediction modeling does
not consider the driving factors, so it only considers changes from two different data.
Prediction modeling of the food supply and demand also has limitations. In mapping, food
availability predictions only consider paddy fields (agricultural sector) without considering
food yields in other sectors such as plantations, fisheries, and livestock. Besides that, the
population projection is approached linearly by assuming constant changes occur. At the
same time, the predictive modeling of food needs does not consider the calorie needs of
everyone based on age and gender. The last limitation calculates environmental factors
using a linear regression model to find the relationship between each environmental factor
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and productivity, because not every parameter of productivity has a high match with
linear regression.

This research can be improved in the future by involving four pillars in predicting
food security that includes the first pillar, namely food availability such as types of crops
grown, land management, and aspects of food distribution [61,62]. The second pillar is
food accessibility, which is everyone’s access to adequate food based on their ability to
buy, so one of the things that limit accessibility to food is the socioeconomic aspect of each
individual [61,63]. The third pillar is the utilization, which, in this pillar, considers aspects
of food quality, so things that need to be considered are the availability of clean water,
sanitation, the level of public health, etc. [61]. The fourth pillar is stability, where everyone
must always have access to food at all times to achieve resilience; in this pillar, one must
consider all things related to crop failures, such as natural disasters, disease outbreaks,
and the climate [64,65]. The four pillars can be included and analyzed in the calculation
of food security. Of course, combining the four pillars during the calculation of the food
security index will be a challenge in the future, because it will certainly require a lot of
data integration [66]. Then, the driving factors related to land cover prediction, such as
road distance, river distance, land slope, altitude, population density, etc., can be used [67].
Other land covers can be added for analyzing food availability, especially in farm areas,
forests, fields, reservoirs, and others. Population projections can be increased by using
other equations such as exponential, logarithmic, and power to facilitate external factors
in population growth [68]. In addition, age and gender data [69] can be used because the
energy needs of every human being depend on age and gender. In conducting a review
of the environmental factors, it can still be improved to show the productivity of paddy
fields by adding other environmental factors to complete 49.4% of the other influences,
such as soil type [70]), aspect [71], etc. Finally, models such as polynomial models and
others can be used in reviewing the environmental factors. In addition, the development
of a spatial modeling approach can also be used to estimate future energy security [72,73],
the mitigation of future geohazards [74–76], and water pollution management for paddy
fields [77].

5. Conclusions

As one of the national rice barns, West Java has a vital role in national food security.
Due to rapid population growth and a significant decrease in paddy fields in several areas,
food security continues to decline. The government as the stakeholder must be able to
create policies regarding food to avoid a food security deficit in regions in West Java. Food
security predictions were made for 2030 in West Java using geospatial data and remote
sensing to anticipate this condition. The first step was to predict the land cover for 2030.
The results showed that paddy fields cover decreases yearly, calculated for every five years.
The decrease in the paddy fields area in 2030 was 31% compared to the paddy fields in 2005.
The predicted land cover was validated using the confusion matrix method and resulted in
an accuracy of 93%. The paddy fields, which is the focus of the research, have a mapping
accuracy value of 83%.

The land cover obtained from the prediction results is then used to calculate the food
security in 2030. In 2030, the food status in West Java will be dominated by a deficit status.
Only six regions will have a surplus food status, namely Karawang Regency, Indramayu
Regency, Subang Regency, Majalengka Regency, Purwakarta Regency, and Cianjur Regency.
It is also quite clear that these six areas have the highest availability compared to other
areas. The environmental factors that influence food security were analyzed using the mul-
tivariable linear regression method. The variables used are NDDI, precipitation, humidity,
LST, elevation, and slope. From these results, the coefficient of determination value was
0.5066, or it could be concluded that the seven factors affected the productivity of paddy
fields, reaching 50.6% of all the factors that influenced it. The integration of the area of rice
fields with environmental factors was carried out to determine the distribution of the rice
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field productivity in a city. The average 30” × 30” (~1 km × ~1 km) paddy field has an
availability of 2,042.012 Mcal, with the largest availability value being 183,516.201 Mcal.
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