A Multidisciplinary Study for the Recognition of Fault-Induced Instability Conditions on Cultural Heritage: The Case of Paternò (Sicily, Italy)
Abstract
:1. Introduction
2. Geological Settings
2.1. General Outlines
2.2. Local Hydrothermal Systems
3. Materials and Methods
4. Results
4.1. Geological Survey
4.2. CO2 Survey
4.2.1. Soil CO2 Effluxes
4.2.2. Borehole CO2 Concentrations
4.3. Groundwater Survey
4.3.1. Water Chemistry
4.3.2. Water Temperature
4.3.3. Water Table Level
4.4. 2D Seismic Tomography
4.5. 3D Electrical Tomography
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chester, D.K.; Degg, M.; Duncan, A.M.; Guest, J.E. The Increasing Exposure of Cities to the Effects of Volcanic Eruptions: A Global Survey. Glob. Environ. Chang. Part B Environ. Hazards 2000, 2, 89–103. [Google Scholar] [CrossRef]
- Branca, S.; Coltelli, M.; Groppelli, G. Geological Evolution of a Complex Basaltic Stratovolcano: Mount Etna, Italy. Ital. J. Geosci. 2011, 130, 306–317. [Google Scholar] [CrossRef]
- Branca, S.; Coltelli, M.; De Beni, E.; Wijbrans, J. Geological Evolution of Mount Etna Volcano (Italy) from Earliest Products until the First Central Volcanism (between 500 and 100 ka ago) Inferred from Geochronological and Stratigraphic Data. Int. J. Earth Sci. 2008, 97, 135–152. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica. Censimento Permanente della Popolazione e delle Abitazioni; Istituto Nazionale di Statistica: Rome, Italy, 2019. [Google Scholar]
- Andronico, D.; Lodato, L. Effusive Activity at Mount Etna Volcano (Italy) During the 20th Century: A Contribution to Volcanic Hazard Assessment. Nat. Hazards 2005, 36, 407–443. [Google Scholar] [CrossRef]
- Barsotti, S.; Andronico, D.; Neri, M.; Del Carlo, P.; Baxter, P.J.; Aspinall, W.P.; Hincks, T. Quantitative Assessment of Volcanic Ash Hazards for Health and Infrastructure at Mt. Etna (Italy) By Numer. Simulation. J. Volcanol. Geotherm. Res. 2010, 192, 85–96. [Google Scholar] [CrossRef]
- Jenkins, S.F.; Spence, R.J.S.; Fonseca, J.F.B.D.; Solidum, R.U.; Wilson, T.M. Volcanic Risk Assessment: Quantifying Physical Vulnerability in the Built Environment. J. Volcanol. Geotherm. Res. 2014, 276, 105–120. [Google Scholar] [CrossRef]
- Norman, C.R.; Kelley, K.L.; Sanner, C.; Lueck, S.; Norman, J.; Norrow, C. Water Intrusion: An Analysis of Water Sources, Categories, and the Degradation Science of Building Materials. Water 2024, 16, 1576. [Google Scholar] [CrossRef]
- Chiodini, G.; D’Alessandro, W.; Parello, F. Geochemistry of Gases and Waters Discharged by the Mud Volcanoes at Paternò, Mt. Etna (Italy). Bull. Volcanol. 1996, 58, 51–58. [Google Scholar] [CrossRef]
- Chicco, J.M.; Giammanco, S.; Mandrone, G. Multidisciplinary Study of the “salinelle” of Paternò Mud Volcanoes: Characteristics of the Fluids and Possible Correlations with the Activity of Mt. Etna. Ann. Geophys. 2020, 63, 1–34. [Google Scholar] [CrossRef]
- Caracausi, A.; Favara, R.; Giammanco, S.; Italiano, F.; Paonita, A.; Pecoraino, G.; Rizzo, A.; Nuccio, P.M. Mount Etna: Geochemical Signals of Magma Ascent and Unusually Extensive Plumbing System. Geophys. Res. Lett. 2003, 30, 1057. [Google Scholar] [CrossRef]
- Caracausi, A.; Italiano, F.; Paonita, A.; Rizzo, A.; Nuccio, P.M. Evidence of Deep Magma Degassing and Ascent by Geochemistry of Peripheral Gas Emissions at Mount Etna (Italy): Assessment of the Magmatic Reservoir Pressure. J. Geophys. Res. Solid Earth 2003, 108, 2463. [Google Scholar] [CrossRef]
- Branca, S.; Coltelli, M.; Groppelli, G.; Lentini, F. Geological Map of Etna Volcano, 1:50,000 Scale. Ital. J. Geosci. 2011, 130, 265–291. [Google Scholar] [CrossRef]
- Barbano, M.S.; Azzaro, R.; Grasso, D.E. Earthquake Damage Scenarios and Seismic Hazard of Messina, North-Eastern Sicily (Italy) as Inferred from Historical Data. J. Earthq. Eng. 2005, 9, 805–830. [Google Scholar] [CrossRef]
- Polonia, A.; Torelli, L.; Gasperini, L.; Mussoni, P. Active Faults and Historical Earthquakes in the Messina Straits Area (Ionian Sea). Nat. Hazards Earth Syst. Sci. 2012, 12, 2311–2328. [Google Scholar] [CrossRef]
- Irwin, W.P.; Barnes, I. Tectonic Relations of Carbon Dioxide Discharges and Earthquakes. J. Geophys. Res. 1980, 85, 3115–3121. [Google Scholar] [CrossRef]
- Sugisaki, R.; Ido, M.; Takeda, H.; Isobe, Y.; Hayashi, Y.; Nakamura, N.; Satake, H.; Mizutani, Y. Origin of Hydrogen and Carbon Dioxide in Fault Gases and Its Relation to Fault Activity. J. Geol. 1983, 91, 239–258. [Google Scholar] [CrossRef]
- Rose, A.; Hawkes, H.; Webb, J. Geochemistry in Mineral Exploration; Academic Press: London, UK, 1979; ISBN 13: 9780965096805. [Google Scholar]
- Evans, W.C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, D.A.; Rogie, J.D.; Shuster, D.L. High CO2 Emissions through Porous Media: Transport Mechanisms and Implications for Flux Measurement and Fractionation. Chem. Geol. 2001, 177, 15–29. [Google Scholar] [CrossRef]
- Kerrick, D.M. Present and Past Nonanthropogenic CO2 Degassing from the Solid Earth. Rev. Geophys. 2001, 39, 565–586. [Google Scholar] [CrossRef]
- Klusman, R.W. Soil Gas and Related Methods for Natural Resource Exploration; Wiley: Hoboken, NJ, USA, 1993. [Google Scholar] [CrossRef]
- Azzaro, R.; Branca, S.; Giammanco, S.; Gurrieri, S.; Rasà, R.; Valenza, M. New Evidence for the Form and Extent of the Pernicana Fault System (Mt. Etna) Struct. Soil Gas Surveying J. Volcanol. Geotherm. Res. 1998, 84, 143–152. [Google Scholar] [CrossRef]
- Giammanco, S.; Inguaggiato, S.; Valenza, M. Soil and Fumarole Gases of Mount Etna: Geochemistry and Relations with Volcanic Activity. J. Volcanol. Geotherm. Res. 1998, 81, 297–310. [Google Scholar] [CrossRef]
- Grasso, M.; Lentini, F. Sedimentary and Tectonic Evolution of the Eastern Hyblean Plateau (Southeastern Sicily) during Late Cretaceous to Quaternary Time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1982, 39, 261–280. [Google Scholar] [CrossRef]
- Carbone, S.; Grasso, M.; Lentini, F. Lineamenti Geologici del Plateau Ibleo (Sicilia SE). Present. Delle Cart. Geol. Della Sicil. Sud-Orientale Mem. Della Soc. Geol. Ital. 1987, 38, 127–135. [Google Scholar]
- Lentini, F.; Carbone, S.; Grasso, M. Introduzione Alla Geologia della Sicilia e Guida all’escursione. In Proceedings of the Convegno della Società Geologica Italiana, Naxos/Pergusa, Italy, 22–25 April 1987. [Google Scholar]
- Lentini, F.; Carbone, S.; Catalano, S.; Grasso, M. Elementi per la Ricostruzione del Quadro Strutturale della Sicilia Orientale. Mem. Della Soc. Geol. Ital. 1996, 51, 179–195. [Google Scholar]
- Ristuccia, G.M.; Bonfanti, P.; Giammanco, S.; Stella, G. Assessment of the Geochemical Potential in a Complex Tectonic Environment of South-East Sicily: New Insights from Hydrochemical Data. Front. Earth Sci. 2019, 7, 13. [Google Scholar] [CrossRef]
- Ristuccia, G.; Bonfanti, P.; Giammanco, S. A Hydrogeochemical Approach to the Characterization of Low-Enthalpy Geothermal Systems: The Scordia—Lentini Graben (Sicily, Italy). Ann. Geophys. 2021, 64, HS438. [Google Scholar] [CrossRef]
- Rust, D.; Neri, M. The Boundaries of Large-Scale Collapse on the Flanks of Mount Etna, Sicily. Geol. Soc. Spec. Publ. 1996, 110, 193–208. [Google Scholar] [CrossRef]
- Rust, D.; Behncke, B.; Neri, M.; Ciocanel, A. Nested Zones of Instability in the Mount Etna Volcanic Edifice, Italy. J. Volcanol. Geotherm. Res. 2005, 144, 137–153. [Google Scholar] [CrossRef]
- Boschi, E.; Guidoboni, E.; Ferrari, G.; Mariotti, D.; Valensise, G.; Gasperini, P. Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997 (Appendix to Volume 43 N° 4, 2000). Ann. Di Geofis. 2000, 43, 609–868. [Google Scholar] [CrossRef]
- Lentini, F.; Carbone, S.; Guarnieri, P. Collisional and Postcollisional Tectonics of the Apenninic-Maghrebian Orogen (Southern Italy). In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Geological Society of America: Boulder, CO, USA, 2006; pp. 57–81. [Google Scholar]
- Gerardi, F.; Smedile, A.; Pirrotta, C.; Barbano, M.S.; De Martini, P.M.; Pinzi, S.; Gueli, A.M.; Ristuccia, G.M.; Stella, G.; Troja, S.O. Geological Record of Tsunami Inundations in Pantano Morghella (South-Eastern Sicily) Both from near and Far-Field Sources. Nat. Hazards Earth Syst. Sci. 2012, 12, 1185–1200. [Google Scholar] [CrossRef]
- Bottari, C.; Barbano, M.S.; Pirrotta, C.; Azzaro, R.; Ristuccia, G.; Gueli, A. Archaeological Evidence for a Possible First Century AD Earthquake in the Necropolis of Abakainon (NE Sicily). Quat. Int. 2013, 316, 190–199. [Google Scholar] [CrossRef]
- Silvestri, O. Eruzione di Fango presso l’Etna. Boll. Del Vulcan. Ital. 1879, 6, 28–31. [Google Scholar]
- Cumin, G. Le Salinelle di Paternò e la loro Attuale Attività. Boll. Dell’accademia Gioenia Di Sci. Nat. Catania 1954, 4, 515–528. [Google Scholar]
- D’Alessandro, W.; Bellomo, S.; Brusca, L.; Calabrese, S. Are the Salinelle Mud Volcanoes Threatening Human Health or Are Anthropogenic Activities Threatening the Salinelle Mud Volcanoes? A Comment on “Trace Element Biomonitoring Using Mosses in Urban Areas Affected by Mud Volcanoes around Mt. Etna. the Case of the Salinelle, Italy” by Bonanno et al. (DOI 10.1007/S10661-011-2332-z). Environ. Monit. Assess. 2013, 185, 2351–2354. [Google Scholar] [CrossRef]
- Mammino, P.I. Vulcani Di Fango Della Sicilia. Agorà 2014, 50, 90–95. [Google Scholar]
- Federico, C.; Liuzzo, M.; Giudice, G.; Capasso, G.; Pisciotta, A.; Pedone, M. Variations in CO2 Emissions at a Mud Volcano at the Southern Base of Mt Etna: Are They Due to Volcanic Activity Interference or a Geyser-like Mechanism? Bull. Volcanol. 2019, 81, 2. [Google Scholar] [CrossRef]
- Carveni, P.; Barone, F.; Benfatto, S.; Imposa, S.; Mele, G. Mud Volcano Fields in the MT. Etna Area (Eastern Sicily). In Raising the Profile of Geomorphological Heritage through Iconography, Inventory and Promotion, Proceedings of the International Symposium on Geomorphosites, Paris, France, 10-12 June 2009; Giusti, C., Ed.; Sorbonne Universitè: Paris, France, 2012; pp. 54–60. [Google Scholar]
- Carveni, P.; Benfatto, S.; Sturiale, G. Aspetti Geologici e Geomorfologici dei Vulcani di Fango del Basso Versante Sud–Occidentale Etneo ed Ipotesi sulla loro Genesi. Il Quat. 2001, 14, 117–130. [Google Scholar]
- Francaviglia, A. L’Imbasamento Sedimentario dell’Etna e il Golfo Pre-Etneo. Boll. Del Serv. Geol. D’italia 1959, 81, 593–684. [Google Scholar]
- Giammanco, S.; Carbone, S.; Pistorio, A. Il Geosito “Sistema delle Salinelle del Monte Etna” (Paternò e Belpasso—Sicilia Orientale). Geol. Dell’ambiente 2016, 3, 42–47. [Google Scholar]
- Giammanco, S.; Gurrieri, S.; Valenza, M. Soil CO2 Degassing on Mt Etna (Sicily) during the Period 1989-1993: Discrimination between Climatic and Volcanic Influences. Bull. Volcanol. 1995, 57, 52–60. [Google Scholar] [CrossRef]
- Bonfanti, P.; D’Alessandro, W.; Dongarrà, G.; Parello, F.; Valenza, M. Medium-Term Anomalies in Groundwater Temperature before 1991-1993 Mt. Etna Eruption. J. Volcanol. Geotherm. Res. 1996, 73, 303–308. [Google Scholar] [CrossRef]
- Pecoraino, G.; Giammanco, S. Geochemical Characterization and Temporal Changes in Parietal Gas Emissions at Mt. Etna (Italy) during the Period July 2000—July 2003. Terr. Atmos. Ocean. Sci. 2005, 16, 805–841. [Google Scholar] [CrossRef]
- Giammanco, S.; Bonfanti, P. Cluster Analysis of Soil CO2 Data from Mt. Etna (Italy) Reveals Volcanic Influences on Temporal and Spatial Patterns of Degassing. Bull. Volcanol. 2009, 71, 201–218. [Google Scholar] [CrossRef]
- Paonita, A. Long-Range Correlation and Nonlinearity in Geochemical Time Series of Gas Discharges from Mt. Etna, and Changes with 2001 and 2002–2003 Eruptions. Nonlinear Process. Geophys. 2010, 17, 733–751. [Google Scholar] [CrossRef]
- Camarda, M.; De Gregorio, S.; Gurrieri, S. Magma-Ascent Processes during 2005–2009 at Mt Etna Inferred by Soil CO2 Emissions in Peripheral Areas of the Volcano. Chem. Geol. 2012, 330–331, 218–227. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Parello, F.; Valenza, M. Gas Manifestations of the Mt. Etna Area: Historical Notices and New Geochemical Data (1990–1993). Acta Vulcanol. 1996, 8, 23–29. [Google Scholar]
- Bonforte, A.; Guglielmino, F.; Coltelli, M.; Ferretti, A.; Puglisi, G. Structural Assessment of Mount Etna Volcano from Permanent Scatterers Analysis. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- La Manna, F.; Carnazzo, A. Le Salinelle Di Paternò; Nuova Ipotesi sulla loro Struttura e Formazione. Boll. Della Soc. Geol. Ital. 2000, 119, 9–14. [Google Scholar]
- Imposa, S.; Grassi, S.; De Guidi, G.; Battaglia, F.; Lanaia, G.; Scudero, S. 3D Subsoil Model of the San Biagio ‘Salinelle’ Mud Volcanoes (Belpasso, Sicily) Derived from Geophysical Surveys. Surv. Geophys. 2016, 37, 1117–1138. [Google Scholar] [CrossRef]
- Panzera, F.; Sicali, S.; Lombardo, G.; Imposa, S.; Gresta, S.; D’Amico, S. A Microtremor Survey to Define the Subsoil Structure in a Mud Volcanoes Area: The Case Study of Salinelle (Mt. Etna, Italy). Environ. Earth Sci. 2016, 75, 1140. [Google Scholar] [CrossRef]
- Allard, P.; Carbonnelle, J.; Dajlevic, D.; Le bronec, J.; Morel, P.; Robe, M.C.; Maurenas, J.M.; Faivre-Pierret, R.; Martin, D.; Sabroux, J.C.; et al. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 1991, 351, 387–391. [Google Scholar] [CrossRef]
- Giammanco, S.; Gurrieri, S.; Valenza, M. Soil CO2 Degassing along Tectonic Structures of Mount Etna (Sicily): The Pernicana Fault. Appl. Geochem. 1997, 12, 429–436. [Google Scholar] [CrossRef]
- Giammanco, S.; Gurrieri, S.; Valenza, M. Anomalous Soil CO2 Degassing in Relation to Faults and Eruptive Fissures on Mount Etna (Sicily, Italy). Bull. Volcanol. 1998, 60, 252–259. [Google Scholar] [CrossRef]
- Giammanco, S.; Gurrieri, S.; Valenza, M. Geochemical Investigations Applied to Active Fault Detection in a Volcanic Area: The North-East Rift on Mt. Etna (Sicily, Italy). Geophys. Res. Lett. 1999, 26, 2005–2008. [Google Scholar] [CrossRef]
- Grassa, F.; Capasso, G.; Favara, R.; Inguaggiato, S.; Faber, E.; Valenza, M. Molecular and Isotopic Composition of Free Hydrocarbon Gases from Sicily, Italy. Geophys. Res. Lett. 2004, 31, 2003GL019362. [Google Scholar] [CrossRef]
- Messina, G. Geologia dell’area Urbana di Paternò; University of Catania: Catania, Italy, 2004. [Google Scholar]
- Garber, M.; Koopman, F. Methods of Measuring Water Levels in Deep Wells; Techniques of Water-Resources Investigations; US Government Printing Office: Washington, DC, USA, 1968. [Google Scholar]
- Parkinson, K.J. An Improved Method for Measuring Soil Respiration in the Field. J. Appl. Ecol. 1981, 18, 221. [Google Scholar] [CrossRef]
- Tonani, F.; Miele, G. Methods for Measuring Flow of Carbon Dioxide through Soils in the Volcanic Setting. In Proceedings of the International Conference on Active Volcanoes and Risk Mitigation, Napoli, Italy, 27 August–1 September 1991. [Google Scholar]
- Chiodini, G.; Cioni, R.; Guidi, M.; Raco, B.; Marini, L. Soil CO2 Flux Measurements in Volcanic and Geothermal Areas. Appl. Geochem. 1998, 13, 543–552. [Google Scholar] [CrossRef]
- Sinclair, A.J. Selection of Threshold Values in Geochemical Data Using Probability Graphs. J. Geochem. Explor. 1974, 3, 129–149. [Google Scholar] [CrossRef]
- Stewart, R.R. Exploration Seismic Tomography: Fundamentals; Society of Exploration Geophysicists: Houston, TX, USA, 1991. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Practical Techniques for 3D Resistivity Surveys and Data Inversion. Geophys. Prospect. 1996, 44, 499–523. [Google Scholar] [CrossRef]
- Messina, G. Rilevamento Geologico e Geochimico dell’area di Paternò; University of Catania: Catania, Italy, 2006. [Google Scholar]
- Giggenbach, W.F. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochim. Et Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Aiuppa, A.; Bellomo, S.; Brusca, L.; D’Alessandro, W.; Federico, C. Natural and Anthropogenic Factors Affecting Groundwater Quality of an Active Volcano (Mt. Etna, Italy). Appl. Geochem. 2003, 18, 863–882. [Google Scholar] [CrossRef]
- Aiuppa, A.; Allard, P.; D’Alessandro, W.; Giammanco, S.; Parello, F.; Valenza, M. Magmatic Gas Leakage at Mount Etna (Sicily, Italy): Relationships with the Volcano-Tectonic Structures, the Hydrological Pattern and the Eruptive Activity. Geophys. Monogr. Ser. 2004, 143, 129–145. [Google Scholar]
- Kanemasu, E.T.; Powers, W.L.; Sij, J.W. Field Chamber Measurements of CO2 Flux from Soil Surface. Soil Sci. 1974, 118, 233–237. [Google Scholar] [CrossRef]
- D’Amore, F.; Panichi, C. Geochemistry in Geothermal Exploration. Int. J. Energy Res. 1985, 9, 277–298. [Google Scholar] [CrossRef]
- Sibson, R.H. Fluid Involv. Norm. Faulting. J. Geodyn. 2000, 29, 469–499. [Google Scholar] [CrossRef]
- Liotta, M.; D’Alessandro, W.; Bellomo, S.; Brusca, L. Volcanic Plume Fingerprint in the Groundwater of a Persistently Degassing Basaltic Volcano: Mt. Etna. Chem. Geol. 2016, 433, 68–80. [Google Scholar] [CrossRef]
- Liotta, M.; D’Alessandro, W.; Arienzo, I.; Longo, M. Tracing the Circulation of Groundwater in Volcanic Systems Using the 87Sr/86Sr Ratio: Application to Mt. Etna. J. Volcanol. Geotherm. Res. 2017, 331, 102–107. [Google Scholar] [CrossRef]
- Formisano, A.; Vaiano, G.; Davino, A.; Citro, S.; D’Amato, M. Seismic Vulnerability Assessment of Two Territorial Case Studies of Italian Ancient Churches: Comparison Between Simplified and Refined Numerical Models. Int. J. Mason. Res. Innov. 2022, 7, 172–216. [Google Scholar] [CrossRef]
- Ruggieri, S.; Tosto, C.; Rosati, G.; Uva, G.; Ferro, G.A. Seismic Vulnerability Analysis of Masonry Churches in Piemonte After 2003 Valle Scrivia Earthquake: Post-event Screening and Situation 17 Years Later. Int. J. Archit. Herit. 2022, 5, 717–745. [Google Scholar] [CrossRef]
- Lo Monaco, A.; Grillanda, N.; Onescu, I.; Fofiu, M.; Clementi, F.; D’Amato, M.; Formisano, A.; Milani, G.; Mosoarca, M. Seismic Assessment of Romanian Orthodox Masonry Churches in the Banat Area Through a Multi-level Analysis Framework. Eng. Fail. Anal. 2023, 153, 107539. [Google Scholar] [CrossRef]
- Onescu, I.; Lo Monaco, A.; Grillanda, N.; Mosoarca, M.; D’Amato, M.; Formisano, A.; Milani, G.; Clementi, F.; Fofiu, M. Simplified Vulnerability Assessment of Historical Churches in Banat Seismic Region, Romania. Int. J. Archit. Herit. 2024, 18, 1–14. [Google Scholar] [CrossRef]
Easting | Northing | CO2 Efflux (g m−2 d−1) | Easting | Northing | CO2 Efflux (g m−2 d−1) | Easting | Northing | CO2 Efflux (g m−2 d−1) |
---|---|---|---|---|---|---|---|---|
490904 | 4157805 | 1.68 | 490815 | 4157776 | 22.56 | 491036 | 4157763 | 60 |
490944 | 4157788 | 2.16 | 491017 | 4157784 | 23.52 | 490847 | 4158194 | 60.24 |
490527 | 4157942 | 2.64 | 490797 | 4158052 | 24 | 490857 | 4157885 | 60.48 |
491167 | 4157757 | 3.6 | 490773 | 4157784 | 24.24 | 490927 | 4157870 | 61.68 |
490892 | 4157971 | 5.28 | 490618 | 4158087 | 24.48 | 490610 | 4157919 | 66.48 |
490792 | 4157985 | 6.24 | 491210 | 4157940 | 26.64 | 490671 | 4157968 | 66.72 |
490916 | 4157975 | 6.48 | 490908 | 4157887 | 26.88 | 490941 | 4158036 | 75.36 |
490698 | 4157732 | 6.48 | 491172 | 4157703 | 27.12 | 491044 | 4158071 | 80.4 |
490853 | 4158089 | 7.68 | 490877 | 4158077 | 27.6 | 490754 | 4157793 | 89.04 |
491154 | 4158179 | 8.64 | 490873 | 4157907 | 28.32 | 491197 | 4157958 | 93.6 |
490697 | 4157995 | 9.12 | 490858 | 4157959 | 29.04 | 490972 | 4157793 | 94.32 |
490709 | 4157977 | 9.6 | 490991 | 4158064 | 29.52 | 490864 | 4158034 | 100.8 |
490852 | 4158103 | 9.6 | 490874 | 4157990 | 36.48 | 490888 | 4157980 | 112.56 |
490840 | 4158149 | 10.08 | 490789 | 4158145 | 36.72 | 490850 | 4157934 | 112.8 |
490814 | 4158119 | 10.32 | 490868 | 4157885 | 37.44 | 490920 | 4157888 | 114 |
490913 | 4158023 | 12.24 | 490801 | 4157868 | 39.84 | 491096 | 4158024 | 135.84 |
490860 | 4157949 | 14.16 | 490803 | 4157965 | 44.16 | 490849 | 4158178 | 138.72 |
490842 | 4158100 | 14.8 | 490856 | 4157768 | 44.16 | 490806 | 4157840 | 142.08 |
490852 | 4157825 | 17.04 | 490934 | 4158058 | 47.76 | 491258 | 4158046 | 144.48 |
490985 | 4158083 | 18.24 | 490931 | 4157826 | 50.4 | 490931 | 4157853 | 185.04 |
490668 | 4158188 | 18.96 | 491026 | 4158256 | 50.88 | 490992 | 4157814 | 198.96 |
490893 | 4157987 | 18.96 | 490932 | 4157894 | 51.36 | 490849 | 4158123 | 200.88 |
491222 | 4157924 | 19.44 | 490907 | 4158061 | 52.32 | 490861 | 4158065 | 206.64 |
491207 | 4158091 | 20.64 | 490978 | 4158045 | 52.56 | 490821 | 4157888 | 226.8 |
491130 | 4157776 | 21.36 | 490883 | 4157924 | 53.28 | 491102 | 4158042 | 268.8 |
490966 | 4158036 | 21.84 | 490778 | 4158170 | 54.72 | |||
491024 | 4157997 | 22.08 | 491163 | 4158016 | 58.32 |
Date of Sampling | SV1 | SV2 | SV3 | SV6 | SI5 | Chisari Well |
---|---|---|---|---|---|---|
3 January 2012 | 10,000 | 1000 | n.m. | n.m. | n.m. | n.m. |
31 May 2012 | 19,650 | 3150 | n.m. | 9700 | 1600 | n.m. |
7 September 2012 | 2600 | n.m. | n.m. | 6000 | n.m. | n.m. |
24 July 2012 | 9500 | 2500 | 520 | 1200 | n.m. | n.m. |
10 June 2012 | 48,600 | n.m. | n.m. | 20,000 | n.m. | n.m. |
14 December 2012 | 41,000 | 850 | 13,600 | 33,700 | n.m. | 520 |
2 January 2013 | 25,500 | 1200 | 1830 | 730 | n.m. | 2800 |
23 December 2013 | 43,500 | 36,000 | 480 | 5600 | n.m. | 7900 |
1 October 2014 | 27,800 | 19,800 | 1320 | 1795 | n.m. | 2868 |
2 July 2014 | 600 | 457 | 2200 | 450 | n.m. | 489 |
13 March 2014 | 3300 | 2400 | 2245 | 2550 | n.m. | 2300 |
27 March 2014 | 531 | 482 | 2465 | 1216 | n.m. | 521 |
16 April 2014 | 455 | 1100 | 2985 | 1030 | n.m. | 1244 |
29 May 2014 | 427 | 429 | 615 | 564 | n.m. | 10,214 |
Site | pH | Cond | Na | K | Ca | Mg | HCO3− | SO42− | NO3− | Cl− | CO32− |
---|---|---|---|---|---|---|---|---|---|---|---|
SV1 | 6.94 | 4140 | 389 | 216 | 105 | 219 | 631 | 33.9 | 0.01 | 380 | <0.5 |
SV2 | 6.84 | 1867 | 194 | 133 | 70.8 | 70 | 361 | 8.04 | 0.03 | 108 | <0.5 |
SV1 | SV2 | SV3 | SV6 | Chisari | |
SV1 | 1 | ||||
SV2 | 0.71 | 1 | |||
SV3 | 0.58 | 0.51 | 1 | ||
SV6 | 0.73 | 0.38 | 0.44 | 1 | |
Chisari | 0.54 | 0.48 | 0.45 | 0.35 | 1 |
SV1 | SV2 | SV3 | SV6 | Chisari | |
SV1 | 1 | ||||
SV2 | −0.47 | 1 | |||
SV3 | −0.22 | 0.37 | 1 | ||
SV6 | −0.02 | 0.44 | 0.79 | 1 | |
Chisari | −0.14 | 0.55 | 0.28 | 0.33 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ristuccia, G.M.; Bonfanti, P.; Caruso, O.; Giammanco, S. A Multidisciplinary Study for the Recognition of Fault-Induced Instability Conditions on Cultural Heritage: The Case of Paternò (Sicily, Italy). Heritage 2024, 7, 5007-5031. https://doi.org/10.3390/heritage7090237
Ristuccia GM, Bonfanti P, Caruso O, Giammanco S. A Multidisciplinary Study for the Recognition of Fault-Induced Instability Conditions on Cultural Heritage: The Case of Paternò (Sicily, Italy). Heritage. 2024; 7(9):5007-5031. https://doi.org/10.3390/heritage7090237
Chicago/Turabian StyleRistuccia, Gloria Maria, Pietro Bonfanti, Orazio Caruso, and Salvatore Giammanco. 2024. "A Multidisciplinary Study for the Recognition of Fault-Induced Instability Conditions on Cultural Heritage: The Case of Paternò (Sicily, Italy)" Heritage 7, no. 9: 5007-5031. https://doi.org/10.3390/heritage7090237
APA StyleRistuccia, G. M., Bonfanti, P., Caruso, O., & Giammanco, S. (2024). A Multidisciplinary Study for the Recognition of Fault-Induced Instability Conditions on Cultural Heritage: The Case of Paternò (Sicily, Italy). Heritage, 7(9), 5007-5031. https://doi.org/10.3390/heritage7090237