Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,539)

Search Parameters:
Keywords = N2 component

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 10056 KB  
Article
An Electrical Equivalent Model of an Electromembrane Stack with Fouling Under Pulsed Operation
by Pablo Yáñez, Hector Ramirez and Alvaro Gonzalez-Vogel
Membranes 2026, 16(1), 42; https://doi.org/10.3390/membranes16010042 (registering DOI) - 16 Jan 2026
Abstract
This study introduces a novel hybrid model for an electromembrane stack, unifying an equivalent electrical circuit model incorporating specific resistance (RM,Rs) and capacitance (Cgs,Cdl) parameters with an empirical fouling [...] Read more.
This study introduces a novel hybrid model for an electromembrane stack, unifying an equivalent electrical circuit model incorporating specific resistance (RM,Rs) and capacitance (Cgs,Cdl) parameters with an empirical fouling model in a single framework. The model simplifies the traditional approach by serially connecting N (N=10) ion exchange membranes (anionic PC-SA and cationic PC-SK) and is validated using NaCl and Na2SO4 solutions in comparison with laboratory tests using various voltage signals, including direct current and electrically pulsed reversal operations at frequencies of 2000 and 4000 Hz. The model specifically accounts for the chemical stratification of the cell unit into bulk solution, diffusion, and Stern layers. We also included a calibration method using correction factors (αi) to fine-tune the electrical current signals induced by voltage stimulation. The empirical component of the model uses experimental data to simulate membrane fouling, ensuring consistency with laboratory-scale desalination processes performed under pulsed reversal operations and achieving a prediction error of less than 10%. In addition, a comparative analysis was used to assess the increase in electrical resistance due to fouling. By integrating electronic and empirical electrochemical data, this hybrid model opens the way to the construction of simple, practical, and reliable models that complement theoretical approaches, signifying an advance for a variety of electromembrane-based technologies. Full article
Show Figures

Graphical abstract

16 pages, 737 KB  
Review
Research on Key Technologies for Microwave Wireless Power Transfer Receivers
by Man Ruan, Xudong Wang, Wanli Xu, Long Huang, Kai Wu, Mengyi Wang, Yujuan Yin and Jinmao Chen
Energies 2026, 19(2), 438; https://doi.org/10.3390/en19020438 (registering DOI) - 16 Jan 2026
Abstract
Microwave wireless power transfer (MWPT) technology has the advantages of long distance and high transmission efficiency; therefore, MWPT has many applications in aerospace, space solar power stations (SSPSs), and so on. The receiving and fixing subsystem is the core component for gathering and [...] Read more.
Microwave wireless power transfer (MWPT) technology has the advantages of long distance and high transmission efficiency; therefore, MWPT has many applications in aerospace, space solar power stations (SSPSs), and so on. The receiving and fixing subsystem is the core component for gathering and converting power and it is the main part of the system. If this step is both efficient and possible, the whole system will also be efficient and its success possible. This paper mainly introduces a systematic review of the key technologies, research status, and development trends of the receiving-end part in MWPT. High-performance rectifying devices are analyzed in detail, with the use of GaN Schottky barrier diodes (GaN SBDs), in addition to rectification circuits that have good rectification and impedance matching. Additionally, it compares the advantages and disadvantages of three power synthesis architectures, including RF synthesis, DC synthesis, and hybrid subarray synthesis, and proposes a strategy for optimizing power distribution through intelligent subarray partitioning. Finally, this paper looks at future development trends in receiving-end technology, including miniaturized monolithic microwave integrated circuits (MMICs) and efficient broadband reconfigurable rectification. The research presented herein offers a systematic technical reference and theoretical foundation for enhancing the performance of the receiving ends in microwave wireless power transfer systems. Full article
(This article belongs to the Special Issue Design, Modelling and Analysis for Wireless Power Transfer Systems)
Show Figures

Figure 1

18 pages, 3987 KB  
Article
Low-Latency Autonomous Surveillance in Defense Environments: A Hybrid RTSP-WebRTC Architecture with YOLOv11
by Juan José Castro-Castaño, William Efrén Chirán-Alpala, Guillermo Alfonso Giraldo-Martínez, José David Ortega-Pabón, Edison Camilo Rodríguez-Amézquita, Diego Ferney Gallego-Franco and Yeison Alberto Garcés-Gómez
Computers 2026, 15(1), 62; https://doi.org/10.3390/computers15010062 (registering DOI) - 16 Jan 2026
Abstract
This article presents the Intelligent Monitoring System (IMS), an AI-assisted, low-latency surveillance platform designed for defense environments. The study addresses the need for real-time autonomous situational awareness by integrating high-speed video transmission with advanced computer vision analytics in constrained network settings. The IMS [...] Read more.
This article presents the Intelligent Monitoring System (IMS), an AI-assisted, low-latency surveillance platform designed for defense environments. The study addresses the need for real-time autonomous situational awareness by integrating high-speed video transmission with advanced computer vision analytics in constrained network settings. The IMS employs a hybrid transmission architecture based on RTSP for ingestion and WHEP/WebRTC for distribution, orchestrated via MediaMTX, with the objective of achieving end-to-end latencies below one second. The methodology includes a comparative evaluation of video streaming protocols (JPEG-over-WebSocket, HLS, WebRTC, etc.) and AI frameworks, alongside the modular architectural design and prolonged experimental validation. The detection module integrates YOLOv11 models fine-tuned on the VisDrone dataset to optimize performance for small objects, aerial views, and dense scenes. Experimental results, obtained through over 300 h of operational tests using IP cameras and aerial platforms, confirmed the stability and performance of the chosen architecture, maintaining latencies close to 500 ms. The YOLOv11 family was adopted as the primary detection framework, providing an effective trade-off between accuracy and inference performance in real-time scenarios. The YOLOv11n model was trained and validated on a Tesla T4 GPU, and YOLOv11m will be validated on the target platform in subsequent experiments. The findings demonstrate the technical viability and operational relevance of the IMS as a core component for autonomous surveillance systems in defense, satisfying strict requirements for speed, stability, and robust detection of vehicles and pedestrians. Full article
Show Figures

Figure 1

15 pages, 2987 KB  
Article
Altered Plasma Endocannabinoids and Oxylipins in Adolescents with Major Depressive Disorders: A Case–Control Study
by Akash Chakravarty, Abinaya Sreetharan, Ester Osuna, Isabelle Herter-Aeberli, Isabelle Häberling, Jeannine Baumgartner, Gregor E. Berger and Martin Hersberger
Nutrients 2026, 18(2), 280; https://doi.org/10.3390/nu18020280 (registering DOI) - 15 Jan 2026
Abstract
Background: Pediatric Major Depressive Disorder (pMDD) is one of the leading causes of disability in adolescents. There is currently no single explanation that fully accounts for the cause of the disorder, but various factors, including dysregulation of the immune and stress responses, have [...] Read more.
Background: Pediatric Major Depressive Disorder (pMDD) is one of the leading causes of disability in adolescents. There is currently no single explanation that fully accounts for the cause of the disorder, but various factors, including dysregulation of the immune and stress responses, have been linked to its onset. Oxylipins and endocannabinoids, derived from metabolization of n-3 and n-6 polyunsaturated fatty acids (PUFAs), regulate inflammation and have been suggested to attenuate inflammation associated with depression. This study aims to understand whether adolescents with pMDD have altered baseline levels of oxylipins and endocannabinoids compared to healthy adolescents. Methods: In this case–control study, we measured 60 oxylipins and endocannabinoids in plasma from 82 adolescents with pMDD and their matching healthy controls. Results: A Principal Component Analysis revealed substantial variability within each group and only a moderate degree of separation between them. In a paired analysis, the lipid mediators of controls exhibited higher concentrations of n-6 PUFA-derived prostaglandins and thromboxanes (PGE2, PGD2, PGF2a and TXB2), n-3 PUFA-derived TxB3, and the endocannabinoids AEA, EPEA, and DHEA. In contrast, cases had higher concentrations of the n-6 PUFA-derived 6-keto-PGF1a and the n-3 PUFA-derived PGD3. In addition, we observed a higher percentage of oxylipins and endocannabinoids derived from DHA (5.65 ± 5.46% vs. 4.72 ± 4.94%) and AA (16.31 ± 11.10% vs. 12.76 ± 13.46%) in plasma from controls, in line with the higher DHA and AA levels observed in erythrocytes from controls compared to cases. Conclusions: Overall, our results show lower plasma levels of endocannabinoids and lower DHA- and AA-derived oxylipins in adolescents with pMDD, supporting their role in the pathophysiology of pMDD. To infer a causative role of the n-3 and n-6 PUFA-derived oxylipins and endocannabinoids in pMDD, an intervention study with n-3 PUFA supplementation and monitoring of oxylipins and endocannabinoids would be necessary. Full article
Show Figures

Figure 1

20 pages, 2766 KB  
Article
Simultaneous ManNAc and Neu5Ac Quantification in Human Sera by LC-MS/MS
by Gerardo N. Guerrero-Flores, Fabio J. Pacheco, Veronica L. Martinez Marignac, Christopher C. Perry, Guangyu Zhang, Martin L. Mayta, Josef Voglmeir, Li Liu, Gary E. Fraser, Fayth M. Butler and Danilo S. Boskovic
Int. J. Mol. Sci. 2026, 27(2), 894; https://doi.org/10.3390/ijms27020894 (registering DOI) - 15 Jan 2026
Abstract
N-Acetyl-D-mannosamine (ManNAc) and N-acetylneuraminic acid (Neu5Ac) are important components of glycosylation, affecting numerous physiologic processes. The effects of age, body mass index (BMI), race, or sex on serum levels of ManNAc and Neu5Ac are poorly understood. However, these associations are of substantial interest. [...] Read more.
N-Acetyl-D-mannosamine (ManNAc) and N-acetylneuraminic acid (Neu5Ac) are important components of glycosylation, affecting numerous physiologic processes. The effects of age, body mass index (BMI), race, or sex on serum levels of ManNAc and Neu5Ac are poorly understood. However, these associations are of substantial interest. Simultaneous quantification of ManNAc and Neu5Ac, using liquid chromatography tandem mass spectrometry (LC-MS/MS), was developed and validated for human serum samples. This method has high sensitivity, specificity, and reproducibility, with limits of detection as low as 1.02 ng/mL for ManNAc or 1.14 ng/mL for Neu5Ac. A set of 155 serum samples from the Adventist Health Study 2 (AHS-2) cohort was analyzed. Concentrations of conjugated Neu5Ac were 35.1 ± 9.4 µg/mL and 33.0 ± 9.5 µg/mL in black and white participants, respectively. Conjugated and total Neu5Ac levels were significantly higher in women, with p-values of 0.029 and 0.026, respectively. The free forms of Neu5Ac were 594 ± 421 ng/mL and 439 ± 168 ng/mL in black and white participants, respectively. Similarly, conjugated and total ManNAc levels were higher in black participants, at 1.81 ± 0.81 µg/mL and 1.90 ± 0.83 µg/mL, compared to 1.32 ± 0.52 µg/mL and 1.41 ± 0.53 µg/mL in white participants (both cases, p < 0.001). Free ManNAc was 93.1 ± 36.2 ng/mL in black and 89 ± 20.2 ng/mL in white participants. Subjects with higher BMI tend to have higher free ManNAc (p = 0.041). Furthermore, older subjects tend to have higher free (p ≤ 0.001) and total (p = 0.045) ManNAc. The improved LC-MS/MS quantification method should facilitate further investigations. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 360 KB  
Article
Analysis of Emergy–Economy Coupling in Maize Farmland Ecosystems Under Nitrogen and Phosphorus Reduction and Optimization of Fertilization Schemes
by Kai Lu and Weiguo Fu
Sustainability 2026, 18(2), 901; https://doi.org/10.3390/su18020901 - 15 Jan 2026
Abstract
This study optimizes fertilization schemes through the emergy analysis of different nutrient reduction treatments in maize cropping ecosystems in Xinjiang, thereby providing technical support for improving chemical fertilizer use efficiency and maintaining the stability of farmland ecosystems. The study was conducted in 2024 [...] Read more.
This study optimizes fertilization schemes through the emergy analysis of different nutrient reduction treatments in maize cropping ecosystems in Xinjiang, thereby providing technical support for improving chemical fertilizer use efficiency and maintaining the stability of farmland ecosystems. The study was conducted in 2024 at Huaxing Farm in Changji Hui Autonomous Prefecture, Xinjiang Uyghur Autonomous Region. The experiment used the local conventional nitrogen and phosphorus fertilization rates as the control treatment N0P0 (applying P 183 kg·hm−2 and N 246 kg·hm−2), with eight different N and P nutrient reduction treatments: N0P1 (10% reduction in P only), N0P2 (20% reduction in P only), N1P0 (10% reduction in N only), N2P0 (20% N reduction), N1P1 (10% N and P reduction), N1P2 (10% N and 20% P reduction), N2P1 (20% N and 10% P reduction), and N2P2 (20% N and P reduction). Each treatment was replicated three times. Based on biomass data of maize plant components under different fertilization treatments, emergy analysis of farmland ecosystems and integration of economic benefit indicators led to the optimization of an optimal fertilization scheme. Results indicate that the N0P1 treatment performed optimally: maize plant biomass reached 251.09 g, significantly higher than other treatments. The N0P1 treatment exhibited the highest energy output (3.23 × 1016 sej·hm−2), the highest net energy yield ratio (EYR) of 1.45, and an energy sustainability index (ESI) of 3.34, representing a high level. It also delivered the highest economic benefit, with a net profit of 8571.95 CNY·hm−2 and a production–investment ratio of 1.71. In conclusion, the N0P1 treatment (10% reduction in phosphorus alone) demonstrated superior performance in biomass yield, energy utilization efficiency, ecological sustainability, and economic benefits, making it the optimal fertilization strategy for maize fields in this region. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

23 pages, 11760 KB  
Article
Evaluating Multi-Temporal Sentinel-1 and Sentinel-2 Imagery for Crop Classification: A Case Study in a Paddy Rice Growing Region of China
by Rui Wang, Le Xia, Tonglu Jia, Qinxin Zhao, Qiuhua He, Qinghua Xie and Haiqiang Fu
Sensors 2026, 26(2), 586; https://doi.org/10.3390/s26020586 - 15 Jan 2026
Abstract
Information on crop planting structure serves as a key reference for crop growth monitoring and agricultural structural adjustment. Mapping the spatial distribution of crops through feature-based classification serves as a fundamental component of sustainable agricultural development. However, current crop classification methods often face [...] Read more.
Information on crop planting structure serves as a key reference for crop growth monitoring and agricultural structural adjustment. Mapping the spatial distribution of crops through feature-based classification serves as a fundamental component of sustainable agricultural development. However, current crop classification methods often face challenges such as the discontinuity of optical data due to cloud cover and the limited discriminative capability of traditional SAR backscatter intensity for spectrally similar crops. In this case study, we assess multi-temporal Sentinel-1 and Sentinel-2 Satellite images for crop classification in a paddy rice growing region in Helonghu Town, located in the central region of Xiangyin County, Yueyang City, Hunan Province, China (28.5° N–29.0° N, 112.8° E–113.2° E). We systematically investigate three key aspects: (1) the classification performance using optical time-series Sentinel-2 imagery; (2) the time-series classification performance utilizing polarimetric SAR decomposition features from Sentinel-1 dual-polarimetric SAR images; and (3) the classification performance based on a combination of Sentinel-1 and Sentinel-2 images. Optimal classification results, with the highest overall accuracy and Kappa coefficient, are achieved through the combination of Sentinel-1 (SAR) and Sentinel-2 (optical) data. This case study evaluates the time-series classification performance of Sentinel-1 and Sentinel-2 data to determine the optimal approach for crop classification in Helonghu Town. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

17 pages, 734 KB  
Article
Predictive Accuracy of Glasgow Coma Scale and Pupillary Data on Presence of Traumatic Brain Injury
by Diana Schüller, Arasch Wafaisade, Rolf Lefering, Filippo Migliorini, Eftychios Bolierakis, Matthias Weuster, Yusuke Kubo, Matthias Fröhlich and Arne Driessen
J. Clin. Med. 2026, 15(2), 697; https://doi.org/10.3390/jcm15020697 - 15 Jan 2026
Abstract
Background/Objectives: The GCS is widely used to assess a patient’s level of consciousness after trauma. Although not a diagnostic tool for traumatic brain injury (TBI), prehospital clinicians frequently rely on GCS findings—along with pupil exam, mechanism of injury, and clinical presentation, to estimate [...] Read more.
Background/Objectives: The GCS is widely used to assess a patient’s level of consciousness after trauma. Although not a diagnostic tool for traumatic brain injury (TBI), prehospital clinicians frequently rely on GCS findings—along with pupil exam, mechanism of injury, and clinical presentation, to estimate the likelihood that TBI may be present before imaging is available. However, the GCS has known limitations and fails to identify a significant proportion of TBI patients. This study aimed to evaluate the association between GCS scores and the presence of TBI, and whether additional clinical variables improve its discriminatory value. Methods: This retrospective cohort study analyzed data from trauma patients registered in the TraumaRegister DGU® between 2015 and 2017. TBI was defined as a head injury with an Abbreviated Injury Scale (AISHead) score of ≥2. Inclusion criteria consisted of trauma team activations with a maximum AIS ≥ 3 and/or the need for intensive care. Prognostic values were assessed using multivariable logistic regression analysis. Results: 40,216 patients were included of which 17,205 (42.8%) were diagnosed with TBI and 23,011 (57.2%) were non-TBI patients. In the TBI group, 36.4% (n = 6216) presented with an initial GCS of 15 prehospitally. 17.8% (n = 3059) of TBI patients had anisocoric or bilaterally dilated pupils, 22.1% (n = 3799) had sluggish or fixed light reactivity and 17% (n = 2934) had no motoric response in Eppendorf-Cologne Scale (ECS) motor component. GCS score by itself showed better TBI prediction value than pupil size or reactivity or motor component alone. Nevertheless, substantial misclassification was observed when using GCS alone: 25.7% of patients with a normal GCS (15) had TBI (AIS Head ≥ 2), while 19.1% of patients with GCS 3 had no TBI. In the non-TBI group, 2.7% (n = 622) had a GCS of 3, 2.9% (n = 685) had anisocoric or bilaterally dilated pupils, 4.2% (n = 960) had sluggish or fixed light reactivity and 3.3% (n = 751) had no motoric response. Even at the lowest GCS score of 3, 19.1% of patients did not have TBI, while a normal GCS of 15 still included 25.7% of patients with TBI. Conclusions: The expanded model combining GCS with pupillary assessment and the ECS motor component demonstrated superior performance in prehospital TBI detection compared with the GCS alone. Implementing an extended GCS incorporating pupillary and ECS assessment may facilitate earlier recognition of TBI and support timely triage decisions; however, potential effects on patient outcomes require confirmation in prospective studies. Full article
(This article belongs to the Special Issue Traumatic Brain Injury: Current Treatment and Future Options)
Show Figures

Figure 1

33 pages, 2598 KB  
Article
Using Co-Design to Adapt a Digital Parenting Program for Parents Seeking Mental Health Support
by Meg Louise Bennett, Ling Wu, Joshua Paolo Seguin, Patrick Olivier, Andrea Reupert, Anthony F. Jorm, Sylvia Grant, Helen Vaxevanis, Mingye Li, Jue Xie and Marie Bee Hui Yap
Children 2026, 13(1), 129; https://doi.org/10.3390/children13010129 - 15 Jan 2026
Abstract
Background/Objectives: Parental mental health challenges are associated with parenting difficulties and child mental health issues. Parenting interventions can support families; however, parents with mental health challenges face barriers to accessing parenting support, which is not consistently offered within adult mental health settings. [...] Read more.
Background/Objectives: Parental mental health challenges are associated with parenting difficulties and child mental health issues. Parenting interventions can support families; however, parents with mental health challenges face barriers to accessing parenting support, which is not consistently offered within adult mental health settings. Embedding technology-assisted parenting programs into these settings could provide accessible, holistic support. Partners in Parenting Kids (PiP Kids) is a digital parenting program designed to prevent child anxiety and depression, yet its suitability for parents with mental health challenges and fit within mental health services remains unclear. This study aimed to co-design and adapt PiP Kids for future implementation in an Australian adult mental health service. Methods: Parents who recently sought mental health support (n = 8) and service providers (n = 7) participated in co-design workshops to explore needs and preferences for a technology-assisted parenting program and iteratively develop a prototype. Parents (n = 3) trialled the online component of the prototype and participated in qualitative interviews to assess acceptability. Results: The adapted clinician-supported program was designed to facilitate (1) parent and clinician readiness for parenting support; (2) emotional and social support for parents and clinicians; (3) practical, personalised parenting knowledge; (4) parent-led empowerment; and (5) accessible, integrated support. Prototype clinician training was developed to strengthen the clinician-support component. Parents indicated initial acceptability of the online prototype while reiterating the value of including face-to-face support. Conclusions: This study co-designed an online, clinician-supported parenting program for future embedding within adult mental health settings. The findings highlight key considerations for developing and implementing technology-assisted interventions that promote family-focused care for parents seeking mental health support. Full article
(This article belongs to the Special Issue Parental Mental Health and Child Development)
Show Figures

Figure 1

21 pages, 1080 KB  
Article
Exploring Perspectives on Kidney Donation: Medical and Non-Medical Students in Croatia
by Ariana Tea Šamija, Lara Lubina, Victoria Frances McGale and Nikolina Bašić-Jukić
J. Clin. Med. 2026, 15(2), 681; https://doi.org/10.3390/jcm15020681 - 14 Jan 2026
Abstract
Background/Objectives: Kidney donation remains a critical component of addressing end-stage renal disease. This study examines differences in awareness, willingness to donate, and concerns related to kidney donation among medical and non-medical university students. By comparing these groups within the context of Croatia’s presumed-consent [...] Read more.
Background/Objectives: Kidney donation remains a critical component of addressing end-stage renal disease. This study examines differences in awareness, willingness to donate, and concerns related to kidney donation among medical and non-medical university students. By comparing these groups within the context of Croatia’s presumed-consent system for organ donation, the study provides insights into how educational backgrounds shape attitudes in a setting with high transplantation rates but limited data on young adults. Methods: A cross-sectional observational study targeted at medical and non-medical university students in Croatia. Data were collected from 640 participants via a self-administered, close-ended, structured questionnaire with 33 items divided across three sections. Responses were analyzed using IBM SPSS Statistics program (v. 30.0), to identify significant differences. Due to the cross-sectional design, causal relationships could not be inferred. Results: Overall, 190 students (28.7%) reported willingness to donate a kidney during their lifetime, which was more common among medical students (N = 59; 39.0%) than non-medical students (N = 131; 26.8%). Collectively, willingness to donate postmortem was high in both groups (N = 527; 82.3%), as was willingness in a brain-dead state (N = 448; 70.0%). Medical and non-medical students mostly cited perceived health risks as a concern and concerns related to surgical complications. Regarding information sources, 33.2% of students reported inadequate knowledge of kidney donation, with social media and internet searches cited more frequently than healthcare professionals. Conclusions: Our findings indicate that medical and non-medical students exhibit distinct gaps in knowledge, risk perception and willingness toward kidney donation. Within Croatia’s presumed-consent framework, these findings highlight the importance of targeted educational strategies to support informed decision-making among future generations. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

23 pages, 1740 KB  
Article
Print Exposure Interaction with Neural Tuning on Letter/Non-Letter Processing During Literacy Acquisition: An ERP Study on Dyslexic and Typically Developing Children
by Elizaveta Galperina, Olga Kruchinina, Polina Boichenkova and Alexander Kornev
Languages 2026, 11(1), 15; https://doi.org/10.3390/languages11010015 - 14 Jan 2026
Abstract
Background/Objectives: The first step in learning an alphabetic writing system is to establish letter–sound associations. This process is more difficult for children with dyslexia (DYS) than for typically developing (TD) children. Cerebral mechanisms underlying these associations are not fully understood and are [...] Read more.
Background/Objectives: The first step in learning an alphabetic writing system is to establish letter–sound associations. This process is more difficult for children with dyslexia (DYS) than for typically developing (TD) children. Cerebral mechanisms underlying these associations are not fully understood and are expected to change during the training course. This study aimed to identify the neurophysiological correlates and developmental changes of visual letter processing in children with DYS compared to TD children, using event-related potentials (ERPs) during a letter/non-letter classification task. Methods: A total of 71 Russian-speaking children aged 7–11 years participated in the study, including 38 with dyslexia and 33 TD children. The participants were divided into younger (7–8 y.o.) and older (9–11 y.o.) subgroups. EEG recordings were taken while participants classified letters and non-letter characters. We analyzed ERP components (N/P150, N170, P260, P300, N320, and P600) in left-hemisphere regions of interest related to reading: the ventral occipito-temporal cortex (VWFA ROI) and the inferior frontal cortex (frontal ROI). Results: Behavioral differences, specifically lower accuracy in children with dyslexia, were observed only in the younger subgroup. ERP analysis indicated that both groups displayed common stimulus effects, such as a larger N170 for letters in younger children. However, their developmental trajectories diverged. The DYS group showed an age-related increase in the amplitude of early components (N/P150 in VWFA ROI), which contrasts with the typical decrease observed in TD children. In contrast, the late P600 component in the frontal ROI revealed an age-related decrease in the DYS group, along with overall reduced amplitudes compared to their TD peers. Additionally, the N320 component differentiated stimuli exclusively in the DYS group. Conclusions: The data obtained in this study confirmed that the mechanisms of letter recognition in children with dyslexia differ in some ways from those of their TD peers. This atypical developmental pattern involves a failure to efficiently specialize early visual processing, as evidenced by the increasing N/P150. Additionally, there is a progressive reduction in the cognitive resources available for higher-order reanalysis and control, indicated by the decreasing frontal P600. This disruption in neural specialization and automation ultimately hinders the development of fluent reading. Full article
Show Figures

Figure 1

15 pages, 675 KB  
Article
Dysregulation of MMP-2 and MMP-9 in Post-COVID-19 and IPF: Correlations with Systemic Inflammation and Endothelial Dysfunction
by Olga V. Balan, Irina E. Malysheva, Ella L. Tikhonovich and Liudmila A. Lysenko
J. Clin. Med. 2026, 15(2), 671; https://doi.org/10.3390/jcm15020671 - 14 Jan 2026
Abstract
Background/Objectives: Post-COVID-19 pulmonary fibrosis (PCPF) and idiopathic pulmonary fibrosis (IPF) exhibit significant clinical and pathophysiological overlap, suggesting convergent molecular pathways driving fibrosis. This prospective longitudinal study investigates the sustained dysregulation of matrix metalloproteinases (MMP)-2 and MMP-9 and its relationship with evolving systemic [...] Read more.
Background/Objectives: Post-COVID-19 pulmonary fibrosis (PCPF) and idiopathic pulmonary fibrosis (IPF) exhibit significant clinical and pathophysiological overlap, suggesting convergent molecular pathways driving fibrosis. This prospective longitudinal study investigates the sustained dysregulation of matrix metalloproteinases (MMP)-2 and MMP-9 and its relationship with evolving systemic inflammation and endothelial dysfunction in convalescent COVID-19 patients, with comparative analysis to IPF. Methods: We conducted a prospective observational study of 86 patients at 6 and 12 months post-SARS-CoV-2 infection, stratified by high-resolution CT evidence of PCPF (FB+ group, n = 32) or absence of fibrosis (FB− group, n = 54). Gene expression of MMP-2 and MMP-9 in peripheral blood leukocytes and circulating levels of MMP-2, MMP-9, pro-inflammatory cytokines (TNF-α, IL-6), and endothelial dysfunction markers (Endothelin-1 [ET-1], adhesion molecules) were quantified via qRT-PCR and ELISA. A pre-pandemic healthy control group (HD, n = 20) and an IPF patient group (n = 10) served as comparators. Results: A significant, sustained elevation of MMP-2 and MMP-9 was observed in all post-COVID-19 patients versus HDs, most pronounced in the FB+ group and qualitatively similar to IPF. A critical divergence emerged: FB− patients showed resolution of systemic inflammation (reduced TNF-α, IL-6), whereas FB+ patients exhibited persistent cytokine elevation. Critically, a delayed, severe endothelial dysfunction, characterized by a profound surge in ET-1 and elevated adhesion molecules, manifested exclusively in the FB+ cohort at 12 months. Positive correlations linked plasma MMP-2/9 levels with ET-1 (rs = 0.65, p = 0.004; rs = 0.49, p = 0.009) and ET-1 with sICAM-1 (rs = 0.68, p = 0.01). Conclusions: The development of PCPF is associated with a distinct pathogenic triad: sustained MMP dysregulation, failure to resolve inflammation, and severe late-phase endothelial dysfunction. The correlative links between these components suggest a self-reinforcing loop. This systemic signature mirrors patterns in IPF, underscoring shared final pathways in fibrotic lung disease and identifying the MMP–inflammation–endothelial axis as a promising target for biomarker development and therapeutic intervention. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

21 pages, 779 KB  
Article
Vegetation Indices for Predicting Ripening-Associated Changes in Chlorophyll and Polyphenol Content: A Multi-Cultivar Assessment in Olive Germplasm
by Miriam Distefano, Giovanni Avola, Giosuè Giacoppo, Beniamino Gioli and Ezio Riggi
Remote Sens. 2026, 18(2), 269; https://doi.org/10.3390/rs18020269 - 14 Jan 2026
Abstract
Vegetation indices (VIs) enable rapid, non-destructive biochemical monitoring in olive fruits, yet their performance across diverse germplasm and ripening stages remains systematically uncharacterized. This exploratory screening systematically evaluated 87 VIs for predicting chlorophyll and polyphenol content across 31 cultivars at four ripening stages, [...] Read more.
Vegetation indices (VIs) enable rapid, non-destructive biochemical monitoring in olive fruits, yet their performance across diverse germplasm and ripening stages remains systematically uncharacterized. This exploratory screening systematically evaluated 87 VIs for predicting chlorophyll and polyphenol content across 31 cultivars at four ripening stages, prioritizing genetic diversity to establish species-level biochemical–spectral relationships through integration of hyperspectral data (380–1080 nm) with biochemical analyses. Modified Chlorophyll Absorption Ratio Index 3 (MCARI 3) and Transformed Chlorophyll Absorption Ratio Index (TCARI) achieved 91 strong correlations (|r| ≥ 0.9) across 124 cultivar-stage combinations. High-performing indices incorporated 550 nm with red/red-edge bands (670–710 nm) and non-linear formulations. Moderate inter-cultivar variability indicated that cultivar-specific calibrations may be necessary. Principal component analysis captured the totality of variance, revealing three biochemical clusters, high-chlorophyll cultivars (n = 5; 91.8 and 7385.6 mg kg−1 chlorophyll/polyphenols, respectively), typical-range cultivars (n = 22; 126.6 and 4016.8 mg kg−1), and elite cultivars (n = 5; 790.4 and 5799.8 mg kg−1), demonstrating VIs’ capacity for cultivar discrimination. Chlorophyll degradation exhibited conserved patterns, supporting universal tracking models. Conversely, polyphenol dynamics displayed marked genotype-dependency, with cultivars showing positive, negative, or minimal variation, yielding non-significant population-level effects, despite robust cultivar-specific trends. Full article
Show Figures

Figure 1

15 pages, 563 KB  
Article
Assessment of Juniper Ash Elemental Composition for Potential Use in a Traditional Indigenous Dietary Pattern
by Julie M. Hess, Madeline E. Comeau, Derek D. Bussan, Kyra Schwartz and Claudia PromSchmidt
Nutrients 2026, 18(2), 260; https://doi.org/10.3390/nu18020260 - 14 Jan 2026
Abstract
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether [...] Read more.
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether juniper ash could serve as a safe source of non-dairy Ca in an intervention study. Methods: Branches from two varieties of Juniper (Rocky Mountain Juniper, or Juniperus scopulorum and Eastern Red Cedar, or Juniperus virginiana) were harvested and burned to ash in a laboratory setting. Juniper ash from the southwestern U.S. available for retail purchase was used for comparison. All samples were tested for content of 10 nutritive elements (Ca, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, selenium, and zinc) and 20 potentially toxic elements (silver, aluminum, arsenic, barium, beryllium, cadmium, cobalt, chromium, mercury, lithium, molybdenum, nickel, lead, antimony, tin, strontium, thallium, uranium, and vanadium) as well as n = 576 pesticide residues. Results: All samples contained both nutritive and potentially toxic elements. Each teaspoon of ash contained an average of 445 ± 141 mg Ca. However, the samples also contained lead in amounts ranging from 1.09 ppm to 15 ppm. Conclusions: Information on the nutritive and potentially toxic elemental content of juniper ash and how it may interact within a food matrix is insufficient to determine its safety as a Ca source. Further investigation is needed on the bioavailability of calcium oxide and its interaction with other dietary components to clarify the potential role of juniper ash in contemporary food patterns. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease—2nd Edition)
Show Figures

Figure 1

22 pages, 4286 KB  
Article
Potential Molecular Targets of the Broad-Range Antimicrobial Peptide Tyrothricin in the Apicomplexan Parasite Toxoplasma gondii
by Yosra Amdouni, Ghalia Boubaker, Joachim Müller, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anne-Christine Uldry, Sophie Braga-Lagache, Manfred Heller and Andrew Hemphill
Biomedicines 2026, 14(1), 172; https://doi.org/10.3390/biomedicines14010172 - 13 Jan 2026
Viewed by 18
Abstract
Background: The apicomplexan parasite Toxoplasma gondii causes serious diseases in animals and humans. The in vitro efficacy of the antimicrobial peptide mixture tyrothricin, composed of tyrocidines and gramicidins, against T. gondii tachyzoites was investigated. Methods: Effects against T. gondii were determined by monitoring [...] Read more.
Background: The apicomplexan parasite Toxoplasma gondii causes serious diseases in animals and humans. The in vitro efficacy of the antimicrobial peptide mixture tyrothricin, composed of tyrocidines and gramicidins, against T. gondii tachyzoites was investigated. Methods: Effects against T. gondii were determined by monitoring inhibition of tachyzoite proliferation and electron microscopy, host cell and splenocyte toxicity was measured by Alamar blue assay, and early embryo toxicity was assessed using zebrafish embryos. Differential affinity chromatography coupled to mass spectrometry and proteomics (DAC-MS-proteomics) was employed to identify potential molecular targets in T. gondii cell-free extracts. Results: Tyrothricin inhibited T. gondii proliferation at IC50s < 100 nM, with tyrocidine A being the active and gramicidin A the inactive component. Tyrothricin also impaired fibroblast, T cell and zebrafish embryo viability at 1 µM. Electron microscopy carried out after 6 h of treatment revealed cytoplasmic vacuolization and structural alterations in the parasite mitochondrion, but these changes appeared only transiently, and tachyzoites recovered after 96 h. Tyrothricin also induced a reduction in the mitochondrial membrane potential. DAC-MS-proteomics identified 521 proteins binding only to tyrocidine A. No specific binding to gramicidin A was noted, and four proteins were common to both peptides. Among the proteins binding specifically to tyrocidine A were several SRS surface antigens and secretory proteins, mitochondrial inner and outer membrane proteins associated with the electron transfer chain and porin, and several calcium-binding proteins putatively involved in signaling. Discussion: These results suggest that tyrocidine A potentially affected multiple pathways important for parasite survival and development. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

Back to TopTop