Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = N-carbamylglutamate (NCG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1837 KiB  
Article
Supplementation of Arginine or N-Carbamylglutamate Affects Jejunum Development, Global Arginine Bioavailability Ratio, and Stress-Related Indices in Young Rex Rabbits
by Feng Qin, Linlin Zhang, Le Shao, Jian Li, Jie Yang, Pin Zhai and Xia Zhang
Animals 2025, 15(10), 1354; https://doi.org/10.3390/ani15101354 - 8 May 2025
Viewed by 366
Abstract
This study aimed to investigate the effects of arginine (Arg) or N-carbamylglutamate (NCG) on jejunum development, the global arginine bioavailability ratio (GABR), and stress-related indices in young rex rabbits. Forty-five litters of newborn rabbits with similar litter weights and sizes were randomly divided [...] Read more.
This study aimed to investigate the effects of arginine (Arg) or N-carbamylglutamate (NCG) on jejunum development, the global arginine bioavailability ratio (GABR), and stress-related indices in young rex rabbits. Forty-five litters of newborn rabbits with similar litter weights and sizes were randomly divided into five groups and fed a basal diet (con group), basal diet + 0.3% Arg (0.3% Arg group), basal diet + 0.6% Arg (0.6% Arg group), basal diet + 0.03% NCG (0.03% NCG group), or basal diet + 0.06% NCG (0.06% NCG group). After weaning at 35 days, eight healthy young rabbits with similar body weights were selected from each group and slaughtered on the 36th day. Serum and jejunum samples were collected for index analysis. Arg or NCG significantly affected the jejunum structure development in the young rabbits. The villus height (V) in the treatment groups was significantly higher than that in the con group (p < 0.05) and was highly significantly improved in the 0.6% Arg group (p < 0.01). The crypt depth (C) in 0.6% Arg and 0.06% NCG groups was significantly lower than that in the con, 0.3% Arg, and 0.03% NCG groups (p < 0.05). Compared with the con group, the V/C ratio was significantly increased in the treatment groups (p < 0.05) and was excessively and significantly increased in the 0.6% Arg and 0.06% NCG groups (p < 0.01). Compared with the con group, the Nitric-Oxide (NO) levels and inducible Nitric-Oxide Synthase (iNOS) activity in serum were significantly increased in the treatment groups. The NO levels in the jejunum were also increased in the treatment groups; however, there were no significant differences (p > 0.05). The iNOS activity and mRNA expression in the jejunum of the 0.6% Arg and 0.06% NCG groups were significantly higher than those in the con group (p < 0.05). Compared with the con group, the concentration of serum corticosterone in the 0.3% Arg, 0.6% Arg, and 0.06% NCG groups was significantly reduced. Adding Arg or NCG to the basal diet significantly increased the concentration and gene mRNA expression levels of heat shock protein 70 (HSP70) in the jejunum (p < 0.05). The expression level in the 0.6% Arg and 0.06% NCG groups was significantly higher than that in the con group (p < 0.01). At 36 days, Arg and NCG improved the GABR. In the 0.6% Arg group, the GABR was increased by 16.92%. The GABR was <0.8 at the time of weaning. The Arg levels in the body did not meet the needs of the young animals. In the trial, Arg or NCG supplementation in the diet significantly increased iNOS activity and gene mRNA expression, promoting NO synthesis. Thus, it can improve jejunal morphological and structural development. Adding Arg or NCG increased HSP70 mRNA expression levels, enhanced intestinal stress tolerance, and improved intestinal health. During the lactation period, adding Arg or NCG increased the GABR, but the GABR was <0.8 during weaning. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

13 pages, 1655 KiB  
Article
Dietary Supplementation with Rumen-Protected Arginine or N-Carbamylglutamate Enhances Fetal Liver Development in Nutrient-Restricted Pregnant Hu Ewes
by Yuexia Lin, Lingwei Sun, Mengqian He, Jiehuan Xu, Caifeng Wu, Jun Gao and Jianjun Dai
Animals 2024, 14(13), 1988; https://doi.org/10.3390/ani14131988 - 5 Jul 2024
Viewed by 1370
Abstract
This study was conducted in nutrient-restricted pregnant Hu ewes to determine whether rumen-protected arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation affects fetal liver growth and development. From 35 d to 110 d of gestation, 32 Hu ewes were randomly divided into four groups: a [...] Read more.
This study was conducted in nutrient-restricted pregnant Hu ewes to determine whether rumen-protected arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation affects fetal liver growth and development. From 35 d to 110 d of gestation, 32 Hu ewes were randomly divided into four groups: a control group (100% of the National Research Council (NRC) requirements), a nutrient-restricted group (50% of the NRC requirements), and two treatment groups (ARG and NCG, 50% of the NRC requirements, supplemented with 20 g/day RP-Arg or 5 g/day NCG, respectively). Fetal body weights, fetal liver growth performance, the capability of antioxidation, and the expression of the mRNA and proteins of apoptosis-related genes in the fetal liver were determined and analyzed at 110 d of gestation. The dry matter, water, fat, protein, and ash components of the fetal livers in the RG group were found to be lower than in the CG group, and these components were significantly higher in the NCG group than in the RG group (p < 0.05). A decrease in DNA, RNA, and protein concentrations and contents, as well as in protein/DNA ratios, was observed in the RG group in comparison to the CG group (p < 0.05). Compared with the RG group, the NCG group had higher concentrations of DNA, RNA, and protein, as well as higher protein/DNA ratios (p < 0.05). The RG group had lower concentrations of cholinesterase, nitric oxide, nitric oxide synthase, superoxide dismutase, alanine aminotransferase, and total protein than the CG group (p < 0.05). The RG group had higher levels of glutathione peroxidase, maleic dialdehyde, and aspartate aminotransferase than the CG group (p < 0.05). In the RG group, the mRNA and protein expression of p53 and Bax was significantly increased (p < 0.05) compared with the CG group, and the gene expression of FasL and Bcl-2, the ratio of Bcl-2 to Bax, and the protein expression of Bcl-2 in the RG group were lower (p < 0.05) than in the CG group. It appears that RP-Arg and NCG supplementation during pregnancy could influence fetal liver growth and development. A nutrition-based therapeutic intervention to alleviate reduced fetal growth can be developed based on this study, which has demonstrated that maternal undernutrition during pregnancy induces the maldevelopment of the fetal liver. Full article
Show Figures

Figure 1

13 pages, 921 KiB  
Article
The Effect of N-Carbamylglutamate Supplementation during the Last Third of Gestation on the Growth and Development of Fetuses Born to Nutrient-Restricted Twin-Bearing Ewes
by Víctor H. Parraguez, Susan McCoard, Camila Sandoval, Francisca Candia, Paul Maclean, Wade Mace, Xinqi Liu and Francisco Sales
Animals 2024, 14(6), 946; https://doi.org/10.3390/ani14060946 - 19 Mar 2024
Viewed by 1617
Abstract
N-carbamylglutamate (NCG) is postulated to improve fetal growth in nutrient-restricted gestations when supplemented from day 35 to 110 of gestation, but the effects of supplementation from 100 days of gestation to birth have not been evaluated. The aim of this study was to [...] Read more.
N-carbamylglutamate (NCG) is postulated to improve fetal growth in nutrient-restricted gestations when supplemented from day 35 to 110 of gestation, but the effects of supplementation from 100 days of gestation to birth have not been evaluated. The aim of this study was to evaluate the effect of oral NCG supplementation from 100 days of gestation (dga) to term in naturally nutrient-restricted grazing twin-bearing ewes, on the maternal body weight (BW), body condition score (BCS), placental morphology, fetal body and organ weights and blood biochemistry and antioxidant status in the ewe and fetuses. Eighteen twin-bearing ewes maintained under grazing management were randomly allocated to either a treatment group (NCG; n = 10), orally dosed once daily with 60 mg/kg of NCG from day 100 until 140 dga, or an unsupplemented control group (CON; n = 8). At 140 dga, blood gases, redox status, maternal and fetal plasma and fetal biometrics were obtained after caesarian section. The serum concentration of NCG was increased 15-fold in the NCG ewes compared to the CON. No major effects on dam or fetal body weight nor on blood biochemistry or antioxidant parameters were observed. These results indicate that NCG supplementation in mid-to-late gestation to grazing ewes was unable to rescue the negative production effects of severe natural nutritional restriction on both the dam and fetuses. Full article
Show Figures

Figure 1

15 pages, 1540 KiB  
Article
Effect of N-Carbamylglutamate Supplementation on Growth Performance, Jejunal Morphology, Amino Acid Transporters, and Antioxidant Ability of Weaned Pigs
by Naizhi Hu, Pei Mao, Xiaoya Xiong, Zhuangzhuang Ma, Zhijiang Xie, Mengmeng Gao, Qiujue Wu and Wenfeng Ma
Animals 2023, 13(20), 3183; https://doi.org/10.3390/ani13203183 - 12 Oct 2023
Cited by 5 | Viewed by 1803
Abstract
Weaning is an important period that affects the performance of piglets. However, the regulation of dietary amino acid levels is considered to be an effective way to alleviate the weaning stress of piglets. N-carbamylglutamate (NCG) plays an important role in improving the growth [...] Read more.
Weaning is an important period that affects the performance of piglets. However, the regulation of dietary amino acid levels is considered to be an effective way to alleviate the weaning stress of piglets. N-carbamylglutamate (NCG) plays an important role in improving the growth performance and antioxidant capacity of animals. A total of 36 weaned piglets were randomly assigned to two treatment groups, a control group (CON) and a 500 mg/kg NCG group (NCG), and the experiment lasted for 28 days. The results show that the NCG treatment group showed an increased 0–28 days average weight gain and average daily feed intake, and also increased contents of GLU and HDL, and lower SUN in serum, and an upregulation of the expression of the amino acid transporters SNAT2, EAAC1, SLC3A1, and SLC3A2 mRNA in the jejunum (p < 0.05), as well as an increased villus length and VH:CD ratio, and claudin-1, occludin, and ZO-1 mRNA expression in the jejunum (p < 0.05). The NCG treatment group showed an increased content of GSH-Px in serum and T-AOC and SOD in the jejunum, and a lower content of MDA (p < 0.05); and the upregulation of the mRNA expression related to antioxidant enzymes (CAT, SOD1, Gpx4, GCLC, GCLM and Nrf2, AhR, CYP1A1) in the jejunal mucosa (p < 0.05). In addition, compared with the control group, the NCG treatment group saw an upregulation in the mRNA expression of IL-10 and a decrease in the expression of IL-1β and IL-4 in the jejunal mucosa (p < 0.05). In summary, the results of this study suggest that NCG improved growth performance and jejunal morphology, improved the jejunal transport of amino acids related to the ornithine cycle, and improved the antioxidant capacity in weaned pigs. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

15 pages, 28708 KiB  
Article
Responses of Micropterus salmoides under Ammonia Stress and the Effects of a Potential Ammonia Antidote
by Zhenlu Wang, Xingchen Guo, Jiao Tu, Xuan Shi, Lei Gan, Muzi Zhang, Haibo Jiang, Xiaoxue Zhang and Jian Shao
Animals 2023, 13(3), 397; https://doi.org/10.3390/ani13030397 - 24 Jan 2023
Cited by 13 | Viewed by 2291
Abstract
Ammonia is a common environmental limiting factor in aquaculture. To investigate the effects of ammonia stress and explore the protective effect of N-carbamylglutamate (NCG) on Micropterus salmoides (M. salmoides), tissue sections and parameters related to oxidative stress and the inflammatory response [...] Read more.
Ammonia is a common environmental limiting factor in aquaculture. To investigate the effects of ammonia stress and explore the protective effect of N-carbamylglutamate (NCG) on Micropterus salmoides (M. salmoides), tissue sections and parameters related to oxidative stress and the inflammatory response in M. salmoides were carried out during the ammonia stress test and feeding test. The results demonstrated that the LC50 for 24 h, 48 h, 72 h, and 96 h under ammonia stress in M. salmoides were 25.78 mg/L, 24.40 mg/L, 21.90 mg/L, and 19.61 mg/L, respectively. Under ammonia stress, the structures of the tissues were damaged, and the GSH content decreased, while the MDA content increased with the increase in stress time and ammonia concentration. The NO content fluctuated significantly after the ammonia nitrogen stress. In the 15-day feeding test, with the increased NCG addition amount and feeding time, the GSH content increased while the MDA and NO contents decreased gradually in the NCG addition groups (NL group: 150 mg/kg; NM group: 450 mg/kg; NH group: 750 mg/kg) when compared with their control group (CK group: 0 mg/kg). In the ammonia toxicology test after feeding, the damage to each tissue was alleviated in the NL, NM, and NH groups, and the contents of GSH, MDA, and NO in most tissues of the NH group were significantly different from those in the CK group. The results suggested that ammonia stress caused tissue damage in M. salmoides, provoking oxidative stress and inflammatory response. The addition of NCG to the feed enhances the anti-ammonia ability of M. salmoides. Moreover, the gill and liver might be the target organs of ammonia toxicity, and the brain and kidney might be the primary sites where NCG exerts its effects. Our findings could help us to find feasible ways to solve the existing problem of environmental stress in M. salmoides culture. Full article
(This article belongs to the Special Issue The Effects of Pollution and Other Stressors on Fish Health)
Show Figures

Figure 1

15 pages, 992 KiB  
Article
Dietary L-Arginine or N-Carbamylglutamate Alleviates Colonic Barrier Injury, Oxidative Stress, and Inflammation by Modulation of Intestinal Microbiota in Intrauterine Growth-Retarded Suckling Lambs
by Hao Zhang, Yi Zheng, Xia Zha, Yi Ma, Xiaoyun Liu, Mabrouk Elsabagh, Hongrong Wang and Mengzhi Wang
Antioxidants 2022, 11(11), 2251; https://doi.org/10.3390/antiox11112251 - 15 Nov 2022
Cited by 16 | Viewed by 2559
Abstract
Our previous studies have revealed that dietary N-carbamylglutamate (NCG) and L-arginine (Arg) supplementation improves redox status and suppresses apoptosis in the colon of suckling Hu lambs with intrauterine growth retardation (IUGR). However, no studies have reported the function of Arg or NCG in [...] Read more.
Our previous studies have revealed that dietary N-carbamylglutamate (NCG) and L-arginine (Arg) supplementation improves redox status and suppresses apoptosis in the colon of suckling Hu lambs with intrauterine growth retardation (IUGR). However, no studies have reported the function of Arg or NCG in the colonic microbial communities, barrier function, and inflammation in IUGR-suckling lambs. This work aimed to further investigate how dietary Arg or NCG influences the microbiota, barrier function, and inflammation in the colon of IUGR lambs. Forty-eight newborn Hu lambs of 7 d old were assigned to four treatment groups (n = 12 per group; six male, six female) as follows: CON (normal birth weight, 4.25 ± 0.14 kg), IUGR (3.01 ± 0.12 kg), IUGR + Arg (2.99 ± 0.13 kg), and IUGR + NCG (3.03 ± 0.11 kg). A total of 1% Arg or 0.1% NCG was supplemented in a basal diet of milk replacer, respectively. Lambs were fed the milk replacer for 21 d until 28 d after birth. Compared to the non-supplemented IUGR lambs, the transepithelial electrical resistance (TER) was higher, while fluorescein isothiocyanate dextran 4 kDa (FD4) was lower in the colon of the NCG- or Arg-supplemented IUGR lambs (p < 0.05). The IUGR lambs exhibited higher (p < 0.05) colonic interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, reactive oxygen species (ROS), and malondialdehyde (MDA) levels than the CON lambs; the detrimental effects of IUGR on colonic proinflammatory cytokine concentrations and redox status were counteracted by dietary Arg or NCG supplementation. Both IUGR + Arg and IUGR + NCG lambs exhibited an elevated protein and mRNA expression of Occludin, Claudin-1, and zonula occludens-1 (ZO-1) compared to the IUGR lambs (p < 0.05). Additionally, the lipopolysaccharide (LPS) concentration was decreased while the levels of acetate, butyrate, and propionate were increased in IUGR + Arg and IUGR + NCG lambs compared to the IUGR lambs (p < 0.05). The relative abundance of Clostridium, Lactobacillus, and Streptococcus was lower in the colonic mucosa of the IUGR lambs than in the CON lambs (p < 0.05) but was restored upon the dietary supplementation of Arg or NCG to the IUGR lambs (p < 0.05). Both Arg and NCG can alleviate colonic barrier injury, oxidative stress (OS), and inflammation by the modulation of colonic microbiota in IUGR-suckling lambs. This work contributes to improving knowledge about the crosstalk among gut microbiota, immunity, OS, and barrier function and emphasizes the potential of Arg or NCG in health enhancement as feed additives in the early life nutrition of ruminants. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Gut Health)
Show Figures

Figure 1

17 pages, 5759 KiB  
Article
Docosapentaenoic Acid (DPA, 22:5n-3) Alleviates Ulcerative Colitis via Modification of Gut Microbiota and Their Metabolism
by Ye Dong, Cheng Huang, Jiacheng Yang, Zhenxiao Zheng and Zhiyuan Dai
Nutrients 2022, 14(19), 4204; https://doi.org/10.3390/nu14194204 - 9 Oct 2022
Cited by 9 | Viewed by 3199
Abstract
N-3 polyunsaturated fatty acids (n-3PUFA) are regarded as viable alternatives to aid the treatment of ulcerative colitis (UC). Most research focuses on eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA); little information is available about the effect of docosapentaenoic acid (DPA) [...] Read more.
N-3 polyunsaturated fatty acids (n-3PUFA) are regarded as viable alternatives to aid the treatment of ulcerative colitis (UC). Most research focuses on eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA); little information is available about the effect of docosapentaenoic acid (DPA) on the gut microbiota and their metabolism in UC mice. In this study, the changes in gut microbiota and their metabolism in UC mice were studied through the 16S rRNA sequencing method and untargeted metabolomics. Moreover, the differential bacterial genus and differential metabolites in responding to DPA supplementation were screened through permutation test after orthogonal partial least squares discriminant analysis (OPLS-DA). The results indicated that DPA supplementation increased the diversity and altered the composition of the gut microbiota in UC mice; Akkermansia, Alistipes, Butyricicoccus, and Lactobacillus were selected as the differential bacterial genus. Supplementation of DPA also altered the fecal metabolite profile in the UC mice. Moreover, butyrate, N-carbamylglutamate (NCG), and histamine were screened as the differential metabolites. In conclusion, the regulation effect of DPA on the gut microbiota and their metabolism might be involved in the intervention mechanism of DPA in UC. More research needs to be carried out to elucidate the mechanism systematically. Full article
(This article belongs to the Special Issue Fish Intake and Human Health: Evaluating the Nutrients and Benefits)
Show Figures

Figure 1

18 pages, 4445 KiB  
Article
N-Carbamylglutamate Improves Reproductive Performance and Alters Fecal Microbiota and Serum Metabolites of Primiparous Sows during Gestation after Fixed-Time Artificial Insemination
by Tao Feng, Linli Xiao, Jiahua Bai, Hongxiang Ding, Liyan Pang, Yuqing Song, Yusheng Qin, Xiaoling Xu, Jing Wang and Yan Liu
Biology 2022, 11(10), 1432; https://doi.org/10.3390/biology11101432 - 30 Sep 2022
Cited by 4 | Viewed by 2641
Abstract
N-carbamylglutamate (NCG) supplementation during gestation improves reproductive performance in sows after conventional artificial insemination. However, whether NCG can improve reproductive performance and change fecal microbiota and serum metabolite levels during pregnancy in sows after fixed-time artificial insemination (FTAI) remains unclear. Two hundred multiparous [...] Read more.
N-carbamylglutamate (NCG) supplementation during gestation improves reproductive performance in sows after conventional artificial insemination. However, whether NCG can improve reproductive performance and change fecal microbiota and serum metabolite levels during pregnancy in sows after fixed-time artificial insemination (FTAI) remains unclear. Two hundred multiparous sows were assigned a diet from mating until farrowing: control (corn–soybean meal) or NCG supplementation (0.05% NCG). At days 30, 70, and 110 of gestation and after farrowing, maternal microbial diversity and serum metabolites were studied. Supplementation of NCG increased the number of piglets born alive and the litter weight (all p < 0.05) and altered the fetal microbial community during gestation. Some genera were particularly abundant at different time points during gestation and after farrowing, but none were commonly abundant across all four time points. Metabolic analysis revealed that NCG supplementation significantly increased the serum concentrations of NCG, ferulic acid, cinnamoylglycine, 3-phenyllactic acid, and gamma-glutamylglutamic acid in the NCG group compared with levels in the control group. Our results reveal that NCG supplementation during gestation improves reproductive performance in sows after FTAI, exerting both direct (increased serum NCG levels) and indirect effects (altered intestinal microbiome and serum metabolites) on sow reproduction and, ultimately, improving placental and fetal development. Full article
(This article belongs to the Special Issue New Advances and Insights in Animal Genetics and Breeding)
Show Figures

Figure 1

11 pages, 252 KiB  
Article
Effects of Inclusion of N-Carbamylglutamate in the Non-Protein Diet on Growth and Slaughter Performance, Meat Quality, Nitrogen Metabolism and Antioxidant of Holstein Bulls
by Quanyu Zhang, Guangning Zhang, Xinyue Zhang, Jinshan Yang and Yonggen Zhang
Animals 2022, 12(1), 33; https://doi.org/10.3390/ani12010033 - 24 Dec 2021
Cited by 17 | Viewed by 3747
Abstract
The objectives of this experiment were to investigate the effects of N-carbamylglutamate (NCG) on growth and slaughter performance, meat quality, nitrogen utilization, plasma antioxidant and amino acids of Holstein bulls. In this case, 24 Holstein bulls (490 ± 29.0 kg of body [...] Read more.
The objectives of this experiment were to investigate the effects of N-carbamylglutamate (NCG) on growth and slaughter performance, meat quality, nitrogen utilization, plasma antioxidant and amino acids of Holstein bulls. In this case, 24 Holstein bulls (490 ± 29.0 kg of body weights and 540 ± 6.1 d of age) were blocked by body weights and age and randomly assigned to 1 of 4 groups: (1) CON group: bulls were fed the control diet, (2) CON + NCG group: bulls were fed the control diet with 40 mg/kg BW NCG, (3) Urea group: bulls were fed the urea diet, and (4) Urea + NCG group: bulls were fed the urea diet with 40 mg/kg BW NCG. Feeding NCG significantly improved ADG, FCR, DM and CP digestibility, carcass weight, slaughter weight, DOP, eye muscle area, shear force (p = 0.001) and reduced L* of color, drip loss and cooking loss. Concurrently, feeding the urea diet induced a decreased ADG, carcass weight and slaughter weight, DOP, eye muscle area and shear force. NCG decreased contents of fecal N and urinary N, plasma urea in bulls and ammonia but increased N retention and utilization, plasma NO, plasma Arg, Leu, Ile and Tyr. On the other hand, feeding the urea diet increased urinary N, plasma urea and ammonia. Thus the study efficiently demonstrates that beef benefited from being fed a NCG product in the urea diet by enhancing its growth and slaughter performance, meat quality, nitrogen metabolism and plasma amino acids. Full article
16 pages, 2802 KiB  
Article
N-Carbamylglutamate Promotes Follicular Development by Modulating Cholesterol Metabolism in Yak Ovaries
by Jia Zhou, Jingjing Du, Shuangming Yue, Benchu Xue, Lizhi Wang, Quanhui Peng and Bai Xue
Agriculture 2021, 11(9), 825; https://doi.org/10.3390/agriculture11090825 - 29 Aug 2021
Cited by 3 | Viewed by 2828
Abstract
This study aimed to investigate the effects of N-carbamylglutamate (NCG) supplementation on the follicular development of yaks to identify potential mechanisms essential for fertility in yaks. Twelve multiparous anoestrous female yaks were randomly assigned to two groups—Control (fed with a basal diet, n [...] Read more.
This study aimed to investigate the effects of N-carbamylglutamate (NCG) supplementation on the follicular development of yaks to identify potential mechanisms essential for fertility in yaks. Twelve multiparous anoestrous female yaks were randomly assigned to two groups—Control (fed with a basal diet, n = 6) and NCG (basal diet supplemented with 6.0 g day−1 NCG, n = 6). Yaks in the NCG group had higher numbers of large follicles (>5 mm in diameter) than those in the Control group. An RNA-sequencing analysis of yak ovaries revealed a total of 765 genes were differentially expressed between experimental groups, of which 181 genes were upregulated and 584 genes were downregulated following NCG supplementation. The results of a transcriptome functional analysis, qRT-PCR validation, and immunohistochemistry revealed that NCG supplementation increased angiogenesis and de novo synthesis of cholesterol in yak ovaries. NCG was also found to upregulate the gene expression of steroidogenic enzymes. Based on this, it was concluded that NCG supplementation promotes the follicular development of yaks mainly by affecting cholesterol metabolism to initiate steroidogenesis in ovaries. The results provide evidence for understanding the mechanisms responsible for NCG promoting follicular development of female yaks, which may contribute to the development and application of NCG in animal reproduction. Full article
(This article belongs to the Special Issue Reproduction of Ruminant Livestock)
Show Figures

Figure 1

10 pages, 245 KiB  
Article
Effects of Dietary N-Carbamylglutamate on Growth Performance, Apparent Digestibility, Nitrogen Metabolism and Plasma Metabolites of Fattening Holstein Bulls
by Jinshan Yang, Jian Zheng, Xinpeng Fang, Xin Jiang, Yukun Sun and Yonggen Zhang
Animals 2021, 11(1), 126; https://doi.org/10.3390/ani11010126 - 8 Jan 2021
Cited by 17 | Viewed by 2866
Abstract
N-carbamylglutamate (NCG), a structural analog of N-acetylglutamate, improves nitrogen utilization in dairy cows. However, the effects of NCG on bulls are unknown. The purpose of the current research was to investigate the effects of adding different amounts of NCG on growth [...] Read more.
N-carbamylglutamate (NCG), a structural analog of N-acetylglutamate, improves nitrogen utilization in dairy cows. However, the effects of NCG on bulls are unknown. The purpose of the current research was to investigate the effects of adding different amounts of NCG on growth performance, nutrient digestibility, nitrogen metabolism and plasma metabolites of fattening Holstein bulls. Twenty-four Holstein bulls with similar body weights (BW, 408 ± 21.9 kg) and ages (450 ± 6.1 d; all mean ± SD) were selected for the feeding trial. After 2 weeks of adaptation, bulls were blocked by BW and age and subsequently randomly assigned to 1 of 4 groups: (1) CON group (control diet), (2) L group (supplementation with 20 mg/kg BW NCG), (3) M group (supplementation with 40 mg/kg BW NCG), or (4) H group (supplementation with 80 mg/kg BW NCG). The addition of NCG linearly and quadratically increased the average daily gain (CON vs. L vs. M vs. H = 1.03 vs. 1.19 vs. 1.40 vs. 1.26 kg/d) (p < 0.05), feed conversion ratio (CON vs. L vs. M vs. H = 11.92 vs. 9.22 vs. 7.76 vs. 8.62) (p < 0.05), crude protein digestibility (CON vs. L vs. M vs. H = 64.3 vs. 63.8 vs. 67.7 vs. 65.8%) (0.05 < p < 0.10), N retention (p < 0.05) and N utilization (p < 0.05) of bulls, whereas the contents of fecal N (0.05 < p < 0.10) and urinary N (0.05 < p < 0.10) in NCG-fed bulls linearly decreased compared with those in CON bulls. Bulls fed NCG showed a quadratic increased plasma nitric oxide (p < 0.05) concentration. Furthermore, Arg (p < 0.05), Ile (p < 0.05), Val (p < 0.05), Ala (p < 0.05), Glu (p < 0.05), Ser (p < 0.05), total essential amino acid (p < 0.05) and total nonessential amino acid (p < 0.05) concentrations linearly and quadratically increased with increasing doses of NCG. In contrast, plasma urea (p < 0.05) and ammonia (p < 0.05) concentration linearly and quadratically decreased with increasing doses of NCG. Overall, the addition of NCG increased plasma Arg, Ile, Val, TEAA and TNEAA concentration, which in turn resulted in a higher N utilization and, therefore, higher average daily gain in NCG-fed bulls, providing baseline data for the widespread application of NCG in beef cattle production. Full article
14 pages, 451 KiB  
Article
Effect of Amniotic Injection of N-Carbamylglutamate on Meat Quality of Broilers
by Feng-dong Zhang, Jing Wang, Hai-jun Zhang, Shu-geng Wu, Jing Lin and Guang-hai Qi
Animals 2020, 10(4), 576; https://doi.org/10.3390/ani10040576 - 30 Mar 2020
Cited by 14 | Viewed by 2919
Abstract
The current study was performed to determine the influence of amniotic injection of N-carbamylglutamate (NCG) on meat quality of pectoral muscle in broilers. A total of 792 alive broiler embryos at 17 d of incubation were assigned to three treatments randomly (non-injected control, [...] Read more.
The current study was performed to determine the influence of amniotic injection of N-carbamylglutamate (NCG) on meat quality of pectoral muscle in broilers. A total of 792 alive broiler embryos at 17 d of incubation were assigned to three treatments randomly (non-injected control, saline-injected control, or NCG-injected treatment). The two injection treatments were an injection with 0.1 mL 0.85% aseptic saline alone or containing 2 mg NCG per egg at 17.5 d of incubation. After hatching, 72 healthy male chicks were selected from each treatment and housed in six pens for a 42 day feeding study. Pectoral muscles from six 42-day-old broilers were collected from each treatment group and were dissected for meat quality assays. The results showed that arginine contents in pectoral muscle in either free or hydrolytic form in the NCG group were higher than those in the non-injection control group (p < 0.05). In comparison to the non-injection or saline-injection control groups, NCG injection resulted in a lower lactic acid content in pectoral muscle (p < 0.05). Muscular antioxidant capacity in the NCG group was higher, as evidenced by the higher activity of catalase and glutathione peroxidase and lower content of malondialdehyde (p < 0.05). In addition, the group of in ovo administration of NCG had decreased drip loss and increased crude fat content in pectoral muscle in comparison to those of either control group (p < 0.05) and had enhanced crude protein content compared to that of the saline-injection control group (p < 0.05). Briefly, these results indicate that amniotic administration of NCG in the late incubation phase increased the arginine content, improved the nutritional properties, enhanced the antioxidant capacity, and improved the meat quality in the pectoral muscle of broilers. Amniotic injection of NCG may serve as a novel approach to improving the meat quality of broilers. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

11 pages, 250 KiB  
Article
Meat Quality and Fatty Acid Profiles of Chinese Ningxiang Pigs Following Supplementation with N-Carbamylglutamate
by Yueteng Xing, Xin Wu, Chunyan Xie, Dingfu Xiao and Bin Zhang
Animals 2020, 10(1), 88; https://doi.org/10.3390/ani10010088 - 6 Jan 2020
Cited by 21 | Viewed by 4043
Abstract
The present study evaluated the effects of dietary N-carbamylglutamate (NCG) on carcass traits, meat quality, and fatty acid profiles in the longissimus dorsi muscle and adipose tissues of Chinese Ningxiang pigs. A total of 36 castrated female pigs with a similar initial [...] Read more.
The present study evaluated the effects of dietary N-carbamylglutamate (NCG) on carcass traits, meat quality, and fatty acid profiles in the longissimus dorsi muscle and adipose tissues of Chinese Ningxiang pigs. A total of 36 castrated female pigs with a similar initial weight (43.21 ± 0.57 kg) were randomly assigned to two treatments (with six pens per treatment and three pigs per pen) and fed either a basal diet or a basal diet supplemented with 0.08% NCG for 56 days. Results showed that dietary NCG reduced shear force (p = 0.004) and increased drip loss (p = 0.044) in longissimus dorsi muscle of Ningxiang pigs. Moreover, increased levels of oleic acid (C18:1n9c) (p = 0.009), paullinic acid (C20:1) (p = 0.004), and α-linolenic acid (C18:3n3) (p < 0.001), while significant reduction in the proportions of arachidonic acid (C20:4n6) (p < 0.001) and polyunsaturated fatty acid (PUFA) (p = 0.017) were observed in the longissimus dorsi muscle of pigs fed NCG when compared with those fed the control diet. As for adipose tissues, the C20:1 (p = 0.045) proportion in dorsal subcutaneous adipose (DSA), as well as the stearic acid (C18:0) (p = 0.018) level in perirenal adipose (PA) were decreased when pigs were fed the NCG diet compared with those of the control diet. In contrast, the margaric acid (C17:0) (p = 0.043) proportion in PA were increased. Moreover, the NCG diet produced PA with a greater proportion of total PUFAs (p = 0.001) (particularly linoleic acid (C18:2n6c) (p = 0.001)) compared with those produced by the control diet. These findings suggest that dietary NCG has beneficial effects by decreasing the shear force and improving the healthfulness of fatty acid profiles, providing a novel strategy for enhancing meat quality of pigs. Full article
(This article belongs to the Special Issue Recent Advances in Pig Nutrition)
13 pages, 1616 KiB  
Article
Determination of N-Carbamylglutamate in Feeds and Animal Products by High Performance Liquid Chromatography Tandem Mass Spectrometry
by Yonghang Ma, Zhengcheng Zeng, Lingchang Kong, Yuanxin Chen and Pingli He
Molecules 2019, 24(17), 3172; https://doi.org/10.3390/molecules24173172 - 31 Aug 2019
Cited by 10 | Viewed by 4716
Abstract
N-carbamylglutamate (NCG), a synthetic analogue of N-acetylglutamate, is an activator of blood ammonia conversion and endogenous arginine synthesis. Here, we established an accurate quantitative determination of NCG in feeds, animal tissues, and body fluids using the high performance liquid chromatography tandem [...] Read more.
N-carbamylglutamate (NCG), a synthetic analogue of N-acetylglutamate, is an activator of blood ammonia conversion and endogenous arginine synthesis. Here, we established an accurate quantitative determination of NCG in feeds, animal tissues, and body fluids using the high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The sample pretreatment procedures included extraction with 0.5% of formic acid in water/methanol (80/20, v/v), and purification using an anionic solid phase extraction cartridge. Satisfactory separation of NCG was achieved in 20 min with the application of an Atlantis T3 column, and a confirmative detection of NCG was ensured by multiple reaction monitoring of positive ions. NCG spiked in feeds, tissues, and body fluids were evaluated in regard to linearity, sensitivity, recovery, and repeatability. Recoveries for different sample matrices were in the range of 88.12% to 110.21% with relative standard deviations (RSDs) less than 8.8%. Limits of quantification were within the range of 0.012 to 0.073 mg kg−1 and 0.047 to 0.077 μg mL−1 for solid and liquid samples, respectively. This study will provide a solid foundation for the evaluation of availability and metabolic mechanism of NCG in animals. Full article
(This article belongs to the Special Issue Analytical Technology in Nutrition Analysis)
Show Figures

Figure 1

9 pages, 1756 KiB  
Case Report
Late-Onset N-Acetylglutamate Synthase Deficiency: Report of a Paradigmatic Adult Case Presenting with Headaches and Review of the Literature
by Catia Cavicchi, Chiara Chilleri, Antonella Fioravanti, Lorenzo Ferri, Francesco Ripandelli, Cinzia Costa, Paolo Calabresi, Paolo Prontera, Francesca Pochiero, Elisabetta Pasquini, Silvia Funghini, Giancarlo La Marca, Maria Alice Donati and Amelia Morrone
Int. J. Mol. Sci. 2018, 19(2), 345; https://doi.org/10.3390/ijms19020345 - 24 Jan 2018
Cited by 10 | Viewed by 6148
Abstract
N-acetylglutamate synthase deficiency (NAGSD) is an extremely rare urea cycle disorder (UCD) with few adult cases so far described. Diagnosis of late-onset presentations is difficult and delayed treatment may increase the risk of severe hyperammonemia. We describe a 52-year-old woman with recurrent [...] Read more.
N-acetylglutamate synthase deficiency (NAGSD) is an extremely rare urea cycle disorder (UCD) with few adult cases so far described. Diagnosis of late-onset presentations is difficult and delayed treatment may increase the risk of severe hyperammonemia. We describe a 52-year-old woman with recurrent headaches who experienced an acute onset of NAGSD. As very few papers focus on headaches in UCDs, we also report a literature review of types and pathophysiologic mechanisms of UCD-related headaches. In our case, headaches had been present since puberty (3–4 days a week) and were often accompanied by nausea, vomiting, or behavioural changes. Despite three previous episodes of altered consciousness, ammonia was measured for the first time at 52 years and levels were increased. Identification of the new homozygous c.344C>T (p.Ala115Val) NAGS variant allowed the definite diagnosis of NAGSD. Bioinformatic analysis suggested that an order/disorder alteration of the mutated form could affect the arginine-binding site, resulting in poor enzyme activation and late-onset presentation. After optimized treatment for NAGSD, ammonia and amino acid levels were constantly normal and prevented other headache bouts. The manuscript underlies that headache may be the presenting symptom of UCDs and provides clues for the rapid diagnosis and treatment of late-onset NAGSD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

Back to TopTop