Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = Mt. Etna volcano

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4727 KiB  
Technical Note
Exploitation of OCO-3 Satellite Data to Analyse Carbon Dioxide Emissions from the Mt. Etna Volcano
by Vito Romaniello and Gaetana Ganci
Remote Sens. 2025, 17(11), 1918; https://doi.org/10.3390/rs17111918 - 31 May 2025
Viewed by 771
Abstract
The Orbiting Carbon Observatory-3 (OCO-3) mission provides a new perspective for studying atmospheric carbon dioxide (CO2). Here we assess the potentiality of OCO-3 satellite acquisitions to analyse and monitor the CO2 emissions from Mt. Etna volcano. While OCO-3 data are [...] Read more.
The Orbiting Carbon Observatory-3 (OCO-3) mission provides a new perspective for studying atmospheric carbon dioxide (CO2). Here we assess the potentiality of OCO-3 satellite acquisitions to analyse and monitor the CO2 emissions from Mt. Etna volcano. While OCO-3 data are well-suited for gas analysis on a regional spatial scale, they have not yet been widely utilised for studying volcanic carbon dioxide emissions. The Snapshot Area Map (SAM) acquisition mode enables the capture of targeted snapshots over volcanic regions, allowing for the measurement of CO2 concentrations in the vicinity of volcanic structures. In this work, we analyse 62 OCO-3 images acquired between 2020 and 2023, focusing on measurements within a 20 km radius of Mt. Etna’s summit, where the main craters are located. Atmospheric CO2 concentrations are examined as a function of distance from the summit, and assuming a linear decreasing trend, the angular coefficient is computed. Lower angular coefficient values may indicate a stronger volcanic CO2 contribution. Considering both the number of sampled pixels in each OCO-3 snapshot and the associated uncertainties in the angular coefficient calculation, we identify five days with potentially significant CO2 emissions from Mt. Etna, likely associated with specific volcanic activity phases. The eruptive activity on these five days is further investigated, revealing a possible correlation between elevated gas emissions and intense volcanic phenomena, such as lava fountains. This assessment is supported by thermal activity analyses using SEVIRI, MODIS, and VIIRS satellite data. Full article
Show Figures

Figure 1

25 pages, 14915 KiB  
Article
A Multidisciplinary Study for the Recognition of Fault-Induced Instability Conditions on Cultural Heritage: The Case of Paternò (Sicily, Italy)
by Gloria Maria Ristuccia, Pietro Bonfanti, Orazio Caruso and Salvatore Giammanco
Heritage 2024, 7(9), 5007-5031; https://doi.org/10.3390/heritage7090237 - 11 Sep 2024
Viewed by 1253
Abstract
The 16th century AD St. Barbara’s Church in Paternò, a town located at the SW foot of Mt. Etna volcano (Sicily, Italy), has since 2009 showed evident signs of structural instability and collapse. This is causing great concern among the local population and [...] Read more.
The 16th century AD St. Barbara’s Church in Paternò, a town located at the SW foot of Mt. Etna volcano (Sicily, Italy), has since 2009 showed evident signs of structural instability and collapse. This is causing great concern among the local population and poses a growing hazard to the attendees to the masses. After precautionary closure of the church, we carried out geological, seismic, geophysical and geochemical surveys in order to shed light on the possible causes of the phenomenon. From the results of all surveys above, the presence of a hidden fault was hypothesized. The fault would prove to cross the west side of the church, parallel to its front portal, and continue both to the north and to the south of the edifice. It is part of a more complex system of faults that crosses the whole town of Paternò and is likely a result of the complex dynamics of Mt. Etna. This fault seems to also be a pathway for the upward flow of saline hydrothermal fluids, similar in composition to those emitted in nearby areas and whose corrosive action possibly contributed to the weakening of the rocks beneath the church. Temporal monitoring of several hydrological parameters (water temperature, water level and CO2 content) in some sites in and around the church allowed a better understanding both of the fault dynamics and of the extent of hydrothermal influence in the studied area. Full article
Show Figures

Figure 1

18 pages, 2907 KiB  
Article
Tracing Magma Migration at Mt. Etna Volcano during 2006–2020, Coupling Remote Sensing of Crater Gas Emissions and Ground Measurement of Soil Gases
by Salvatore Giammanco, Giuseppe Salerno, Alessandro La Spina, Pietro Bonfanti, Tommaso Caltabiano, Salvatore Roberto Maugeri, Filippo Murè and Paolo Principato
Remote Sens. 2024, 16(7), 1122; https://doi.org/10.3390/rs16071122 - 22 Mar 2024
Viewed by 1424
Abstract
The geochemical monitoring of volcanic activity today relies largely on remote sensing, but the combination of this approach together with soil gas monitoring, using the appropriate parameters, is still not widely used. The main purpose of this study was to correlate data from [...] Read more.
The geochemical monitoring of volcanic activity today relies largely on remote sensing, but the combination of this approach together with soil gas monitoring, using the appropriate parameters, is still not widely used. The main purpose of this study was to correlate data from crater gas emissions with flank emissions of soil gases at Mt. Etna volcano from June 2006 to December 2020. Crater SO2 fluxes were measured from fixed stations around the volcano using the DOAS technique and applying a modeled clear-sky spectrum. The SO2/HCl ratio in the crater plume was measured with the OP-FTIR technique from a transportable instrument, using the sun as an IR source. Soil CO2 efflux coupled with the 220Rn/222Rn activity ratio in soil gases (named SGDI) were measured at a fixed monitoring site on the east flank of Etna. All signals acquired were subject both to spectral analysis and to filtering of the periodic signals discovered. All filtered signals revealed changes that were nicely correlated both with other geophysical signals and with volcanic eruptions during the study period. Time lags between parameters were explained in terms of different modes of magma migration and storage inside the volcano before eruptions. A comprehensive dynamic degassing model is presented that allows for a better understanding of magma dynamics in an open-conduit volcano. Full article
Show Figures

Figure 1

19 pages, 12210 KiB  
Article
Applications of Ground-Based Infrared Cameras for Remote Sensing of Volcanic Plumes
by Fred Prata, Stefano Corradini, Riccardo Biondi, Lorenzo Guerrieri, Luca Merucci, Andrew Prata and Dario Stelitano
Geosciences 2024, 14(3), 82; https://doi.org/10.3390/geosciences14030082 - 17 Mar 2024
Cited by 1 | Viewed by 2465
Abstract
Ground-based infrared cameras can be used effectively and safely to provide quantitative information about small to moderate-sized volcanic eruptions. This study describes an infrared camera that has been used to measure emissions from the Mt. Etna and Stromboli (Sicily, Italy) volcanoes. The camera [...] Read more.
Ground-based infrared cameras can be used effectively and safely to provide quantitative information about small to moderate-sized volcanic eruptions. This study describes an infrared camera that has been used to measure emissions from the Mt. Etna and Stromboli (Sicily, Italy) volcanoes. The camera provides calibrated brightness temperature images in a broadband (8–14 µm) channel that is used to determine height, plume ascent rate and volcanic cloud/plume temperature and emissivity at temporal sampling rates of up to 1 Hz. The camera can be operated in the field using a portable battery and includes a microprocessor, data storage and WiFi. The processing and analyses of the data are described with examples from the field experiments. The updraft speeds of the small eruptions at Stromboli are found to decay with a timescale of ∼10 min and the volcanic plumes reach thermal equilibrium within ∼2 min. A strong eruption of Mt. Etna on 1 April 2021 was found to reach ∼9 km, with ascent speeds of 10–20 ms−1. The plume, mostly composed of the gases CO2, water vapour and SO2, became bent over by the prevailing winds at high levels, demonstrating the need for multiple cameras to accurately infer plume heights. Full article
Show Figures

Figure 1

16 pages, 4403 KiB  
Communication
Exploiting PlanetScope Imagery for Volcanic Deposits Mapping
by Maddalena Dozzo, Gaetana Ganci, Federico Lucchi and Simona Scollo
Technologies 2024, 12(2), 25; https://doi.org/10.3390/technologies12020025 - 8 Feb 2024
Cited by 2 | Viewed by 2556
Abstract
During explosive eruptions, tephra fallout represents one of the main volcanic hazards and can be extremely dangerous for air traffic, infrastructures, and human health. Here, we present a new technique aimed at identifying the area covered by tephra after an explosive event, based [...] Read more.
During explosive eruptions, tephra fallout represents one of the main volcanic hazards and can be extremely dangerous for air traffic, infrastructures, and human health. Here, we present a new technique aimed at identifying the area covered by tephra after an explosive event, based on processing PlanetScope imagery. We estimate the mean reflectance values of the visible (RGB) and near infrared (NIR) bands, analyzing pre- and post-eruptive data in specific areas and introducing a new index, which we call the ‘Tephra Fallout Index (TFI)’. We use the Google Earth Engine computing platform and define a threshold for the TFI of different eruptive events to distinguish the areas affected by the tephra fallout and quantify the surface coverage density. We apply our technique to the eruptive events occurring in 2021 at Mt. Etna (Italy), which mainly involved the eastern flank of the volcano, sometimes two or three times within a day, making field surveys difficult. Whenever possible, we compare our results with field data and find an optimal match. This work could have important implications for the identification and quantification of short-term volcanic hazard assessments in near real-time during a volcanic eruption, but also for the mapping of other hazardous events worldwide. Full article
(This article belongs to the Special Issue Image and Signal Processing)
Show Figures

Figure 1

14 pages, 912 KiB  
Article
An Economic Analysis of the Use of Local Natural Waste: Volcanic Ash of Mt. Etna Volcano (Italy) for Geopolymer Production
by Marina Cavalieri, Paolo Lorenzo Ferrara, Claudio Finocchiaro and Marco Ferdinando Martorana
Sustainability 2024, 16(2), 740; https://doi.org/10.3390/su16020740 - 15 Jan 2024
Cited by 10 | Viewed by 2286
Abstract
This paper analyses the net social benefits deriving from the medium-scale production of geopolymers based on volcanic ash compared to traditional cementitious materials used in construction and restoration sectors. In contrast to the existing literature grounded on the physical and mechanical characterization of [...] Read more.
This paper analyses the net social benefits deriving from the medium-scale production of geopolymers based on volcanic ash compared to traditional cementitious materials used in construction and restoration sectors. In contrast to the existing literature grounded on the physical and mechanical characterization of geopolymers, our analysis considers two aspects: public finance savings from avoiding the disposal of volcanic ash in landfills and environmental benefits deriving from reduction in CO2 releases due to the production process at room temperature. Our case study focuses on the reuse of natural waste, namely the volcanic ash of the Mt. Etna volcano (Italy), whose disposal involves significant costs for society. Its use in the alkaline activation process avoids the exploitation of natural resources. Considering the huge amount of volcanic ash from Mt. Etna that falls on the urban areas of Eastern Sicily, the results show relevant economic benefits, in terms of both avoided costs and tax reductions for the citizens. Alongside these, significant environmental benefits are evidenced thanks to the release of up to 78% lower CO2 emissions by synthesised materials with volcanic ash than by traditional cementitious ones. Overall, the social cost savings compared to traditional materials is 0.339 EUR/kg for geopolymer. Full article
Show Figures

Figure 1

13 pages, 5031 KiB  
Article
Estimates of Lightning Activity and Terrestrial Gamma-ray Flash Detectability at Mount Etna for the ESTHER Project
by Alessandro Ursi, Danilo Reitano, Enrico Virgilli, Andrea Bulgarelli and Alessandra Tiberia
Atmosphere 2023, 14(12), 1823; https://doi.org/10.3390/atmos14121823 - 15 Dec 2023
Viewed by 1405
Abstract
The Experiment to Study Thunderstorm High-Energy Radiation (ESTHER) is a small project of the Italian National Institute for Astrophysics (INAF), devoted to the study of high-energy emissions from thunderstorms, such as Terrestrial Gamma-ray Flashes and gamma-ray glows, which will start in 2024. In [...] Read more.
The Experiment to Study Thunderstorm High-Energy Radiation (ESTHER) is a small project of the Italian National Institute for Astrophysics (INAF), devoted to the study of high-energy emissions from thunderstorms, such as Terrestrial Gamma-ray Flashes and gamma-ray glows, which will start in 2024. In order to reduce the absorption typically undergone by gamma-ray radiation in the lower layers of the atmosphere and make these events detectable on the ground, the ESTHER set-up will be installed at high altitudes on Mt. Etna (Italy). We carried out a detailed analysis of lightning occurrence in this geographic region in order to test how suitable such a location is for the installation of a detection system to investigate thunderstorms and related emissions. The analysis pointed out a strong clustering of lightning in the proximity of the mountain peak and over the main volcano craters, where the frequent presence of volcanic ashes could increase, under the conditions of humid air typical of thunderstorms, electrical conductivity. An estimate of the gamma-ray absorption in the air undergone by typical TGF radiation allowed us to evaluate the suitability of two possible installation sites suggested for the project. This study represents a preliminary work for ESTHER and serves as a launching pad for future analyses. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

22 pages, 49519 KiB  
Article
Modelling Paroxysmal and Mild-Strombolian Eruptive Plumes at Stromboli and Mt. Etna on 28 August 2019
by Giuseppe Castorina, Agostino Semprebello, Alessandro Gattuso, Giuseppe Salerno, Pasquale Sellitto, Francesco Italiano and Umberto Rizza
Remote Sens. 2023, 15(24), 5727; https://doi.org/10.3390/rs15245727 - 14 Dec 2023
Cited by 1 | Viewed by 1535
Abstract
Volcanic eruptions pose a major natural hazard influencing the environment, climate and human beings at different temporal and spatial scales. Nevertheless, several volcanoes worldwide are poorly monitored and assessing the impact of their eruptions remains, in some cases, challenging. Nowadays, different numerical dispersion [...] Read more.
Volcanic eruptions pose a major natural hazard influencing the environment, climate and human beings at different temporal and spatial scales. Nevertheless, several volcanoes worldwide are poorly monitored and assessing the impact of their eruptions remains, in some cases, challenging. Nowadays, different numerical dispersion models are largely employed in order to evaluate the potential effects of volcanic plume dispersion due to the transport of ash and gases. On 28 August 2019, both Mt. Etna and Stromboli had eruptive activity; Mt. Etna was characterised by mild-Strombolian activity at summit craters, while at Stromboli volcano, a paroxysmal event occurred, which interrupted the ordinary typical-steady Strombolian activity. Here, we explore the spatial dispersion of volcanic sulphur dioxide (SO2) gas plumes in the atmosphere, at both volcanoes, using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) considering the ground-measured SO2 amounts and the plume-height as time-variable eruptive source parameters. The performance of WRF-Chem was assessed by cross-correlating the simulated SO2 dispersion maps with data retrieved by TROPOMI and OMI sensors. The results show a feasible agreement between the modelled dispersion maps and TROPOMI satellite for both volcanoes, with spatial pattern retrievals and a total mass of dispersed SO2 of the same order of magnitude. Predicted total SO2 mass for Stromboli might be underestimated due to the inhibition from ground to resolve the sin-eruptive SO2 emission due to the extreme ash-rich volcanic plume released during the paroxysm. This study demonstrates the feasibility of a WRF-Chem model with time-variable ESPs in simultaneously reproducing two eruptive plumes with different SO2 emission and their dispersion into the atmosphere. The operational implementation of this method could represent effective support for the assessment of local-to-regional air quality and flight security and, in case of particularly intense events, also on a global scale. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 4077 KiB  
Article
Bryophyte Diversity and Distribution Patterns along Elevation Gradients of the Mount Etna (Sicily), the Highest Active Volcano in Europea
by Marta Puglisi and Saverio Sciandrello
Plants 2023, 12(14), 2655; https://doi.org/10.3390/plants12142655 - 15 Jul 2023
Cited by 6 | Viewed by 3463
Abstract
Mt Etna in Sicily hosts a bryophyte floristic richness of 306 taxa, corresponding to 259 mosses, 43 liverworts, and 4 hornworts. Species richness shows a hump-shaped relationship with the elevation, with a peak at 1200–1700 m a.s.l. Chorotype patterns clearly change along an [...] Read more.
Mt Etna in Sicily hosts a bryophyte floristic richness of 306 taxa, corresponding to 259 mosses, 43 liverworts, and 4 hornworts. Species richness shows a hump-shaped relationship with the elevation, with a peak at 1200–1700 m a.s.l. Chorotype patterns clearly change along an altitudinal gradient, from the Mediterranean, located at 0–300 m a.s.l., to Arctic-montane and boreo-Arctic montane at 1800–2700 m a.s.l., showing a correlation with the bioclimatic belts identified for the Mt Etna. In regard to the life form pattern, the turf species are the most represented in each elevation gradient, except at 2300–2700 m a.s.l. where the tuft species are prevalent. The life strategy pattern shows the colonists as the prevailing species, featured by an increasing trend up to 2200 m of elevation; above this limit, they are exceeded by the perennial stayers. Furthermore, taking into consideration the red-listed species (at the European and/or Italian level), as well as the species of phytogeographical interest, it was possible to identify the high bryophyte conservation priority areas; these areas are located in thermo-Mediterranean and oro-Mediterranean bioclimatic belts, the latter corresponding to the oldest substrates of the volcano where some of the most interesting bryophyte glacial relicts find refuge. Full article
(This article belongs to the Special Issue Responses and Adaptations of Bryophytes to a Changing World)
Show Figures

Figure 1

18 pages, 5157 KiB  
Article
Automatic Early Warning to Derive Eruption Source Parameters of Paroxysmal Activity at Mt. Etna (Italy)
by Luigi Mereu, Frank Silvio Marzano, Costanza Bonadonna, Giorgio Lacanna, Maurizio Ripepe and Simona Scollo
Remote Sens. 2023, 15(14), 3501; https://doi.org/10.3390/rs15143501 - 12 Jul 2023
Cited by 5 | Viewed by 2333
Abstract
Tephra dispersal and fallout resulting from explosive activity of Mt. Etna (Italy) represent a significant threat to the surrounding inhabited areas as well as to aviation operations. An early-warning system aimed at foreseeing the onset of paroxysmal activity has been developed, combining a [...] Read more.
Tephra dispersal and fallout resulting from explosive activity of Mt. Etna (Italy) represent a significant threat to the surrounding inhabited areas as well as to aviation operations. An early-warning system aimed at foreseeing the onset of paroxysmal activity has been developed, combining a thermal infrared camera, infrasonic network, and a weather radar. In this way, it is possible to identify the onset of a lava fountain as well as to determine the associated mass eruption rate (MER) and top plume height (HTP). The new methodology, defined as the paroxysmal early-warning (PEW) alert system, is based on the analysis of some explosive eruptions that occurred between 2011 and 2021 at Etna, simultaneously observed by the thermal camera and infrasound systems dislocated around the summit eruptive craters, and by the weather radar, located at about 32 km from the summit craters. This work represents an important step towards the mitigation of the potential impact associated with the tephra dispersal and fallout during paroxysms at Etna, which can be applied to other volcanoes with similar activity and monitoring strategies. Full article
Show Figures

Figure 1

22 pages, 3837 KiB  
Article
Toward a Real-Time Analysis of Column Height by Visible Cameras: An Example from Mt. Etna, in Italy
by Alvaro Aravena, Giuseppe Carparelli, Raffaello Cioni, Michele Prestifilippo and Simona Scollo
Remote Sens. 2023, 15(10), 2595; https://doi.org/10.3390/rs15102595 - 16 May 2023
Cited by 3 | Viewed by 2148
Abstract
Volcanic plume height is one the most important features of explosive activity; thus, it is a parameter of interest for volcanic monitoring that can be retrieved using different remote sensing techniques. Among them, calibrated visible cameras have demonstrated to be a promising alternative [...] Read more.
Volcanic plume height is one the most important features of explosive activity; thus, it is a parameter of interest for volcanic monitoring that can be retrieved using different remote sensing techniques. Among them, calibrated visible cameras have demonstrated to be a promising alternative during daylight hours, mainly due to their low cost and low uncertainty in the results. However, currently these measurements are generally not fully automatic. In this paper, we present a new, interactive, open-source MATLAB tool, named ‘Plume Height Analyzer’ (PHA), which is able to analyze images and videos of explosive eruptions derived from visible cameras, with the objective of automatically identifying the temporal evolution of eruption columns. PHA is a self-customizing tool, i.e., before operational use, the user must perform an iterative calibration procedure based on the analysis of images of previous eruptions of the volcanic system of interest, under different eruptive, atmospheric and illumination conditions. The images used for the calibration step allow the computation of ad hoc expressions to set the model parameters used to recognize the volcanic plume in new images, which are controlled by their individual characteristics. Thereby, the number of frames used in the calibration procedure will control the goodness of the model to analyze new videos/images and the range of eruption, atmospheric, and illumination conditions for which the program will return reliable results. This also allows improvement of the performance of the program as new data become available for the calibration, for which PHA includes ad hoc routines. PHA has been tested on a wide set of videos from recent explosive activity at Mt. Etna, in Italy, and may represent a first approximation toward a real-time analysis of column height using visible cameras on erupting volcanoes. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction)
Show Figures

Figure 1

29 pages, 12199 KiB  
Article
Sentinel-1 Interferometry and UAV Aerial Survey for Mapping Coseismic Ruptures: Mts. Sibillini vs. Mt. Etna Volcano
by Marco Menichetti, Matteo Roccheggiani, Giorgio De Guidi, Francesco Carnemolla, Fabio Brighenti, Giovanni Barreca and Carmelo Monaco
Remote Sens. 2023, 15(10), 2514; https://doi.org/10.3390/rs15102514 - 10 May 2023
Cited by 5 | Viewed by 3443
Abstract
The survey and structural analysis of surface coseismic ruptures are essential tools for characterizing seismogenic structures. In this work, a procedure to survey coseismic ruptures using satellite interferometric synthetic aperture radar (InSAR) data, directing the survey using Unmanned Aerial Vehicles (UAV), is proposed [...] Read more.
The survey and structural analysis of surface coseismic ruptures are essential tools for characterizing seismogenic structures. In this work, a procedure to survey coseismic ruptures using satellite interferometric synthetic aperture radar (InSAR) data, directing the survey using Unmanned Aerial Vehicles (UAV), is proposed together with a field validation of the results. The Sentinel-1 A/B Interferometric Wide (IW) Swath TOPSAR mode offers the possibility of acquiring images with a short revisit time. This huge amount of open data is extremely useful for geohazards monitoring, such as for earthquakes. Interferograms show the deformation field associated with earthquakes. Phase discontinuities appearing on wrapped interferograms or loss-of-coherence areas could represent small ground displacements associated with the fault’s ruptures. Low-altitude flight platforms such as UAV permit the acquisition of high resolution images and generate 3D spatial geolocalized clouds of data with centimeter-level accuracy. The generated topography maps and orthomosaic images are the direct products of this technology, allowing the possibility of analyzing geological structures from many viewpoints. We present two case studies. The first one is relative to the 2016 central Italian earthquakes, astride which the InSAR outcomes highlighted quite accurately the field displacement of extensional faults in the Mt. Vettore–M. Bove area. Here, the geological effect of the earthquake is represented by more than 35 km of ground ruptures with a complex pattern composed by subparallel and overlapping synthetic and antithetic fault splays. The second case is relative to the Mt. Etna earthquake of 26 December 2018, following which several ground ruptures were detected. The analysis of the unwrapped phase and the application of edge detector filtering and other discontinuity enhancers allowed the identification of a complex pattern of ground ruptures. In the Pennisi and Fiandaca areas different generation of ruptures can be distinguished, while previously unknown ruptures pertaining to the Acireale and Ragalna faults can be identify and analyzed. Full article
(This article belongs to the Special Issue Earthquake Ground Motion Observation and Modelling)
Show Figures

Figure 1

17 pages, 12730 KiB  
Article
Coupling Flank Collapse and Magma Dynamics on Stratovolcanoes: The Mt. Etna Example from InSAR and GNSS Observations
by Giuseppe Pezzo, Mimmo Palano, Lisa Beccaro, Cristiano Tolomei, Matteo Albano, Simone Atzori and Claudio Chiarabba
Remote Sens. 2023, 15(3), 847; https://doi.org/10.3390/rs15030847 - 2 Feb 2023
Cited by 12 | Viewed by 4261
Abstract
Volcano ground deformation is a tricky puzzle in which different phenomena contribute to the surface displacements with different spatial–temporal patterns. We documented some high variable deformation patterns in response to the different volcanic and seismic activities occurring at Mt. Etna through the January [...] Read more.
Volcano ground deformation is a tricky puzzle in which different phenomena contribute to the surface displacements with different spatial–temporal patterns. We documented some high variable deformation patterns in response to the different volcanic and seismic activities occurring at Mt. Etna through the January 2015–March 2021 period by exploiting an extensive dataset of GNSS and InSAR observations. The most spectacular pattern is the superfast seaward motion of the eastern flank. We also observed that rare flank motion reversal indicates that the short-term contraction of the volcano occasionally overcomes the gravity-controlled sliding of the eastern flank. Conversely, fast dike intrusion led to the acceleration of the sliding flank, which could potentially evolve into sudden collapses, fault creep, and seismic release, increasing the hazard. A better comprehension of these interactions can be of relevance for addressing short-term scenarios, yielding a tentative forecasting of the quantity of magma accumulating within the plumbing system. Full article
(This article belongs to the Special Issue Assessment and Prediction of Volcano Hazard Using Remote Sensing)
Show Figures

Graphical abstract

15 pages, 20681 KiB  
Article
Automatic Detection of the Explosive Activity of the Mt. Etna Volcano through Doppler Radar Monitoring
by Giuseppe Giammello, Marco Firetto Carlino and Mauro Coltelli
Remote Sens. 2022, 14(22), 5663; https://doi.org/10.3390/rs14225663 - 9 Nov 2022
Cited by 4 | Viewed by 2643
Abstract
Improving the capability to detect volcanic explosive activity could be strategic for the task of a volcano observatory to inform civil protection authorities and air traffic controllers. The detection of explosive volcanic activity can be done in real time and also under bad [...] Read more.
Improving the capability to detect volcanic explosive activity could be strategic for the task of a volcano observatory to inform civil protection authorities and air traffic controllers. The detection of explosive volcanic activity can be done in real time and also under bad visibility conditions by using the radar remote sensing technique. Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (INGV-OE) installed an S-band pulse Doppler radar in a shelter located at about 3 km south of the active volcanic vents in order to enhance the Etna volcano’s surveillance. Here, we describe the realisation of a system that exploits such device, aimed at continuously monitoring the explosive eruptive activity at the Mt. Etna summit craters through an automatic processing flow of the radar data. We analysed the signals recorded during 23 eruptive episodes that occurred at the Etna South-East Crater during the second half of 2021; these episodes were characterised by an opening Strombolian activity and the subsequent evolution into a lava fountain. To identify the onset of both volcanic phenomena, empirical thresholds of radar time series were extracted with the help of thermal and visible images acquired by the INGV-OE cameras’ network. The resulting monitoring tool automatically operates 24/7 for volcanic surveillance, providing real-time data to the INGV-OE control room. Full article
Show Figures

Figure 1

19 pages, 6445 KiB  
Article
Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images
by Federica Torrisi, Eleonora Amato, Claudia Corradino, Salvatore Mangiagli and Ciro Del Negro
Sensors 2022, 22(20), 7712; https://doi.org/10.3390/s22207712 - 11 Oct 2022
Cited by 18 | Viewed by 2929
Abstract
Volcanic explosive eruptions inject several different types of particles and gasses into the atmosphere, giving rise to the formation and propagation of volcanic clouds. These can pose a serious threat to the health of people living near an active volcano and cause damage [...] Read more.
Volcanic explosive eruptions inject several different types of particles and gasses into the atmosphere, giving rise to the formation and propagation of volcanic clouds. These can pose a serious threat to the health of people living near an active volcano and cause damage to air traffic. Many efforts have been devoted to monitor and characterize volcanic clouds. Satellite infrared (IR) sensors have been shown to be well suitable for volcanic cloud monitoring tasks. Here, a machine learning (ML) approach was developed in Google Earth Engine (GEE) to detect a volcanic cloud and to classify its main components using satellite infrared images. We implemented a supervised support vector machine (SVM) algorithm to segment a combination of thermal infrared (TIR) bands acquired by the geostationary MSG-SEVIRI (Meteosat Second Generation—Spinning Enhanced Visible and Infrared Imager). This ML algorithm was applied to some of the paroxysmal explosive events that occurred at Mt. Etna between 2020 and 2022. We found that the ML approach using a combination of TIR bands from the geostationary satellite is very efficient, achieving an accuracy of 0.86, being able to properly detect, track and map automatically volcanic ash clouds in near real-time. Full article
(This article belongs to the Special Issue Structural Health Monitoring Based on Sensing Technology)
Show Figures

Graphical abstract

Back to TopTop