Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = Musa sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4510 KiB  
Communication
Long-Read Draft Genome Sequences of Two Fusarium oxysporum f. sp. cubense Isolates from Banana (Musa spp.)
by Jiaman Sun, Jinzhong Zhang, Donald M. Gardiner, Peter van Dam, Gang Fu, Brett J. Ferguson, Elizabeth A. B. Aitken and Andrew Chen
J. Fungi 2025, 11(6), 421; https://doi.org/10.3390/jof11060421 - 30 May 2025
Viewed by 738
Abstract
Fusarium oxysporum f. sp. cubense (Foc) causes Fusarium wilt, a devastating epidemic disease that has caused widespread damage to banana crops worldwide. We report the draft genomes of Foc race 1 (16117) and Foc tropical race 4 (Fusarium odoratissimum) (CNSD1) isolates [...] Read more.
Fusarium oxysporum f. sp. cubense (Foc) causes Fusarium wilt, a devastating epidemic disease that has caused widespread damage to banana crops worldwide. We report the draft genomes of Foc race 1 (16117) and Foc tropical race 4 (Fusarium odoratissimum) (CNSD1) isolates from China, assembled using PacBio HiFi sequencing reads, with functional annotation performed. The strains group in distinct lineages within the Fusarium oxysporum species complex. This genetic resource will contribute towards understanding the pathogenicity and evolutionary dynamics of Foc populations in banana-growing regions around the world. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

15 pages, 30732 KiB  
Article
Characterization of Plant Defensin (PDF) Genes in Banana (Musa acuminata) Reveals the Antifungal Ability of MaPDF2.2 to Fusarium Wilt Pathogens
by Ruide Li, Bin Wang, Huan Wu and Chunzhen Cheng
Horticulturae 2025, 11(5), 513; https://doi.org/10.3390/horticulturae11050513 - 9 May 2025
Viewed by 622
Abstract
Plant defensin (PDF/DEF), an important pathogenesis-related protein which widely exists in plants, displays broad-spectrum antifungal activities. To date, however, reports on the banana PDFs are very limited. In this study, we identified, cloned, and characterized the five Class I PDFs (MaPDF2.1~MaPDF2.5) [...] Read more.
Plant defensin (PDF/DEF), an important pathogenesis-related protein which widely exists in plants, displays broad-spectrum antifungal activities. To date, however, reports on the banana PDFs are very limited. In this study, we identified, cloned, and characterized the five Class I PDFs (MaPDF2.1~MaPDF2.5) in banana (Musa acuminata). Further, their expression in root, corm, leaf, and fruit were studied. MaPDFs exhibited quite different expression patterns in different organs, with MaPDF2.2 as the only member expressing in all the tested organs, and its expression levels in all organs were the highest among all MaPDFs. The MaPDF2.2 expression could be significantly upregulated by both low- and high-temperature stresses but significantly downregulated by the inoculations of plant growth promoting endophytic fungus Serendipita indica and banana Fusarium wilt (FW) pathogen Fusarium oxysporum f. sp. cubense (Foc) Tropical race 4 (FocTR4). Moreover, the S. indica pre-colonization could significantly alleviate the suppression of FocTR4 on MaPDF2.2, suggesting that this MaPDF might contribute greatly to the S. indica-enhanced FW resistance. By using tobacco leaf transient overexpression, the function of MaPDF2.2 was investigated. Its overexpression significantly inhibited the infection of Foc race 1 (Foc1) and FocTR4 in tobacco leaves. Furthermore, in vitro antifungal ability assays revealed that the recombinant His-MaPDF2.2 protein could significantly inhibit the growth of Foc1 and FocTR4, as well as the pigment accumulation of Foc1. Our study revealed the sequence and expression characteristics of banana PDFs and demonstrated the antifungal ability of MaPDF2.2 to FW pathogens. Full article
Show Figures

Figure 1

15 pages, 8538 KiB  
Article
Molecular Characterization and Pathogenicity of Colletotrichum on Banana Fruits: Wound Effects on Virulence and Cross-Infection
by Maysa C. Santos, Luis O. Viteri, Sabrina H. Araujo, Dalmarcia C. Mourão, Marcos P. Câmara, Ana G. Amaral, Eugênio E. Oliveira and Gil Rodrigues dos Santos
Microbiol. Res. 2025, 16(1), 4; https://doi.org/10.3390/microbiolres16010004 - 29 Dec 2024
Cited by 1 | Viewed by 1214
Abstract
For this article, we evaluated whether wounds would affect the pathogenicity and virulence of Colletotrichum sp. isolates on Musa spp. banana cultivars. We further assessed the potential of cross-colonization with other fruit species and investigated the molecular and phylogenetic characterization of the most [...] Read more.
For this article, we evaluated whether wounds would affect the pathogenicity and virulence of Colletotrichum sp. isolates on Musa spp. banana cultivars. We further assessed the potential of cross-colonization with other fruit species and investigated the molecular and phylogenetic characterization of the most virulent isolates. Firstly, we collected dwarf bananas showing anthracnose symptoms from commercial markets in the city of Gurupi, Tocantins State, Brazil, and isolated Colletotrichum sp. under controlled conditions prior to identification. The virulence was assessed on wounded and unwounded banana fruits, identifying the most virulent isolate by exposure tests on fruits of the “prata”, “maçã”, “marmelo”, and “terra” banana cultivars. We also subjected specimens of mango (Mangifera indica), papaya (Carica papaya), and apple (Malus domestica) fruits to the exposure tests. Our results indicated that pathogenicity varies with the isolate (with C2, C8, and C10 as the most virulent), fruit condition (wounded fruits are the most susceptible), and cultivars (terra, marmela, and maça are the most susceptible). All isolates were more virulent on wounded bananas, while those on unwounded ones showed lower virulence. Among the banana cultivars, “prata” fruits were the most susceptible, regardless of wounding. Additionally, Colletotrichum isolates from dwarf bananas were pathogenic to mango, papaya, and apple fruits. Furthermore, our results demonstrated that the most virulent isolates belong to the species C. musae. Collectively, our findings reinforce the relevance of minimizing post-harvest wounds on banana fruits and highlight the risks of cross-infection when storing bananas alongside other fruit species. Full article
Show Figures

Figure 1

13 pages, 3351 KiB  
Article
Identification and Characterization of Endophytic Fungus DJE2023 Isolated from Banana (Musa sp. cv. Dajiao) with Potential for Biocontrol of Banana Fusarium Wilt
by Longqi Jin, Rong Huang, Jia Zhang, Zifeng Li, Ruicheng Li, Yunfeng Li, Guanghui Kong, Pinggen Xi, Zide Jiang and Minhui Li
J. Fungi 2024, 10(12), 877; https://doi.org/10.3390/jof10120877 - 17 Dec 2024
Cited by 1 | Viewed by 1192
Abstract
This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating [...] Read more.
This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease. The fungus was isolated using standard plant tissue separation techniques and fungal culture methods, followed by identification through morphological comparisons, multi-gene phylogenetic analyses, and molecular detection targeting Fusarium oxysporum f. sp. cubense (Foc) race 1 and race 4. Furthermore, assessments of its characteristics and antagonistic effects were conducted through pathogenicity tests, biological trait investigations, and dual-culture experiments. The results confirmed isolate DJE2023 to be a member of the Fusarium oxysporum species complex but distinct from Foc race 1 or race 4, exhibiting no pathogenicity to banana plantlets of cv. Fenza No.1 or tomato seedlings cv. money maker. Only minute and brown necrotic spots were observed at the rhizomes of banana plantlets of ‘Dajiao’ and ‘Baxijiao’ upon inoculation, contrasting markedly with the extensive necrosis induced by Foc tropical race 4 strain XJZ2 at those of banana cv Baxijiao. Notably, co-inoculation with DJE2023 and XJZ2 revealed a significantly reduced disease severity compared to inoculation with XJZ2 alone. An in vitro plate confrontation assay showed no significant antagonistic effects against Foc, indicating a suppressive effect rather than direct antagonism of DJE2023. Research on the biological characteristics of DJE2023 indicated lactose as the optimal carbon source for its growth, while maltose favored sporulation. The optimal growth temperature for this strain is 28 °C, and its spores can germinate effectively within the range of 25–45 °C and pH 4–10, demonstrating a strong alkali tolerance. Collectively, our findings suggest that DJE2023 exhibits weak or non-pathogenic properties and lacks direct antagonism against Foc, yet imparts a degree of resistance against banana Fusarium wilt. The detailed information provides valuable insight into the potential role of DJE2023 in integrated banana disease control, presenting a promising candidate for biocontrol against banana Fusarium wilt. Full article
(This article belongs to the Special Issue Fusarium spp.: A Trans-Kingdom Fungus)
Show Figures

Figure 1

19 pages, 3637 KiB  
Article
Valorization of Hom Thong Banana Peel (Musa sp., AAA Group) as an Anti-Melanogenic Agent Through Inhibition of Pigmentary Genes and Molecular Docking Study
by Pichchapa Linsaenkart, Wipawadee Yooin, Supat Jiranusornkul, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Juan M. Castagnini and Warintorn Ruksiriwanich
Int. J. Mol. Sci. 2024, 25(23), 13202; https://doi.org/10.3390/ijms252313202 - 8 Dec 2024
Cited by 1 | Viewed by 1610
Abstract
Prolonged and unprotected exposure to the environment explicitly influences the development of hyperpigmented lesions. The enzyme tyrosinase (TYR) is a key target for regulating melanin synthesis. Several bioactive compounds derived from plant extracts have been found to possess potent anti-melanogenesis properties against TYR. [...] Read more.
Prolonged and unprotected exposure to the environment explicitly influences the development of hyperpigmented lesions. The enzyme tyrosinase (TYR) is a key target for regulating melanin synthesis. Several bioactive compounds derived from plant extracts have been found to possess potent anti-melanogenesis properties against TYR. In particular, the potential of banana peels from various varieties has garnered interest due to their application in skin hyperpigmentation treatment. A molecular docking study demonstrated interactions between rosmarinic acid, which is predominantly found in all Hom Thong peel extracts, and the active site of TYR (PDB ID: 2Y9X) at residues HIS263, VAL283, SER282, and MET280, with the lowest binding energy of −5.05 kcal/mol, showing the strongest interaction. Additionally, Hom Thong banana peels are rich in phenolic compounds that could inhibit melanin content and tyrosinase activity in both human and mouse melanoma cells. These effects may be attributed to the suppression of gene expression related to melanogenesis, including the regulator gene MITF and pigmentary genes TYR, TRP-1, and DCT, indicating effects comparable to those of the standard treatment groups with arbutin and kojic acid. Our findings indicated the potential of Hom Thong peel extracts as anti-melanogenic agents. Full article
Show Figures

Figure 1

10 pages, 385 KiB  
Communication
Toward Marker-Assisted Selection in Breeding for Fusarium Wilt Tropical Race-4 Type Resistant Bananas
by Claudia Fortes Ferreira, Andrew Chen, Elizabeth A. B. Aitken, Rony Swennen, Brigitte Uwimana, Anelita de Jesus Rocha, Julianna Matos da Silva Soares, Andresa Priscila de Souza Ramos and Edson Perito Amorim
J. Fungi 2024, 10(12), 839; https://doi.org/10.3390/jof10120839 - 4 Dec 2024
Cited by 1 | Viewed by 1306
Abstract
Fusarium wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of Fusarium oxysporum f. sp. cubense (Foc) belonging to the Subtropical Race 4 (STR4) and Tropical [...] Read more.
Fusarium wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of Fusarium oxysporum f. sp. cubense (Foc) belonging to the Subtropical Race 4 (STR4) and Tropical Race 4 (TR4). The wild banana diploid Musa acuminata ssp. malaccensis (AA, 2n = 22) carries resistance to Foc TR4. A previous study using segregating populations derived from M. acuminata ssp. malaccensis identified a quantitative trait locus (QTL) (12.9 cM) on the distal part of the long arm of chromosome 3, conferring resistance to both Foc TR4 and STR4. An SNP marker, based on the gene Macma4_03_g32560 of the reference genome ‘DH-Pahang’ v4, detected the segregation of resistance to Foc STR4 and TR4 at this locus. Using this marker, we assessed putative TR4 resistance sources in 123 accessions from the breeding program in Brazil, which houses one of the largest germplasm collections of Musa spp. in the world. The resistance marker allele was detected in a number of accessions, including improved diploids and commercial cultivars. Sequencing further confirmed the identity of the SNP at this locus. Results from the marker screening will assist in developing strategies for pre-breeding Foc TR4-resistant bananas. This study represents the first-ever report of marker-assisted screening in a comprehensive collection of banana accessions in South America. Accessions carrying the resistance marker allele will be validated in the field to confirm Foc TR4 resistance. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

20 pages, 4425 KiB  
Article
Integrated Transcriptome and sRNAome Analysis Reveals the Molecular Mechanisms of Piriformospora indica-Mediated Resistance to Fusarium Wilt in Banana
by Junru Wang, Bin Wang, Junmei Huang, Shuai Yang, Huan Mei, Youfeng Jiang, Yacong Hou, Jun Peng, Chunzhen Cheng, Hua Li and Peitao Lü
Int. J. Mol. Sci. 2024, 25(22), 12446; https://doi.org/10.3390/ijms252212446 - 20 Nov 2024
Cited by 2 | Viewed by 1522
Abstract
Bananas (Musa spp.) are among the most important fruit and staple food crops globally, holding a significant strategic position in food security in tropical and subtropical regions. However, the industry is grappling with a significant threat from Fusarium wilt, a disease incited [...] Read more.
Bananas (Musa spp.) are among the most important fruit and staple food crops globally, holding a significant strategic position in food security in tropical and subtropical regions. However, the industry is grappling with a significant threat from Fusarium wilt, a disease incited by Fusarium oxysporum f. sp. cubense (Foc). In this study, we explored the potential of Piriformospora indica (Pi), a mycorrhizal fungus renowned for bolstering plant resilience and nutrient assimilation, to fortify bananas against this devastating disease. Through a meticulous comparative analysis of mRNA and miRNA expression in control, Foc-inoculated, Pi-colonized, and Pi-colonized followed by Foc-inoculated plants via transcriptome and sRNAome, we uncovered a significant enrichment of differentially expressed genes (DEGs) and DE miRNAs in pathways associated with plant growth and development, glutathione metabolism, and stress response. Our findings suggest that P. indica plays a pivotal role in bolstering banana resistance to Foc. We propose that P. indica modulates the expression of key genes, such as glutathione S-transferase (GST), and transcription factors (TFs), including TCP, through miRNAs, thus augmenting the plant’s defensive capabilities. This study offers novel perspectives on harnessing P. indica for the management of banana wilt disease. Full article
(This article belongs to the Special Issue New Insights into Plant–Microbe Interactions)
Show Figures

Figure 1

25 pages, 5133 KiB  
Article
Biocontrol Potential of a Native Trichoderma Collection Against Fusarium oxysporum f. sp. cubense Subtropical Race 4
by Raquel Correa-Delgado, Patricia Brito-López, Rosa E. Cardoza, María C. Jaizme Vega, Federico Laich and Santiago Gutiérrez
Agriculture 2024, 14(11), 2016; https://doi.org/10.3390/agriculture14112016 - 8 Nov 2024
Cited by 1 | Viewed by 1936
Abstract
The Canary Islands lead banana (Musa acuminata) production in the EU. Different fungal pathogens affect this crop in subtropical areas, with Fusarium oxysporum f. sp. cubense subtropical race 4 (Foc-STR4) being the most important in the Canary Islands. With the [...] Read more.
The Canary Islands lead banana (Musa acuminata) production in the EU. Different fungal pathogens affect this crop in subtropical areas, with Fusarium oxysporum f. sp. cubense subtropical race 4 (Foc-STR4) being the most important in the Canary Islands. With the aim of developing environmentally sustainable techniques for disease control, this study presents the results of the evaluation of the antifungal capacity of a native Trichoderma collection (12 species, 109 isolates) obtained from banana soils. The results demonstrate the diversity of biocontrol genes and the in vitro antagonistic potential of different native Trichoderma species/isolates against two Foc-STR4 strains obtained from plants with Panama disease symptoms. Trichoderma virens (TF18), a dominant species in banana soils in the Canary Islands, showed a high capacity to inhibit the growth of Foc-STR4 in different in vitro assays. Trichoderma atrobrunneum (TF01) showed mycoparasitism capacity through the spiral coil around the hyphae of the pathogen. In addition, the genome analysis of T. atrobrunneum (TF03) showed 69 putative biosynthetic gene clusters, with the notable presence of the trichothecene tri5 gene. Finally, our work demonstrates that the soils of the Canary Islands banana crops are a potential source of environmentally adapted biological control agents to control or reduce the incidence of Foc-STR4. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

14 pages, 1145 KiB  
Article
Calcium-Binding Protein and Polymorphism in Musa spp. Somaclones Resistant to Fusarium oxysporum
by Juliana Rodrigues Sampaio, Wanderley Diaciso dos Santos Oliveira, Fernanda dos Santos Nascimento, Luiz Carlos de Souza Junior, Tamyres Amorim Rebouças, Ricardo Franco Cunha Moreira, Andresa Priscila de Souza Ramos, Janay Almeida dos Santos-Serejo, Edson Perito Amorim and Claudia Fortes Ferreira
Curr. Issues Mol. Biol. 2024, 46(11), 12119-12132; https://doi.org/10.3390/cimb46110719 - 29 Oct 2024
Viewed by 1124
Abstract
The fresh fruits of ‘Grande Naine’ (Cavendish AAA—Musa spp.) dominate the world market, especially in countries with a population in a situation of social vulnerability. However, Fusarium wilt, caused by the fungus Fusarium oxysporum f.sp. cubense race 4 Subtropical (Foc ST4), emerges [...] Read more.
The fresh fruits of ‘Grande Naine’ (Cavendish AAA—Musa spp.) dominate the world market, especially in countries with a population in a situation of social vulnerability. However, Fusarium wilt, caused by the fungus Fusarium oxysporum f.sp. cubense race 4 Subtropical (Foc ST4), emerges as a serious threat to banana production, requiring the development of resistant cultivars based on biotechnological strategies, such as the induction of mutation in tissue culture. This study aimed to identify and characterize genetic variation in somaclones resistant to Fusarium oxysporum f.sp. cubense subtropical race 4 (Foc ST4), derived from ‘Grand Naine’ bananas, by molecular markers based on retrotransposons IRAP (Inter-retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism). Nine combinations of IRAP and six combinations of REMAP primers were used. The low number of polymorphic bands did not allow for genetic diversity studies; however, ten polymorphic bands between the somaclones and control were sequenced. Of these, three presented good base calling and were aligned, namely, 1AF, 2AF, and 3AF bands. Only the 1AF band presented function related to stress response with homology to a calcium-binding protein. These proteins act early in plant infection as secondary messengers activated by pathogen-associated molecular patterns (PAMPs), initiating the cascade of plant defense signals. The fact that this band is present in all somaclones reinforces previous assessments of their resistance to Foc ST4. The use of markers IRAP and REMAP produced polymorphic bands that can, through future primer design and field validations, accelerate the identification of resistant banana genotypes for use in banana genetic breeding programs. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 676 KiB  
Article
Temporary Immersion Bioreactor (TIB) System for Large-Scale Micropropagation of Musa sp. cv Kluai Numwa Pakchong 50
by Sudarat Thanonkeo, Haruthairat Kitwetcharoen, Pornthap Thanonkeo and Preekamol Klanrit
Horticulturae 2024, 10(10), 1030; https://doi.org/10.3390/horticulturae10101030 - 27 Sep 2024
Cited by 3 | Viewed by 2644
Abstract
Conventional in vitro propagation using semisolid Murashige and Skoog (MS) culture systems is costly, labor-intensive, and requires substantial space for large-scale plant production. This study investigated the application of a temporary immersion bioreactor (TIB) system for the micropropagation of the banana cultivar Kluai [...] Read more.
Conventional in vitro propagation using semisolid Murashige and Skoog (MS) culture systems is costly, labor-intensive, and requires substantial space for large-scale plant production. This study investigated the application of a temporary immersion bioreactor (TIB) system for the micropropagation of the banana cultivar Kluai Numwa Pakchong 50, as a promising platform for economical commercial production. The cultivation parameters affecting plantlet multiplication, including plant growth regulator (PGR) use, explant density, and immersion frequency, were examined. Additionally, the ex vitro acclimatization of well-developed in vitro plantlets was also evaluated. Using liquid MS medium supplemented with 7.5 mg/L 6-benzylaminopurine (BAP) in the TIB system yielded significantly better results than the conventional semisolid MS control system, producing more shoots (5.60 shoots/explant) and leaves (2.80 leaves/explant) with longer shoot length (2.19 cm). Optimal conditions in the TIB system included an inoculum density of five explants per culture vessel and an immersion frequency of once every 6 or 8 h for 2 min. For root induction, 0.5 mg/L indole-3-butyric acid (IBA) proved more effective than 1-naphthaleneacetic acid (NAA). After 30 days of ex vitro acclimatization, plantlets regenerated from the TIB system demonstrated high survival rates, vegetative growth performance, and root formation efficiency comparable to those from the semisolid culture system. These findings establish the TIB system as a promising platform for the mass propagation of the Kluai Numwa Pakchong 50 banana. The protocol developed in this study could potentially be adapted for large-scale production of other banana varieties. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

16 pages, 1947 KiB  
Article
Variability Assessment of Banana Cultivars and Intercropping with Lemongrass Based on Fruit Quality Indicators
by Paulo Ricardo Rodrigues de Jesus, Magali Leonel, Sarita Leonel, Hebert Teixeira Cândido, Lucas Felipe dos Ouros, Erval Rafael Damatto Junior and Edson Shigueaki Nomura
Horticulturae 2024, 10(9), 962; https://doi.org/10.3390/horticulturae10090962 - 10 Sep 2024
Cited by 1 | Viewed by 1420
Abstract
Bananas are one of the most consumed fruits in the world and are essential for food security and in the agricultural economy. Their sustainable production is vital for many communities. Herein, the effects of banana cultivars, cropping systems (monocropping and intercropping with lemongrass), [...] Read more.
Bananas are one of the most consumed fruits in the world and are essential for food security and in the agricultural economy. Their sustainable production is vital for many communities. Herein, the effects of banana cultivars, cropping systems (monocropping and intercropping with lemongrass), and the interaction between these factors on the physicochemical characteristics of ripe and unripe fruit were evaluated. The intercropping of bananas with lemongrass did not alter the main quality indicators of the fruit. The ripe fruits of the SCS451 Catarina cultivar stood out for their higher fruit mass, pulp/peel ratio, and firmness, while the fruits of the Prata Anã and BRS FHIA Maravilha cultivars had the highest SS, SS/TA ratio, pH, and reducing and total sugars. The cultivar SCS451 Catarina had the highest mineral content in the unripe fruit, and for all cultivars, the order of mineral levels was K > N > Mg > P > Ca > Fe > Zn. The higher content of total and resistant starch in the unripe fruit of the Prata Anã and BRS FHIA Maravilha cultivars, combined with the characteristics of the ripe fruit, make them suitable for both fresh consumption and industrial use. Diversifying cultivars improves the quality of banana fruit, and intercropping with lemongrass can be a sustainable method of managing banana fields. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Figure 1

21 pages, 705 KiB  
Review
Achievements of Banana (Musa sp.)-Based Intercropping Systems in Improving Crop Sustainability
by Sarita Leonel, Magali Leonel, Paulo Ricardo Rodrigues de Jesus, Marco Antonio Tecchio, Marcelo de Souza Silva, Hebert Teixeira Cândido, Nicholas Zanette Molha and Lucas Felipe dos Ouros
Horticulturae 2024, 10(9), 956; https://doi.org/10.3390/horticulturae10090956 - 6 Sep 2024
Cited by 6 | Viewed by 3548
Abstract
Sustainable agricultural practices need to be continuously sought after so that a greater number of producers can adopt them, taking into account, above all, the food security scenario, land use efficiency, and climate change. Intercropping—a cultivation system in which two or more species [...] Read more.
Sustainable agricultural practices need to be continuously sought after so that a greater number of producers can adopt them, taking into account, above all, the food security scenario, land use efficiency, and climate change. Intercropping—a cultivation system in which two or more species are grown in close proximity in the same field—is one strategy to increase diversity in the agroecosystem. However, for intercropping systems to be adopted, their productive and economic advantages over monoculture must be clearly demonstrated. Banana (Musa sp.) growers are interested in crop diversification as a potential strategy to increase production yields and, consequently, economic income. The management of banana crops can be facilitated by intercropping, as this system plays an important role in increasing biodiversity and reducing the need for weed control in the crop rows, promoting better land use efficiency. However, this system should be evaluated alongside other indicators. Banana intercropping has significant potential and many benefits, but success depends on the interaction between the component species, appropriate management practices, and favorable environmental conditions. This review aims to provide an overview of recent studies on banana intercropping systems, focusing on the contextualization of land use, monoculture and intercropping, and evaluating intercropping indicators, as well as the benefits, risks, and disadvantages discussed in the literature, and the main outcomes of banana-based intercropping systems. The main findings relate to the possibility of using intercrops with aromatic species and the preliminary reports on the contributions of intercrops to the suppression of Fusarium wilt disease. Full article
(This article belongs to the Special Issue Orchard Management under Climate Change)
Show Figures

Figure 1

13 pages, 1965 KiB  
Article
Geospatial Approach to Determine Nitrate Values in Banana Plantations
by Angélica Zamora-Espinoza, Juan Chin, Adolfo Quesada-Román and Veda Obando
AgriEngineering 2024, 6(3), 2513-2525; https://doi.org/10.3390/agriengineering6030147 - 1 Aug 2024
Cited by 1 | Viewed by 1534
Abstract
Banana (Musa sp.) is one of the world’s most planted and consumed crops. Analysis of plantations using a geospatial perspective is growing in Costa Rica, and it can be used to optimize environmental analysis. The aim of this study was to propose [...] Read more.
Banana (Musa sp.) is one of the world’s most planted and consumed crops. Analysis of plantations using a geospatial perspective is growing in Costa Rica, and it can be used to optimize environmental analysis. The aim of this study was to propose a methodology to identify areas prone to water accumulation to quantify nitrate concentrations using geospatial modeling techniques in a 40 ha section of a banana plantation located in Siquirres, Limón, Costa Rica. A total of five geomorphometric variables (Slope, Slope Length factor (LS factor), Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI), and Flow Accumulation) were selected in the geospatial model. A 9 cm resolution digital elevation model (DEM) derived from unmanned aerial vehicles (UAVs) was employed to calculate geomorphometric variables. ArcGIS 10.6 and SAGA GIS 7.8.2 software were used in the data integration and analysis. The results showed that Slope and Topographic Wetness Index (TWI) are the geomorphometric parameters that better explained the areas prone to water accumulation and indicated which drainage channels are proper areas to sample nitrate values. The average nitrate concentration in high-probability areas was 8.73 ± 1.53 mg/L, while in low-probability areas, it was 11.28 ± 2.49 mg/L. Despite these differences, statistical analysis revealed no significant difference in nitrate concentrations between high- and low-probability areas. The method proposed here allows us to obtain reliable results in banana fields worldwide. Full article
Show Figures

Figure 1

14 pages, 2034 KiB  
Article
Prediction of Bioactive Compounds and Antioxidant Activity in Bananas during Ripening Using Non-Destructive Parameters as Input Data
by Angela Vacaro de Souza, Vitória Ferreira da Silva Favaro, Jéssica Marques de Mello, Vinicius Canato, Diogo de Lucca Sartori, Fernando Ferrari Putti, Yasmin Saegusa Tadayozzi and Douglas D’Alessandro Salgado
Foods 2024, 13(14), 2284; https://doi.org/10.3390/foods13142284 - 20 Jul 2024
Cited by 2 | Viewed by 1088
Abstract
Vegetable quality parameters are established according to standards primarily based on visual characteristics. Although knowledge of biochemical changes in the secondary metabolism of plants throughout development is essential to guide decision-making about consumption, harvesting and processing, these determinations involve the use of reagents, [...] Read more.
Vegetable quality parameters are established according to standards primarily based on visual characteristics. Although knowledge of biochemical changes in the secondary metabolism of plants throughout development is essential to guide decision-making about consumption, harvesting and processing, these determinations involve the use of reagents, specific equipment and sophisticated techniques, making them slow and costly. However, when non-destructive methods are employed to predict such determinations, a greater number of samples can be tested with adequate precision. Therefore, the aim of this work was to establish an association capable of modeling between non-destructive—physical and colorimetric aspects (predictive variables)—and destructive determinations—bioactive compounds and antioxidant activity (variables to be predicted), quantified spectrophotometrically and by HPLC in ‘Nanicão’ bananas during ripening. It was verified that to predict some parameters such as flavonoids, a regression equation using predictive parameters indicated the importance of R2, which varied from 83.43 to 98.25%, showing that some non-destructive parameters can be highly efficient as predictors. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

2 pages, 141 KiB  
Abstract
Effects of LED Light Irradiation on Ripening and Nutritional Quality of ‘Puwalu’ Banana (Musa sp.) during Postharvest Storage
by Haththotuwa Gamage Amal Sudaraka Samarasinghe, Udara Chandrajith Samaranayake, Kohombange Mithila Devindi and Jayathissa Arachchilage Udani Manodya
Proceedings 2024, 105(1), 17; https://doi.org/10.3390/proceedings2024105017 - 28 May 2024
Viewed by 635
Abstract
Bananas (Musa sp [...] Full article
Back to TopTop