The Effect of N-Carbamylglutamate Supplementation during the Last Third of Gestation on the Growth and Development of Fetuses Born to Nutrient-Restricted Twin-Bearing Ewes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Experimental Procedure
2.3. Assessment of Oral NCG Flux into Maternal Circulation
2.4. Assessment Umbilical Blood Gases, Chemistries, Hematocrit and Hemoglobin
2.5. Assessment of Oxidative Stress Biomarkers
2.6. Assessment of Maternal Plasma Metabolites
2.7. Statistical Analysis
3. Results
3.1. Maternal Serum NCG
3.2. Maternal Body Weight and BCS
3.3. Fetal Body Measurements
3.4. Umbilical Blood Gases, Chemistries, Hematocrit and Hemoglobin
3.5. Oxidative Stress Biomarkers
3.6. Maternal Plasma Metabolites
3.7. Placental Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinch, G.N.; Brien, F. Lamb Survival in Australian Flocks: A Review. Anim. Prod. Sci. 2014, 54, 656–666. [Google Scholar] [CrossRef]
- Dwyer, C.M.; Conington, J.; Corbiere, F.; Holmoy, I.H.; Muri, K.; Nowak, R.; Rooke, J.; Vipond, J.; Gautier, J.M. Invited Review: Improving Neonatal Survival in Small Ruminants: Science into Practice. Animal 2015, 10, 449–459. [Google Scholar] [CrossRef]
- Refshauge, G.; Brien, F.D.; Hinch, G.N.; Van De Ven, R. Neonatal Lamb Mortality: Factors Associated with the Death of Australian Lambs. Anim. Prod. Sci. 2016, 56, 726–735. [Google Scholar] [CrossRef]
- Mellor, D.J. Nutritional and Placental Determinants of Foetal Growth Rate in Sheep and Consequences for the Newborn Lamb. Br. Vet. J. 1983, 139, 307. [Google Scholar] [CrossRef]
- Scales, G.H.; Burton, R.N.; Moss, R.A. Lamb Mortality, Birthweight, and Nutrition in Late Pregnancy. N. Z. J. Agric. Res. 1986, 29, 75–82. [Google Scholar] [CrossRef]
- McCoard, S.A.; Sales, F.A.; Sciascia, Q.L. Invited Review: Impact of Specific Nutrient Interventions during Mid-to-Late Gestation on Physiological Traits Important for Survival of Multiple-Born Lambs. Animal 2017, 11, 1727–1736. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M., Jr. Arginine Metabolism: Nitric Oxide and Beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lassala, A.; Bazer, F.W.; Cudd, T.A.; Datta, S.; Keisler, D.H.; Satterfield, M.C.; Spencer, T.E.; Wu, G. Parenteral Administration of L-Arginine Prevents Fetal Growth Restriction in Undernourished Ewes. J. Nutr. 2010, 140, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Lassala, A.; Bazer, F.W.; Cudd, T.A.; Datta, S.; Keisler, D.H.; Satterfield, M.C.; Spencer, T.E.; Wu, G. Parenteral Administration of L-Arginine Enhances Fetal Survival and Growth in Sheep Carrying Multiple Fetuses. J. Nutr. 2011, 141, 849–855. [Google Scholar] [CrossRef] [PubMed]
- McCoard, S.; Sales, F.; Wards, N.; Sciascia, Q.; Oliver, M.; Koolaard, J.; van der Linden, D. Parenteral Administration of Twin-Bearing Ewes with L-Arginine Enhances the Birth Weight and Brown Fat Stores in Sheep. Springerplus 2013, 2, 684. [Google Scholar] [CrossRef] [PubMed]
- Chacher, B.; Wang, D.-M.; Liu, H.-Y.; Liu, J.-X. Degradation of L-Arginine and N-Carbamoyl Glutamate and Their Effect on Rumen Fermentation In Vitro. Ital. J. Anim. Sci. 2012, 11, e68. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Rhoads, J.M.; Satterfield, M.C.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine Metabolism and Nutrition in Growth, Health and Disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef]
- McCarthy, N.; Weaver, A.C.; Agenbag, B.; Flinn, T.; Brougham, B.J.; Swinbourne, A.M.; Kelly, J.M.; Kleemann, D.O.; Gatford, K.L.; van Wettere, W.H.E.J. Maternal Lysine, Methionine and Choline Supplementation in Twin-Bearing Merino Ewes during Mid-to-Late Gestation Does Not Alter Pregnancy Outcomes or Progeny Growth and Survival. Livest. Sci. 2021, 251, 104620. [Google Scholar] [CrossRef]
- McCoard, S.A.; Pacheco, D. The Significance of N-Carbamoylglutamate in Ruminant Production. J. Anim. Sci. Biotechnol. 2023, 14, 48. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Fan, Y.; Guo, Y.; Zhang, G.; Nie, H.; Wang, F. Metabolomic Profiling in Umbilical Venous Plasma Reveals Effects of Dietary Rumen-Protected Arginine or N-Carbamylglutamate Supplementation in Nutrient-Restricted Hu Sheep during Pregnancy. Reprod. Domest. Anim. 2017, 52, 376–388. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Wang, Z.; Fan, Y.; Guo, Y.; Wang, F. Dietary Rumen-Protected Arginine and N-Carbamylglutamate Supplementation Enhances Fetal Growth in Underfed Ewes. Reprod. Fertil. Dev. 2018, 30, 1116–1127. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.W.; Wang, Z.Y.; Deng, M.T.; Zhang, G.M.; Guo, R.H.; Ma, T.W.; Wang, F. Dietary N-Carbamylglutamate and Rumen-Protected L-Arginine Supplementation Ameliorate Fetal Growth Restriction in Undernourished Ewes1,2. J. Anim. Sci. 2016, 94, 2072–2085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, L.; Wang, Z.; Deng, M.; Nie, H.; Zhang, G.; Tiewei, M.; Wang, F. N-Carbamylglutamate and L-Arginine Improved Maternal and Placental Development in Underfed Ewes. Reproduction 2016, 151, 623–635. [Google Scholar] [CrossRef]
- Zhang, H.; Zha, X.; Zhang, B.; Zheng, Y.; Liu, X.; Elsabagh, M.; Ma, Y.; Wang, H.; Shu, G.; Wang, M. Dietary Rumen-Protected L-Arginine or N-Carbamylglutamate Enhances Placental Amino Acid Transport and Suppresses Angiogenesis and Steroid Anabolism in Underfed Pregnant Ewes. Anim. Nutr. 2023, 15, 149–158. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Zheng, Y.; Zhang, Y.; Loor, J.J.; Wang, H.; Wang, M. Dietary N-Carbamylglutamate or L-Arginine Improves Fetal Intestinal Amino Acid Profiles during Intrauterine Growth Restriction in Undernourished Ewes. Anim. Nutr. 2022, 8, 341–349. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Nie, H.; Ma, T.; Wang, Z.; Wang, F.; Loor, J.J. Dietary N-Carbamylglutamate and Rumen-Protected l-Arginine Supplementation during Intrauterine Growth Restriction in Undernourished Ewes Improve Fetal Thymus Development and Immune Function. Reprod. Fertil. Dev. 2018, 30, 1522–1531. [Google Scholar] [CrossRef]
- Gu, F.; Jiang, L.; Xie, L.; Wang, D.; Zhao, F.; Liu, J. Supplementing N-Carbamoylglutamate in Late Gestation Increases Newborn Calf Weight by Enhanced Placental Expression of MTOR and Angiogenesis Factor Genes in Dairy Cows. Anim. Nutr. 2021, 7, 981–988. [Google Scholar] [CrossRef]
- Parraguez, V.H.; Sales, F.; Peralta, O.; De los Reyes, M.; Gonzalez-Bulnes, A. Oxidative Stress and Fetal Growth Restriction Set Up Earlier in Undernourished Sheep Twin Pregnancies: Prevention with Antioxidant and Nutritional Supplementation. Antioxidants 2022, 11, 1287. [Google Scholar] [CrossRef]
- Robinson, J.J. Nutritional Requirements of the Pregnant and Lactating Ewe. In Genetics of Reproduction in Sheep; Butterworths: Petersburg, VA, USA, 1985. [Google Scholar]
- Sales, F.; Peralta, O.; Narbona, E.; McCoard, S.; Lira, R.; De Los Reyes, M.; González-Bulnes, A.; Parraguez, V. Maternal Supplementation with Antioxidant Vitamins in Sheep Results in Increased Transfer to the Fetus and Improvement of Fetal Antioxidant Status and Development. Antioxidants 2019, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Peiró, J.R.; Borges, A.S.; Gonçalves, R.C.; Mendes, L.C.N. Evaluation of a Portable Clinical Analyzer for the Determination of Blood Gas Partial Pressures, Electrolyte Concentrations, and Hematocrit in Venous Blood Samples Collected from Cattle, Horses, and Sheep. Am. J. Vet. Res. 2010, 71, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Vonnahme, K.A.; Hess, B.W.; Nijland, M.J.; Nathanielsz, P.W.; Ford, S.P. Placentomal Differentiation May Compensate for Maternal Nutrient Restriction in Ewes Adapted to Harsh Range Conditions. J. Anim. Sci. 2006, 84, 3451–3459. [Google Scholar] [CrossRef] [PubMed]
- Covacevich, N.; Ruz, E. Praderas En La Zona Austral: XII Región (Magallanes). In Praderas para Chile, 2nd ed.; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 1996; pp. 639–655. [Google Scholar]
- Sales, F.; Peralta, O.; Narbona, E.; McCoard, S.; De los Reyes, M.; González-Bulnes, A.; Parraguez, V. Hypoxia and Oxidative Stress Are Associated with Reduced Fetal Growth in Twin and Undernourished Sheep Pregnancies. Animals 2018, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Satterfield, M.C.; Dunlap, K.A.; Keisler, D.H.; Bazer, F.W.; Wu, G. Arginine Nutrition and Fetal Brown Adipose Tissue Development in Nutrient-Restricted Sheep. Amino Acids 2013, 45, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Peine, J.L.; Jia, G.; Van Emon, M.L.; Neville, T.L.; Kirsch, J.D.; Hammer, C.J.; O’Rourke, S.T.; Reynolds, L.P.; Caton, J.S. Effects of Maternal Nutrition and Rumen-Protected Arginine Supplementation on Ewe Performance and Postnatal Lamb Growth and Internal Organ Mass. J. Anim. Sci. 2018, 96, 3471–3481. [Google Scholar] [CrossRef]
- Pesántez-Pacheco, J.L.; Heras-Molina, A.; Torres-Rovira, L.; Sanz-Fernández, M.V.; García-Contreras, C.; Vázquez-Gómez, M.; Feyjoo, P.; Cáceres, E.; Frías-Mateo, M.; Hernández, F.; et al. Influence of Maternal Factors (Weight, Body Condition, Parity, and Pregnancy Rank) on Plasma Metabolites of Dairy Ewes and Their Lambs. Animals 2019, 9, 122. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, C.; Hu, F.; Zhu, W.; Mao, S. Maternal Undernutrition Induces Fetal Hepatic Lipid Metabolism Disorder and Affects the Development of Fetal Liver in a Sheep Model. FASEB J. 2019, 33, 9990–10004. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Beigh, S.A.; Mir, A.Q.; Shaheen, M.; Hussain, S.A.; Nisar, M.; Dar, A.A. Evaluation of Metabolic and Oxidative Profile in Ovine Pregnancy Toxemia and to Determine Their Association with Diagnosis and Prognosis of Disease. Trop. Anim. Health Prod. 2022, 54, 338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Sang, D.; Wu, B.S.; Li, S.L.; Zhang, C.H.; Jin, L.; Li, J.X.; Gu, Y.; Ga, N.M.R.; Hua, M.; et al. Effects of Dietary Supplementation with N-Carbamylglutamate on Maternal Endometrium and Fetal Development during Early Pregnancy in Inner Mongolia White Cashmere Goats. Anim. Sci. J. 2022, 93, e13693. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Baerts, W.; Van Bel, F. Brain-Sparing in Intrauterine Growth Restriction: Considerations for the Neonatologist. Neonatology 2015, 108, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, Y.; Zhang, C.; Zhang, Z.; Song, S. Effect of Intrauterine Growth Restriction during Late Pregnancy on the Growth Performance, Blood Components, Immunity and Anti-Oxidation Capability of Ovine Fetus. Livest. Sci. 2013, 155, 435–441. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Peng, A.; Dong, L.; Wang, M.; Yu, L.; Loor, J.J.; Wang, H. Effects of Dietary l-Arginine and N-Carbamylglutamate Supplementation on Intestinal Integrity, Immune Function, and Oxidative Status in Intrauterine-Growth-Retarded Suckling Lambs. J. Agric. Food Chem. 2018, 66, 4145–4154. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, H.; Peng, A.; Guo, S.; Wang, M.; Loor, J.J.; Wang, H. N-Carbamylglutamate and l-Arginine Promote Intestinal Function in Suckling Lambs with Intrauterine Growth Restriction by Regulating Antioxidant Capacity via a Nitric Oxide-Dependent Pathway. Food Funct. 2019, 10, 6374–6384. [Google Scholar] [CrossRef]
- Gu, F.F.; Jiang, L.Y.; Wang, D.M.; Zhao, F.Q.; Liu, J.X. Supplementation with N-Carbamoylglutamate during the Transition Period Improves the Function of Neutrophils and Reduces Inflammation and Oxidative Stress in Dairy Cows. J. Dairy Sci. 2022, 105, 5786–5795. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, C.; Hu, F.; Zhu, W.; Mao, S. Undernutrition-Induced Lipid Metabolism Disorder Triggers Oxidative Stress in Maternal and Fetal Livers Using a Model of Pregnant Sheep. FASEB J. 2020, 34, 6508–6520. [Google Scholar] [CrossRef]
Metabolite | Method | Kit | Kit n° | Laboratory |
---|---|---|---|---|
Non-esterified fatty acids (NEFA) | Colorimetric method | Randox | FA 115 | Randox |
Urea | Enzymatic-colorimetric method | Human | 10505 | Wiesbaden |
Total protein | Colorimetric test | Human | 157004 | Wiesbaden |
Albumin | Colorimetric test | Human | 10570 | Wiesbaden |
Globulin | Indirect estimation | |||
Calcium | Colorimetric test | Human | 10011 | Wiesbaden |
Phosphorus | Colorimetric test | Human | 10027 | Wiesbaden |
Magnesium | Colorimetric test | Human | 10010 | Wiesbaden |
Cholesterol | Colorimetric enzymatic test | Human | 10017 | Wiesbaden |
Aspartate aminotransferase (AST) | Enzymatic UV test | Human | 12211 | Wiesbaden |
Creatine kinase (CK) | Enzymatic UV test | Human | 12015 | Wiesbaden |
Gamma-glutamyltransferase (GGT) | Enzymatic color test | Human | 12213 | Wiesbaden |
Glutamate dehydrogenase (GLDH) | Colorimetric | Randox | GL441 | Randox |
Total bilirubin | Colorimetric test | Human | 10743 | Wiesbaden |
Triglycerides | Enzymatic colorimetric test | Human | 10720P | Wiesbaden |
CON | NCG | p-Value | |||||
---|---|---|---|---|---|---|---|
Female | Male | Female | Male | Treat | Sex | Treat × Sex | |
Body weight (kg) and dimensions 2 (cm) | |||||||
Fetal weight | 3.39 ± 0.15 | 3.54 ± 0.17 | 3.23 ± 0.11 | 3.38 ± 0.13 | 0.30 | 0.20 | 0.97 |
Crown–rump length | 39.70 ± 0.71 | 41.30 ± 0.81 | 39.95 ± 0.53 | 39.87 ± 0.63 | 0.61 | 0.28 | 0.16 |
Thoracic girth | 32.38 ± 0.77 | 32.54 ± 0.92 | 32.59 ± 0.58 | 31.76 ± 0.72 | 0.87 | 0.52 | 0.48 |
Front leg length | 28.98 ± 0.95 | 31.06 ± 1.20 | 30.05 ± 0.74 | 29.24 ± 1.01 | 0.99 | 0.71 | 0.16 |
Hind leg length | 33.62 ± 0.56 | 33.72 ± 0.70 | 33.20 ± 0.43 | 33.69 ± 0.57 | 0.61 | 0.55 | 0.74 |
Organ weight (g) 2 | |||||||
Semitendinosus m | 5.39 ± 0.36 | 5.39 ± 0.43 | 4.97 ± 0.27 | 5.28 ± 0.34 | 0.43 | 0.56 | 0.63 |
Brain | 53.74 ± 1.36 | 55.60 ± 1.57 | 51.17 ± 1.01 | 52.25 ± 1.20 | 0.07 | 0.19 | 0.73 |
Heart | 24.75 ± 1.56 | 28.62 ± 1.82 | 24.68 ± 1.15 | 25.29 ± 1.41 | 0.42 | 0.14 | 0.23 |
Lungs | 125.21 ± 9.04 | 131.16 ± 11.51 | 101.14 ± 7.01 | 108.40 ± 9.60 | 0.02 | 0.48 | 0.95 |
Liver | 80.96 ± 6.44 | 86.23 ± 7.74 | 71.60 ± 4.81 | 76.84 ± 6.10 | 0.17 | 0.36 | 0.99 |
Spleen | 5.65 ± 0.54 | 6.85 ± 0.62 | 5.08 ± 0.40 | 5.40 ± 0.48 | 0.13 | 0.12 | 0.33 |
Right kidney | 8.56 ± 0.74 | 10.46 ± 0.88 | 8.98 ± 0.55 | 9.30 ± 0.69 | 0.79 | 0.14 | 0.24 |
Left kidney | 8.69 ± 0.79 | 10.28 ± 0.96 | 9.20 ± 0.59 | 9.15 ± 0.76 | 0.89 | 0.40 | 0.28 |
Perirenal fat | 18.96 ± 1.54 | 16.48 ± 1.97 | 17.29 ± 1.20 | 15.58 ± 1.65 | 0.40 | 0.22 | 0.82 |
Thymus | 13.20 ± 1.50 | 14.15 ± 1.80 | 12.38 ± 1.12 | 13.38 ± 1.41 | 0.60 | 0.46 | 0.99 |
Thyroid glands | 0.91 ± 0.10 | 0.96 ± 0.11 | 0.98 ± 0.07 | 0.99 ± 0.08 | 0.62 | 0.66 | 0.77 |
Adrenal glands | 0.41 ± 0.03 | 0.46 ± 0.03 | 0.39 ± 0.02 | 0.40 ± 0.03 | 0.26 | 0.29 | 0.39 |
Digestive tract weight (g) 2 | |||||||
Stomach | 38.13 ± 2.91 | 39.37 ± 3.38 | 33.64 ± 2.16 | 39.81 ± 2.60 | 0.38 | 0.08 | 0.32 |
Intestine 3 | 121.61 ± 8.11 | 135.04 ± 9.03 | 129.51 ± 6.13 | 141.91 ± 6.94 | 0.45 | 0.03 | 0.93 |
CON | NCG | p-Value | |||||
---|---|---|---|---|---|---|---|
Female | Male | Female | Male | Treat | Sex | Treat × Sex | |
Body dimensions 2 (cm) | |||||||
Crown–rump length | 39.52 ± 0.43 | 40.60 ± 0.55 | 40.33 ± 0.33 | 39.87 ± 0.44 | 0.59 | 0.71 | 0.09 |
Thoracic girth | 32.26 ± 0.67 | 32.09 ± 0.83 | 32.85 ± 0.51 | 31.75 ± 0.66 | 0.71 | 0.26 | 0.48 |
Front leg length | 29.11 ± 0.94 | 31.29 ± 1.2 | 29.90 ± 0.75 | 29.19 ± 1.00 | 0.77 | 0.64 | 0.15 |
Hind leg length | 33.40 ± 0.42 | 33.35 ± 0.54 | 33.43 ± 0.33 | 33.75 ± 0.45 | 0.70 | 0.70 | 0.67 |
Organ weight (g) 2 | |||||||
Semitendinosus m | 5.26 ± 0.24 | 5.12 ± 0.3 | 5.20 ± 0.18 | 5.21 ± 0.24 | 0.99 | 0.85 | 0.74 |
Brain | 53.73 ± 1.38 | 55.59 ± 1.64 | 51.17 ± 1.05 | 52.25 ± 1.23 | 0.08 | 0.22 | 0.73 |
Heart | 24.37 ± 1.06 | 27.08 ± 1.26 | 25.61 ± 0.80 | 25.12 ± 0.95 | 0.97 | 0.36 | 0.08 |
Lungs | 121.94 ± 8.08 | 124.19 ± 10.08 | 105.03 ± 6.19 | 109.47 ± 7.96 | 0.07 | 0.64 | 0.89 |
Liver | 79.02 ± 4.61 | 80.64 ± 5.67 | 75.13 ± 3.52 | 76.62 ± 4.41 | 0.43 | 0.72 | 0.99 |
Spleen | 5.41 ± 0.42 | 6.50 ± 0.53 | 5.32 ± 0.32 | 5.36 ± 0.42 | 0.28 | 0.27 | 0.23 |
Right kidney | 8.31 ± 0.60 | 9.93 ± 0.71 | 9.40 ± 0.46 | 9.22 ± 0.83 | 0.54 | 0.25 | 0.07 |
Left kidney | 8.45 ± 0.67 | 9.76 ± 0.82 | 9.57 ± 0.51 | 9.14 ± 0.63 | 0.52 | 0.65 | 0.17 |
Perirenal fat | 18.77 ± 1.63 | 16.11 ± 2.05 | 17.60 ± 1.25 | 15.55 ± 1.65 | 0.61 | 0.17 | 0.87 |
Thymus | 12.90 ± 1.28 | 13.29 ± 1.59 | 13.00 ± 0.98 | 13.23 ± 1.25 | 0.98 | 0.81 | 0.95 |
Thyroid glands | 0.86 ± 0.07 | 0.91 ± 0.09 | 1.04 ± 0.05 | 0.96 ± 0.07 | 0.11 | 0.72 | 0.37 |
Adrenal glands | 0.41 ± 0.02 | 0.43 ± 0.03 | 0.40 ± 0.02 | 0.40 ± 0.03 | 0.40 | 0.59 | 0.80 |
Digestive tract weight (g) 2 | |||||||
Stomach | 37.76 ± 2.84 | 38.76 ± 3.41 | 34.19 ± 2.16 | 39.64 ± 2.57 | 0.53 | 0.13 | 0.37 |
Intestine 3 | 120.05 ± 6.11 | 128.75 ± 7.55 | 133.77 ± 4.63 | 140.17 ± 5.84 | 0.07 | 0.20 | 0.85 |
CON | NCG | p-Value | |||||
---|---|---|---|---|---|---|---|
Female | Male | Female | Male | Treat | Sex | Treat × Sex | |
Sodium, mmol/L | 142.47 ± 0.73 a | 143.45 ± 0.79 b | 142.80 ± 0.58 a | 142.22 ± 0.60 a | 0.78 | 0.89 | <0.05 |
Potassium, mmol/L | 4.76 ± 0.13 | 5.04 ± 0.16 | 4.72 ± 0.10 | 5.01 ± 0.13 | 0.77 | 0.02 | 0.99 |
Calcium, mmol/L | 1.45 ± 0.02 a | 1.53 ± 0.02 b | 1.46 ± 0.01 a | 1.46 ± 0.01 a | 0.21 | 0.01 | <0.01 |
Hemoglobin, g/dL | 12.01 ± 0.63 | 12.03 ± 0.75 | 12.96 ± 0.48 | 12.36 ± 0.56 | 0.30 | 0.51 | 0.57 |
pH | 7.46 ± 0.01 a | 7.39 ± 0.01 b | 7.44 ± 0.01 a | 7.43 ± 0.01 a | 0.78 | <0.01 | <0.01 |
PCO2, mm Hg | 38.95 ± 1.52 a | 45.05 ± 1.66 b | 40.32 ± 1.22 a | 41.09 ± 1.28 a,b | 0.73 | <0.01 | <0.01 |
PO2, mm Hg | 22.18 ± 1.85 | 19.53 ± 2.17 | 20.23 ± 1.41 | 20.40 ± 1.61 | 0.67 | 0.50 | 0.34 |
TCO, mmol/L | 29.13 ± 0.64 | 28.24 ± 0.69 | 28.82 ± 0.52 | 28.79 ± 0.54 | 0.98 | 0.21 | 0.15 |
HCO3, mmol/L | 27.90 ± 0.63 | 27.16 ± 0.67 | 27.58 ± 0.51 | 27.54 ± 0.53 | 0.95 | 0.29 | 0.25 |
BE, mmol/L | 3.87 ± 0.63 | 2.44 ± 0.69 | 3.55 ± 0.50 | 3.12 ± 0.53 | 0.93 | 0.02 | 0.15 |
sO2, % | 40.64 ± 4.89 | 29.96 ± 5.69 | 34.16 ± 3.74 | 35.17 ± 4.21 | 0.71 | 0.31 | 0.13 |
Hematocrit, % PCV | 35.35 ± 1.84 | 35.39 ± 2.20 | 38.14 ± 1.39 | 36.42 ± 1.65 | 0.29 | 0.51 | 0.58 |
CON | NCG | p-Value | |
---|---|---|---|
Urea (mmol/L) | 7.61 ± 0.18 | 7.02 ± 0.16 | 0.07 |
NEFA (µmol/L) | 860.25 ± 62.57 | 970.90 ± 55.96 | 0.21 |
Total protein (g/L) | 76.13 ± 1.69 | 73.00 ± 1.5 | 0.19 |
Globulin (g/L) | 34.00 ± 1.31 | 33.40 ± 1.17 | 0.74 |
Calcium (mmol/L) | 2.15 ± 0.10 | 2.21 ± 0.09 | 0.67 |
Magnesium (mmol/L) | 1.08 ± 0.02 | 1.04 ± 0.02 | 0.23 |
Cholesterol (mmol/L) | 1.78 ± 0.10 | 1.89 ± 0.09 | 0.41 |
AST (IU/L) | 106.13 ± 4.12 | 109.00 ± 3.68 | 0.61 |
CK (IU/L) | 104.88 ± 16.72 | 72.90 ± 14.96 | 0.17 |
GGT (IU/L) | 54.63 ± 4.46 | 54.40 ± 3.99 | 0.97 |
GLDH (IU/L) | 12.50 ± 2.02 | 13.80 ± 1.57 | 0.62 |
Bilirubin (mmol/L) | 8.83 ± 0.29 | 9.49 ± 0.26 | 0.11 |
Triglycerides (mmol/L) | 0.36 ± 0.06 | 0.44 ± 0.05 | 0.35 |
Trait | CON | NCG | p-Value |
---|---|---|---|
Placental weight (g) | 599.4 ± 52.78 | 590.7 ± 45.71 | 0.90 |
Placentome weight (g) | 560.6 ± 45.13 | 548.1 ± 37.76 | 0.83 |
Placentome number | 89.0 ± 4.13 | 84.0 ± 3.46 | 0.37 |
Mean placentome weight (g) | 6.3 ± 0.44 | 6.5 ± 0.37 | 0.68 |
Placental efficiency 1 | 11.8 ± 0.88 | 11.6 ± 0.67 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parraguez, V.H.; McCoard, S.; Sandoval, C.; Candia, F.; Maclean, P.; Mace, W.; Liu, X.; Sales, F. The Effect of N-Carbamylglutamate Supplementation during the Last Third of Gestation on the Growth and Development of Fetuses Born to Nutrient-Restricted Twin-Bearing Ewes. Animals 2024, 14, 946. https://doi.org/10.3390/ani14060946
Parraguez VH, McCoard S, Sandoval C, Candia F, Maclean P, Mace W, Liu X, Sales F. The Effect of N-Carbamylglutamate Supplementation during the Last Third of Gestation on the Growth and Development of Fetuses Born to Nutrient-Restricted Twin-Bearing Ewes. Animals. 2024; 14(6):946. https://doi.org/10.3390/ani14060946
Chicago/Turabian StyleParraguez, Víctor H., Susan McCoard, Camila Sandoval, Francisca Candia, Paul Maclean, Wade Mace, Xinqi Liu, and Francisco Sales. 2024. "The Effect of N-Carbamylglutamate Supplementation during the Last Third of Gestation on the Growth and Development of Fetuses Born to Nutrient-Restricted Twin-Bearing Ewes" Animals 14, no. 6: 946. https://doi.org/10.3390/ani14060946
APA StyleParraguez, V. H., McCoard, S., Sandoval, C., Candia, F., Maclean, P., Mace, W., Liu, X., & Sales, F. (2024). The Effect of N-Carbamylglutamate Supplementation during the Last Third of Gestation on the Growth and Development of Fetuses Born to Nutrient-Restricted Twin-Bearing Ewes. Animals, 14(6), 946. https://doi.org/10.3390/ani14060946