Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = N ion implantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4696 KiB  
Article
Effects of Ultrasonic Nanocrystal Surface Modification on the Formation of a Nitride Layer in Ti-6Al-4V Alloy
by Bauyrzhan Rakhadilov, Nurtoleu Magazov, Zarina Aringozhina, Gulzhaz Uazyrkhanova, Zhuldyz Uazyrkhanova and Auezhan Amanov
Materials 2025, 18(15), 3487; https://doi.org/10.3390/ma18153487 - 25 Jul 2025
Viewed by 241
Abstract
This study investigates the effects of ultrasonic nanocrystalline surface modification (UNSM) on the formation of nitride layers in Ti-6Al-4V alloy during ion-plasma nitriding (IPN). Various UNSM parameters, including vibration amplitude, static load, and processing temperature, were systematically varied to evaluate their influence on [...] Read more.
This study investigates the effects of ultrasonic nanocrystalline surface modification (UNSM) on the formation of nitride layers in Ti-6Al-4V alloy during ion-plasma nitriding (IPN). Various UNSM parameters, including vibration amplitude, static load, and processing temperature, were systematically varied to evaluate their influence on microstructure, hardness, elastic modulus, and tribological behavior. The results reveal that pre-treatment with optimized UNSM conditions significantly enhances nitrogen diffusion, leading to the formation of dense and uniform TiN/Ti2N layers. Samples pre-treated under high-load and elevated-temperature UNSM exhibited the greatest improvements in surface hardness (up to 25%), elastic modulus (up to 18%), and wear resistance, with a reduced and stabilized friction coefficient (~0.55). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses confirmed microstructural densification, grain refinement, and increased nitride phase intensity. These findings demonstrate not only the scientific relevance but also the practical potential of UNSM as an effective surface activation technique. The hybrid UNSM + IPN approach may serve as a promising method for extending the service life of load-bearing biomedical implants and engineering components subjected to intensive wear. Full article
Show Figures

Figure 1

12 pages, 8480 KiB  
Article
Chemical and Biological Properties of C-Point Obturation Cones
by Marina Angélica Marciano, Paulo Jorge Palma, Ana Cristina Padilha Janini, Brenda Fornazaro Moraes, Thiago Bessa Marconato Antunes, Ribamar Lazanha Lucateli, Bruno Martini Guimarães, Mariza Akemi Matsumoto, Diana Bela Sequeira, Talita Tartari, Brenda Paula Figueiredo Almeida Gomes and Marco Antonio Hungaro Duarte
Biomimetics 2025, 10(6), 409; https://doi.org/10.3390/biomimetics10060409 - 18 Jun 2025
Viewed by 387
Abstract
This study evaluated the chemical composition and subcutaneous tissue biocompatibility of C-Point, a root canal filling material, compared to ProTaper gutta-percha cones (control). Material characterization was conducted using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). For biocompatibility assessment, both materials were implanted subcutaneously [...] Read more.
This study evaluated the chemical composition and subcutaneous tissue biocompatibility of C-Point, a root canal filling material, compared to ProTaper gutta-percha cones (control). Material characterization was conducted using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). For biocompatibility assessment, both materials were implanted subcutaneously in the dorsal connective tissue of sixteen albino rats (n = 8 per group). Histological evaluation of inflammatory infiltrate intensity was performed at 30 and 60 days post-implantation, with statistical analysis (significance set at p < 0.05). SEM-EDS analysis revealed distinct elemental compositions: C-Point primarily contained zirconium and cobalt ions, while gutta-percha cones demonstrated a strong zinc signature with trace amounts of barium, aluminum, and sulfur. Both materials exhibited similar particulate morphology with radiopaque inclusions. Histologically, no significant difference in inflammatory response was observed between C-Point and gutta-percha at any time point (p > 0.05). All specimens developed a fibrous encapsulation. The inflammatory profile showed temporal dynamics, with lymphocyte predominance during early stages that progressively diminished by the study endpoint. These findings demonstrate that while C-Point possesses a unique elemental profile dominated by zirconium, its tissue biocompatibility parallels that of conventional gutta-percha obturation materials. However, due to the absence of mechanical testing and the limited in vivo follow-up period, the long-term stability of the material remains uncertain. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

23 pages, 7289 KiB  
Review
Analysis of Edge Termination Techniques for Gallium Nitride Pseudo-Vertical p-n Diodes: Modeling Based on Technology Computer-Aided Design and Review of Current Developments
by Mohammed El Amrani, Julien Buckley, Daniel Alquier, Philippe Godignon and Matthew Charles
Electronics 2025, 14(6), 1188; https://doi.org/10.3390/electronics14061188 - 18 Mar 2025
Viewed by 993
Abstract
Edge termination techniques play a crucial role in enhancing the breakdown voltage (BV) and managing electric field distribution in GaN-based power devices. This review explores six key termination methods—field plate (FP), mesa, bevel, trench, ion implantation, and guard ring (GR)—with a focus on [...] Read more.
Edge termination techniques play a crucial role in enhancing the breakdown voltage (BV) and managing electric field distribution in GaN-based power devices. This review explores six key termination methods—field plate (FP), mesa, bevel, trench, ion implantation, and guard ring (GR)—with a focus on their performance, fabrication complexity, and insights derived from TCAD simulations. FP and trench terminations excel in high-voltage applications due to their superior electric field control but are accompanied by significant fabrication challenges. Mesa and bevel terminations, while simpler and cost-effective, are more suited for medium-voltage applications. Ion implantation and GR techniques strike a balance, offering customizable parameters for improved BV performance. TCAD simulations provide a robust framework for analyzing these techniques, highlighting optimal configurations and performance trade-offs. The choice of edge termination depends on the specific application, balancing BV requirements with manufacturing feasibility. This review offers a comprehensive comparison, emphasizing the critical role of simulations in guiding the selection and design of edge termination techniques for GaN power devices. Full article
(This article belongs to the Special Issue Feature Review Papers in Electronics)
Show Figures

Figure 1

25 pages, 2189 KiB  
Review
Advancements in Surface Modification of NiTi Alloys for Orthopedic Implants: Focus on Low-Temperature Glow Discharge Plasma Oxidation Techniques
by Justyna Witkowska, Jerzy Sobiecki and Tadeusz Wierzchoń
Int. J. Mol. Sci. 2025, 26(3), 1132; https://doi.org/10.3390/ijms26031132 - 28 Jan 2025
Cited by 3 | Viewed by 1525
Abstract
Nickel–titanium (NiTi) shape memory alloys are promising materials for orthopedic implants due to their unique mechanical properties, including superelasticity and shape memory effect. However, the high nickel content in NiTi alloys raises concerns about biocompatibility and potential cytotoxic effects. This review focuses on [...] Read more.
Nickel–titanium (NiTi) shape memory alloys are promising materials for orthopedic implants due to their unique mechanical properties, including superelasticity and shape memory effect. However, the high nickel content in NiTi alloys raises concerns about biocompatibility and potential cytotoxic effects. This review focuses on the recent advancements in surface modification techniques aimed at enhancing the properties of NiTi alloys for biomedical applications, with particular emphasis on low-temperature glow discharge plasma oxidation methods. The review explores various surface engineering strategies, including oxidation, nitriding, ion implantation, laser treatments, and the deposition of protective coatings. Among these, low-temperature plasma oxidation stands out for its ability to produce uniform, nanocrystalline layers of titanium dioxide (TiO2), titanium nitride (TiN), and nitrogen-doped TiO2 layers, significantly enhancing corrosion resistance, reducing nickel ion release, and promoting osseointegration. Plasma-assisted oxynitriding processes enable the creation of multifunctional coatings with improved mechanical and biological properties. The applications of modified NiTi alloys in orthopedic implants, including spinal fixation devices, joint prostheses, and fracture fixation systems, are also discussed. Despite these promising advancements, challenges remain in achieving large-scale reproducibility, controlling process parameters, and reducing production costs. Future research directions include integrating bioactive and antibacterial coatings, enhancing surface structuring for controlled biological responses, and expanding clinical validation. Addressing these challenges can unlock the full potential of surface-modified NiTi alloys in advanced orthopedic applications for safer, longer-lasting, and more effective medical implants. Full article
(This article belongs to the Special Issue Biomaterials for Dental and Orthopedic Applications)
Show Figures

Figure 1

16 pages, 5649 KiB  
Article
Innovative Bioceramic Based on Hydroxyapatite with Titanium Nanoparticles as Reinforcement for Possible Medical Applications
by Dafne Rubi Porras-Herrera, Héctor Herrera-Hernández, José Guadalupe Miranda-Hernández, José Adalberto Castillo-Robles, Eddie Nahúm Armendariz-Mireles, Carlos Adrián Calles-Arriaga and Enrique Rocha-Rangel
J. Manuf. Mater. Process. 2024, 8(6), 296; https://doi.org/10.3390/jmmp8060296 - 19 Dec 2024
Viewed by 1370
Abstract
Biomaterials have assumed a decisive role in modern medicine by enabling significant advancements in medical care practices. These materials are designed to interact with biological systems, offering substantial solutions for various medical needs. In this research, bioceramic materials consisting of a bioactive hydroxyapatite-based [...] Read more.
Biomaterials have assumed a decisive role in modern medicine by enabling significant advancements in medical care practices. These materials are designed to interact with biological systems, offering substantial solutions for various medical needs. In this research, bioceramic materials consisting of a bioactive hydroxyapatite-based matrix with Ti nanoparticles were processed as promising materials. These bioceramics were obtained using mechanical milling, uniaxial pressing, and sintering as powder processing techniques. This study evaluates the effect of Ti additions on the structural, electrochemical, and mechanical properties of the hydroxyapatite ceramic material. Titanium additions were about 1, 2 and 3 wt%. The experimental results demonstrate that the biocomposite’s structure has two hexagonal phases: one corresponding to the hydroxyapatite matrix and the other to the Ti as a reinforced phase. The biomaterials’ microstructure is completely fine and homogeneous. The biomaterial reinforced with 1 wt. % Ti exhibits the best mechanical behavior. In this context, electrochemical tests reveal that bioceramics can achieve stability through an ion adsorption mechanism when exposed to a physiological electrolyte. Bioceramics, particularly those containing 1%Ti, develop their bioactivity through the formation of a high-density hydroxide film during a porous sealing process at potentials around −782.71 mV, with an ionic charge transfer of 0.43 × 10−9 A/cm2. Finally, this biofilm behaves as a capacitor Cc = 0.18 nF/cm2, resulting in lower ionic charge transfer resistance (Rct = 1.526 × 106 Ω-cm2) at the interface. This mechanism promotes the material’s biocompatibility for bone integration as an implant material. Full article
(This article belongs to the Special Issue Industry 4.0: Manufacturing and Materials Processing)
Show Figures

Figure 1

15 pages, 7714 KiB  
Article
Gemcitabine-Loaded Microbeads for Transarterial Chemoembolization of Rabbit Renal Tumor Monitored by 18F-FDG Positron Emission Tomography/X-Ray Computed Tomography Imaging
by Xiaoli Zhang, Tingting Li, Jindong Tong, Meihong Zhou, Zi Wang, Xingdang Liu, Wei Lu, Jingjing Lou and Qingtong Yi
Pharmaceutics 2024, 16(12), 1609; https://doi.org/10.3390/pharmaceutics16121609 - 17 Dec 2024
Cited by 1 | Viewed by 1312
Abstract
Background/Objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (18F-FDG PET/CT). Methods: DEBs were prepared [...] Read more.
Background/Objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (18F-FDG PET/CT). Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with N-acryl tyrosine and N,N′-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs. Their particle size and drug release profile were characterized. VX2 tumors were implanted in the right kidney of rabbits to establish the renal tumor model. The tumor-bearing rabbits received pre-scan by 18F-FDG PET/CT, followed by targeted transarterial injection of G-DEBs under digital subtraction angiography (DSA) guidance. The rabbits received another 18F-FDG PET/CT scan 10 or 14 days after the treatment. The therapeutic effect was further validated by histopathological analysis of the dissected tumors. Results: The average particle size of the microspheres was 58.06 ± 0.50 µm, and the polydisperse index was 0.26 ± 0.002. The maximum loading rate of G-DEBs was 18.09 ± 0.35%, with almost 100% encapsulation efficiency. Within 24 h, GEM was eluted from G-DEBs rapidly and completely, and more than 20% was released in different media. DSA illustrated that G-DEBs were delivered to rabbit renal tumors. Compared with the untreated control group with increased tumor volume and intense 18F -FDG uptake, the G-DEBs group showed significant reductions in tumor volume and maximum standard uptake value (SUVmax) 10 or 14 days after the treatment. Histopathological analysis confirmed that the proliferating area of tumor cells was significantly reduced in the G-DEBs group. Conclusions: Our results demonstrated that G-DEBs are effective in TACE treatment of rabbit VX2 renal tumors, and 18F-FDG PET/CT provides a non-invasive imaging modality to monitor the antitumor effects of TACE in renal tumors. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

18 pages, 18179 KiB  
Article
Improving the Wear and Corrosion Resistance of Titanium Alloy Parts via the Deposition of DLC Coatings
by Alexander Metel, Catherine Sotova, Sergey Fyodorov, Valery Zhylinski, Vadzim Chayeuski, Filipp Milovich, Anton Seleznev, Yuri Bublikov, Kirill Makarevich and Alexey Vereschaka
C 2024, 10(4), 106; https://doi.org/10.3390/c10040106 - 16 Dec 2024
Cited by 4 | Viewed by 2013
Abstract
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, [...] Read more.
This article compares the properties of the diamond-like carbon (DLC) coating with those of ZrN and (Zr,Hf)N coatings deposited on the Ti-6Al-4V titanium alloy substrate. To improve substrate adhesion during the deposition of the DLC coating, preliminary etching with chromium ions was conducted, ensuring the formation of a chromium-saturated diffusion surface layer in the substrate. A Si-DLC layer followed by a pure DLC layer was then deposited. The hardness of the coatings, their surface morphology, fracture strength in the scratch test, and tribological properties and wear resistance in the pin-on-disk test in contact with Al2O3 and steel indenters were investigated. The structure of the DLC coating was studied using transmission electron microscopy, and its corrosion resistance in an environment simulating blood plasma was also investigated. In the pin-on-disk test in contact with Al2O3 and AISI 52100 indenters, the DLC-coated sample demonstrates a much lower friction coefficient and significantly better wear resistance compared to the nitride-coated and uncoated samples. Both nitride coatings—(Zr,Hf)N and ZrN—and the DLC coating slow down the corrosive dissolution of the base compared to the uncoated sample. The corrosion currents of the (Zr,Hf)N-coated samples are 37.01 nA/cm2, 20% higher than those of the ZrN-coated samples. The application of (Zr,Hf)N, ZrN, and DLC coatings on the Ti-6Al-4V alloy significantly inhibits dissolution currents (by 30–40%) and increases polarization resistance 1.5–2.0-fold compared to the uncoated alloy in 0.9% NaCl at 40 °C. Thus, the DLC coating of the described structure simultaneously provides effective wear and corrosion resistance in an environment simulating blood plasma. This coating can be considered in the manufacture of medical products (in particular, implants) from titanium alloys, including those functioning in the human body and subject to mechanical wear (e.g., knee joint endoprostheses). Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Figure 1

20 pages, 21853 KiB  
Article
Thermal Evolution of Expanded Phases Formed by PIII Nitriding in Super Duplex Steel Investigated by In Situ Synchrotron Radiation
by Bruna Corina Emanuely Schibicheski Kurelo, João Frederico Haas Leandro Monteiro, Gelson Biscaia de Souza, Francisco Carlos Serbena, Carlos Maurício Lepienski, Rodrigo Perito Cardoso and Silvio Francisco Brunatto
Metals 2024, 14(12), 1396; https://doi.org/10.3390/met14121396 - 5 Dec 2024
Cited by 3 | Viewed by 1014
Abstract
The Plasma Immersion Ion Implantation (PIII) nitriding was used to form a modified layer rich in expanded austenite (γN) and expanded ferrite (αN) phases in super duplex steel. The thermal stability of these phases was investigated through the in [...] Read more.
The Plasma Immersion Ion Implantation (PIII) nitriding was used to form a modified layer rich in expanded austenite (γN) and expanded ferrite (αN) phases in super duplex steel. The thermal stability of these phases was investigated through the in situ synchrotron X-ray diffraction. All the surfaces were analyzed by SEM, EDS, and nanoindentation. During the heating stage of the thermal treatments, the crystalline structure of the γN phase expanded thermally up to a temperature of 350 °C and, above this temperature, a reduction in the lattice parameter was observed due to the diffusion of nitrogen into the substrate. During the isothermal heating, the gradual diffusion of nitrogen continued and the lattice parameter of the γN phase decreased. Increasing the treatment temperature from 450 °C to 550 °C, a greater reduction in the lattice parameter of the γN phase occured and the peaks related to the CrN, α, and αN phases became more evident in the diffractograms. This phenomenon is associated with the decomposition of the γN phase into CrN + α + αN. After the heat treatments, the thickness of the modified layers increased and the hardness values close to the surface decreased, according to the diffusion of the nitrogen to the substrate. Full article
Show Figures

Graphical abstract

16 pages, 11276 KiB  
Article
A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs
by Yawen Wang, Haipeng Lan, Qiwei Shangguan, Yawei Lv and Changzhong Jiang
Electronics 2024, 13(14), 2758; https://doi.org/10.3390/electronics13142758 - 13 Jul 2024
Viewed by 2061
Abstract
Aluminum (Al) ion implantation is one of the most important technologies in SiC device manufacturing processes due to its ability to produce the p-type doping effect, which is essential to building p–n junctions and blocking high voltages. However, besides the doping effect, defects [...] Read more.
Aluminum (Al) ion implantation is one of the most important technologies in SiC device manufacturing processes due to its ability to produce the p-type doping effect, which is essential to building p–n junctions and blocking high voltages. However, besides the doping effect, defects are also probably induced by the implantation. Here, the impacts of Al ion implantation-induced defects on 4H-SiC MOSFET channel transport behaviors are studied using a multiscale simulation flow, including the molecular dynamics (MD) simulation, density functional theory (DFT) calculation, and tight-binding (TB) model-based quantum transport simulation. The simulation results show that an Al ion can not only replace a Si lattice site to realize the p-doping effect, but it can also replace the C lattice site to induce mid-gap trap levels or become an interstitial to induce the n-doping effect. Moreover, the implantation tends to bring additional point defects to the 4H-SiC body region near the Al ions, which will lead to more complicated coupling effects between them, such as degrading the p-type doping effect by trapping free hole carriers and inducing new trap states at the 4H-SiC bandgap. The quantum transport simulations indicate that these coupling effects will impede local electron transports, compensating for the doping effect and increasing the leakage current of the 4H-SiC MOSFET. In this study, the complicated coupling effects between the implanted Al ions and the implantation-induced point defects are revealed, which provides new references for experiments to increase the accepter activation rate and restrain the defect effect in SiC devices. Full article
(This article belongs to the Special Issue Wide-Bandgap Device Application: Devices, Circuits, and Drivers)
Show Figures

Figure 1

9 pages, 3245 KiB  
Article
Enhancement of Electrical Safe Operation Area of 60 V nLDMOS by Engineering of Reduced Surface Electrical Field in the Drift Region
by Lianjie Li, Bao Zhu, Xiaohan Wu and Shijin Ding
Micromachines 2024, 15(7), 815; https://doi.org/10.3390/mi15070815 - 24 Jun 2024
Viewed by 1070
Abstract
To enhance the electrical safe operation area (eSOA) of laterally diffused metal oxide semiconductor (LDMOS) transistors, a novel reduced surface electric field (Resurf) structure in the n-drift region is proposed, which was fabricated by ion implantation at the surface of the LDMOS drift [...] Read more.
To enhance the electrical safe operation area (eSOA) of laterally diffused metal oxide semiconductor (LDMOS) transistors, a novel reduced surface electric field (Resurf) structure in the n-drift region is proposed, which was fabricated by ion implantation at the surface of the LDMOS drift region and by drift region dimension optimization. Technology computer-aided design (TCAD) simulations show that the optimal value of Resurf ion implantation dose 1 × 1012 cm−2 can reduce the surface electric field in the n-drift region effectively, thereby improving the ON-state breakdown voltage of the device (BVon). In addition, the extended n-drift region length of the Ld design also improves device BVon significantly, and is aimed at reducing the current density and the electric field, and eventually suppressing the n-drift region impact ionization. The results show that the novel 60 V nLDMOS has a competitive BVon performance of 106.9 V, which is about 20% higher than that of the conventional one. Meanwhile, the OFF-state breakdown voltage of the device (BVoff) of 88.4 V and the specific ON-resistance (RON,sp) of 129.7 mΩ⋅mm2 exhibit only a slight sacrifice. Full article
Show Figures

Figure 1

13 pages, 2396 KiB  
Article
P-Type ZnO Films Made by Atomic Layer Deposition and Ion Implantation
by Guoxiu Zhang, Lars Rebohle, Fabian Ganss, Wojciech Dawidowski, Elzbieta Guziewicz, Jung-Hyuk Koh, Manfred Helm, Shengqiang Zhou, Yufei Liu and Slawomir Prucnal
Nanomaterials 2024, 14(13), 1069; https://doi.org/10.3390/nano14131069 - 22 Jun 2024
Viewed by 1613
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor that holds significant potential for various applications. However, most of the native point defects in ZnO like Zn interstitials typically cause an n-type conductivity. Consequently, achieving p-type doping in ZnO is challenging but crucial for [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor that holds significant potential for various applications. However, most of the native point defects in ZnO like Zn interstitials typically cause an n-type conductivity. Consequently, achieving p-type doping in ZnO is challenging but crucial for comprehensive applications in the field of optoelectronics. In this work, we investigated the electrical and optical properties of ex situ doped p-type ZnO films. The p-type conductivity has been realized by ion implantation of group V elements followed by rapid thermal annealing (RTA) for 60 s or flash lamp annealing (FLA) on the millisecond time scale in nitrogen or oxygen ambience. The phosphorus (P)-doped ZnO films exhibit stable p-type doping with a hole concentration in the range of 1014 to 1018 cm−3, while antimony (Sb) implantation produces only n-type layers independently of the annealing procedure. Microstructural studies of Sb-doped ZnO show the formation of metallic clusters after ms range annealing and SbZn-oxides after RTA. Full article
(This article belongs to the Special Issue Synthesis and Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

10 pages, 4041 KiB  
Article
A 1.6 kV Ga2O3 Schottky Barrier Diode with a Low Reverse Current of 1.2 × 10−5 A/cm2 Enabled by Field Plates and N Ion-Implantation Edge Termination
by Xinlong Zhou, Jining Yang, Hao Zhang, Yinchi Liu, Genran Xie and Wenjun Liu
Nanomaterials 2024, 14(11), 978; https://doi.org/10.3390/nano14110978 - 5 Jun 2024
Cited by 2 | Viewed by 1696
Abstract
In this work, by employing field plate (FP) and N ion-implantation edge termination (NIET) structure, the electrical performance of the β-Ga2O3 Schottky barrier diode (SBD) was greatly improved. Ten samples of vertical SBDs were fabricated to investigate the influence [...] Read more.
In this work, by employing field plate (FP) and N ion-implantation edge termination (NIET) structure, the electrical performance of the β-Ga2O3 Schottky barrier diode (SBD) was greatly improved. Ten samples of vertical SBDs were fabricated to investigate the influence of the relative positions of field plates (FPs) and ion implantation on the device performance. The device with the FP of 15 μm and the ion implantation at the edge of the Schottky electrode exhibited a breakdown voltage (Vbr) of 1616 V, a specific on-resistance (Ron,sp) of 5.11 mΩ·cm2, a power figure of merit (PFOM) of 0.511 GW/cm2, and a reverse current density of 1.2 × 10−5 A/cm2 @ −1000 V. Compared to the control device, although the Ron,sp increased by 1 mΩ·cm2, the Vbr of the device increased by 183% and the PFOM increased by 546.8%. Moreover, the reverse leakage current of the device with the FP and NIET structure decreased by three orders of magnitude. The TCAD simulation revealed that the peak electric field at the interface decreased from 7 MV/cm @ −500 V to 4.18 MV/cm @ −1000 V. These results demonstrate the great potential for the β-Ga2O3 SBD with a FP and NIET structure in power electronic applications. Full article
(This article belongs to the Special Issue Wide-Bandgap and Ultrawide-Bandgap Semiconductor Nanomaterials)
Show Figures

Figure 1

16 pages, 6004 KiB  
Article
Comparison of Nitriding Behavior for Austenitic Stainless Steel 316Ti and Super Austenitic Stainless Steel 904L
by Stephan Mändl and Darina Manova
Metals 2024, 14(6), 659; https://doi.org/10.3390/met14060659 - 1 Jun 2024
Cited by 4 | Viewed by 1444
Abstract
In situ X-ray diffraction (XRD) was used to compare nitrogen low-energy ion implantation (LEII) into austenitic stainless steel 316Ti and super austenitic stainless steel 904L. While the diffusion and layer growth were very similar, as derived from the decreasing intensity of the substrate [...] Read more.
In situ X-ray diffraction (XRD) was used to compare nitrogen low-energy ion implantation (LEII) into austenitic stainless steel 316Ti and super austenitic stainless steel 904L. While the diffusion and layer growth were very similar, as derived from the decreasing intensity of the substrate reflection, strong variations in the observed lattice expansion—as a function of orientation, the steel alloy, and nitriding temperature—were observed. Nevertheless, a similar resulting nitrogen content was measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Furthermore, for some conditions, the formation of a double layer with two distinct lattice expansions was observed, especially for steel 904L. Regarding the stability of expanded austenite, 316Ti had already decayed in CrN during nitriding at 500 °C, while no such effect was observed for 904L. Thus, the alloy composition has a strong influence only on the lattice expansion and the stability of expanded austenite—but not the diffusion and nitrogen content. Full article
Show Figures

Graphical abstract

10 pages, 1882 KiB  
Article
Research on Evolution of Relevant Defects in Heavily Mg-Doped GaN by H Ion Implantation Followed by Thermal Annealing
by Zonglin Jiang, Dan Yan, Ning Zhang, Junxi Wang and Xuecheng Wei
Materials 2024, 17(11), 2518; https://doi.org/10.3390/ma17112518 - 23 May 2024
Cited by 1 | Viewed by 1330
Abstract
This study focuses on the heavily Mg-doped GaN in which the passivation effect of hydrogen and the compensation effect of nitrogen vacancies (VN) impede its further development. To investigate those two factors, H ion implantation followed by thermal annealing was performed [...] Read more.
This study focuses on the heavily Mg-doped GaN in which the passivation effect of hydrogen and the compensation effect of nitrogen vacancies (VN) impede its further development. To investigate those two factors, H ion implantation followed by thermal annealing was performed on the material. The evolution of relevant defects (H and VN) was revealed, and their distinct behaviors during thermal annealing were compared between different atmospheres (N2/NH3). The concentration of H and its associated yellow luminescence (YL) band intensity decrease as the thermal annealing temperature rises, regardless of the atmosphere being N2 or NH3. However, during thermal annealing in NH3, the decrease in H concentration is notably faster compared to N2. Furthermore, a distinct trend is observed in the behavior of the blue luminescence (BL) band under N2 and NH3. Through a comprehensive analysis of surface properties, we deduce that the decomposition of NH3 during thermal annealing not only promotes the out-diffusion of H ions from the material, but also facilitates the repair of VN on the surface of heavily Mg-doped GaN. This research could provide crucial insights into the post-growth process of heavily Mg-doped GaN. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

25 pages, 6718 KiB  
Article
Edge-Terminated AlGaN/GaN/AlGaN Multi-Quantum Well Impact Avalanche Transit Time Sources for Terahertz Wave Generation
by Monisha Ghosh, Shilpi Bhattacharya Deb, Aritra Acharyya, Arindam Biswas, Hiroshi Inokawa, Hiroaki Satoh, Amit Banerjee, Alexey Y. Seteikin and Ilia G. Samusev
Nanomaterials 2024, 14(10), 873; https://doi.org/10.3390/nano14100873 - 17 May 2024
Cited by 7 | Viewed by 1961
Abstract
In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlxGa1−xN/GaN/AlxGa1−xN material system, with a [...] Read more.
In our pursuit of high-power terahertz (THz) wave generation, we propose innovative edge-terminated single-drift region (SDR) multi-quantum well (MQW) impact avalanche transit time (IMPATT) structures based on the AlxGa1−xN/GaN/AlxGa1−xN material system, with a fixed aluminum mole fraction of x = 0.3. Two distinct MQW diode configurations, namely p+-n junction-based and Schottky barrier diode structures, were investigated for their THz potential. To enhance reverse breakdown characteristics, we propose employing mesa etching and nitrogen ion implantation for edge termination, mitigating issues related to premature and soft breakdown. The THz performance is comprehensively evaluated through steady-state and high-frequency characterizations using a self-consistent quantum drift-diffusion (SCQDD) model. Our proposed Al0.3Ga0.7N/GaN/Al0.3Ga0.7N MQW diodes, as well as GaN-based single-drift region (SDR) and 3C-SiC/Si/3C-SiC MQW-based double-drift region (DDR) IMPATT diodes, are simulated. The Schottky barrier in the proposed diodes significantly reduces device series resistance, enhancing peak continuous wave power output to approximately 300 mW and DC to THz conversion efficiency to nearly 13% at 1.0 THz. Noise performance analysis reveals that MQW structures within the avalanche zone mitigate noise and improve overall performance. Benchmarking against state-of-the-art THz sources establishes the superiority of our proposed THz sources, highlighting their potential for advancing THz technology and its applications. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

Back to TopTop