Exploiting PlanetScope Imagery for Volcanic Deposits Mapping
Abstract
:1. Introduction
2. Materials and Methods
3. Case Study: Mt. Etna 2021–2022 Paroxysmal Eruptions
4. Results
4.1. 2 March 2021 Paroxysmal Eruption
4.2. 22 May 2021 Paroxysmal Eruption
4.3. 1 July 2021 Paroxysmal Eruptions
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casadevall, T.J. Volcanic ash and aviation safety: Proceedings of the first international symposium on volcanic ash and aviation safety. US Geol. Surv. Bull. 1994, 2047, 1–450. [Google Scholar]
- Miller, T.P.; Casadevall, T.J. Volcanic ash hazards to aviation. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 915–930. [Google Scholar]
- Andronico, D.; Del Carlo, P. PM10 measurements in urban settlements after lava fountain episodes at Mt. Etna, Italy: Pilot test to assess volcanic ash hazard to human health. Nat. Hazards Earth Syst. Sci. 2016, 16, 29–40. [Google Scholar] [CrossRef]
- Horwell, C.J.; Sargent, P.; Andronico, D.; Castro, L.; Tomatis, M.; Hillman, S.E.; Michnowicz, S.A.; Fubini, B. The iron-catalysed surface reactivity and health-pertinent physical characteristics of explosive volcanic ash from Mt. Etna, Italy. J. Appl. Volcanol. 2017, 6, 12. [Google Scholar] [CrossRef]
- Horwell, C.J.; Baxter, P.J. The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation. Bull. Volcanol. 2006, 69, 1–24. [Google Scholar] [CrossRef]
- Pyle, D.M. The thickness, volume and grainsize of tephra fall deposits. Bull. Volcanol. 1989, 51, 1–15. [Google Scholar] [CrossRef]
- Fierstein, J.; Nathenson, M. Another look at the calculation of fallout tephra volumes. Bull. Volcanol. 1992, 54, 156–167. [Google Scholar] [CrossRef]
- Bonadonna, C.; Houghton, B.F. Total grain-size distribution and volume of tephra-fall deposits. Bull. Volcanol. 2005, 67, 441–456. [Google Scholar] [CrossRef]
- Carey, S.; Sparks, R.S.J. Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volcanol. 1986, 48, 109–125. [Google Scholar] [CrossRef]
- Tupper, A.; Textor, M.; Herzog, A.; Graf, F.; Richards, S. Tall clouds from small eruptions: The sensitivity of eruption height and fine ash content to tropospheric instability. Nat. Hazards 2009, 51, 375–401. [Google Scholar] [CrossRef]
- Suzuki, T. A theoretical model for dispersion of tephra. In Arc Volcanism, Physics and Tectonics; Shimozuru, D., Yokoyama, I., Eds.; Terra Scientific: Tokyo, Japan, 1983; pp. 95–113. [Google Scholar]
- Armienti, P.; Macedonio, G.; Pareschi, M.T. A numerical model for simulation of tephra transport and deposition: Applications to 18 May 1980, Mount St. Helens eruption. J. Geophys. Res. 1988, 93, 6463–6476. [Google Scholar] [CrossRef]
- Bursik, M.; Sparks, R.S.J.; Gilbert, J.S.; Carey, S. Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores). Bull. Volcanol. 1992, 54, 329–344. [Google Scholar] [CrossRef]
- Heffter, J.L.; Stunder, B.J.B. Volcanic ash forecast transport and dispersion (VAFTAD) model. Weather Forecast. 1993, 8, 533–541. [Google Scholar] [CrossRef]
- Searcy, C.; Dean, K.; Stringer, W. PUFF: A high resolution volcanic ash tracking model. J. Volcanol. Geotherm. Res. 1998, 80, 1–16. [Google Scholar] [CrossRef]
- Hurst, A.W.; Turner, R. Performance of the program ASHFALL for forecasting ashfall during the 1995 and 1996 eruptions of Ruapehu volcano. N. Z. J. Geol. Geophys. 1999, 42, 615–622. [Google Scholar] [CrossRef]
- Koyaguchi, T.; Ohno, M. Reconstruction of Eruption Column Dynamics on the Basis of Grain Size of Tephra Fall Deposits: 1. Methods. J. Geophys. Res. 2001, 106, 6499–6512. [Google Scholar] [CrossRef]
- Bonadonna, C.; Macedonio, G.; Sparks, R.S.J. Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: Application to hazard assessment on Montserrat. Geol. Soc. Lond. Mem. 2002, 21, 517–537. [Google Scholar] [CrossRef]
- Bonadonna, C.; Philips, J.C. Sedimentation from strong volcanic plumes. J. Geophys. Res. 2003, 108, 2340–2368. [Google Scholar] [CrossRef]
- Bonadonna, C.; Philips, J.C.; Houghton, B.F. Modeling tephra sedimentation from a Rapehau weak plume eruption. J. Geophys. Res. 2005, 110, B08209. [Google Scholar] [CrossRef]
- Bonadonna, C.; Folch, A.; Loughlin, S.; Puempel, H. Future developments in modelling and monitoring of volcanic ash clouds: Outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation. Bull. Volcanol. 2012, 74, 1–10. [Google Scholar] [CrossRef]
- Folch, A. A review of tephra transport and dispersal models: Evolution, current status, and future perspectives. J. Volcanol. Geotherm. Res. 2012, 235–236, 96–115. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Bonadonna, C.; Cioni, R.; Corradini, S.; Degruyter, W.; Rossi, E.; Silvestri, M.; Biale, E.; Carparelli, G.; et al. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sens. 2019, 11, 2987. [Google Scholar] [CrossRef]
- Beckett, F.; Witham, C.; Leadbetter, S.; Crocker, R.; Webster, H.; Hort, M.C.; Jones, A.; Devenish, B.; Thomson, D. Atmospheric Dispersion Modelling at the London VAAC: A Review of Developments since the 2010 Eyjafjallajökull Volcano Ash Cloud. Atmosphere 2020, 11, 352. [Google Scholar] [CrossRef]
- Dioguardi, F.; Beckett, F.; Dürig, T.; Stevenson, J.A. The impact of eruption source parameter uncertainties on ash dispersion forecasts during explosive volcanic eruptions. J. Geophys. Res. Atmos. 2020, 125, e2020JD032717. [Google Scholar] [CrossRef]
- Mastin, L.G.; Pavolonis, M.; Engwell, S.; Clarkson, R.; Witham, C.; Brock, G.; Lisk, I.; Guffanti, M.; Tupper, A.; Schneider, D.; et al. Progress in protecting air travel from volcanic ash clouds. Bull. Volcanol. 2022, 84, 9. [Google Scholar] [CrossRef]
- Bear-Crozier, A.; Pouget, S.; Bursik, M.; Jansons, E.; Denman, J.; Tupper, A.; Rustowicz, R. Automated detection and measurement of volcanic cloud growth: Towards a robust estimate of mass flux, mass loading and eruption duration. Nat. Hazards 2020, 101, 1–38. [Google Scholar] [CrossRef]
- Freret-Lorgeril, V.; Bonadonna, C.; Corradini, S.; Guerrieri, L.; Lemus, J.; Donnadieu, F.; Scollo, S.; Gurioli, L.; Rossi, E. Tephra characterization and multi-disciplinary determination of Eruptive Source Parameters of a weak paroxysm at Mount Etna (Italy). J. Volcanol. Geotherm. Res. 2021, 421, 10743. [Google Scholar] [CrossRef]
- Mereu, L.; Scollo, S.; Bonadonna, C.; Donnadieu, F.; Freret Lorgeril, V.; Marzano, F.S. Ground-based remote sensing and uncertainty analysis of the mass eruption rate associated with the 3–5 December 2015 paroxysm of Mt. Etna. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. EGU22-9221. [Google Scholar] [CrossRef]
- Mereu, L.; Scollo, S.; Garcia, A.; Sandri, L.; Bonadonna, C.; Marzano, F.S. A New Radar-Based Statistical Model to Quantify Mass Eruption Rate of Volcanic Plumes. Geophys. Lett. 2023, 50, e2022GL100596. [Google Scholar] [CrossRef]
- Calvari, S.; Bonaccorso, A.; Ganci, G. Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode. Remote Sens. 2021, 13, 3052. [Google Scholar] [CrossRef]
- Slatcher, N.; James, M.R.; Calvari, S.; Ganci, G.; Browning, J. Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography. Remote Sens. 2015, 7, 14967–14987. [Google Scholar] [CrossRef]
- Ganci, G.; Cappello, A.; Bilotta, G.; Herault, A.; Zago, V.; Del Negro, C. Mapping Volcanic Deposits of the 2011–2015 Etna Eruptive Events Using Satellite Remote Sensing. Front. Earth Sci. 2015, 6, 83. [Google Scholar] [CrossRef]
- Scollo, S.; Boselli, A.; Coltelli, M.; Leto, G.; Pisani, G.; Prestifilippo, M.; Spinelli, N.; Wang, X. Volcanic ash concentration during the 12 August 2011 Etna eruption. Geophys. Res. Lett. 2015, 42, 2634–2641. [Google Scholar] [CrossRef]
- Frazier, A.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 1390. [Google Scholar] [CrossRef]
- Aldeghi, A.; Carn, S.; Rudiger, E.-W.; Groppelli, G. Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala. Remote Sens. 2019, 11, 2151. [Google Scholar] [CrossRef]
- Salamati, N.; Fredembach, C.; Süsstrunk, S. Material Classification Using Color and NIR Images. In Proceedings of the IS&T/SID 17th Color Imaging Conference (CIC) 2009, Albuquerque, NM, USA, 11–13 November 2009. [Google Scholar]
- Zuccarello, F.; Bilotta, G.; Ganci, G.; Proietti, C.; Cappello, A. Assessing impending hazards from summit eruptions: The new probabilistic map for lava flow inundation at Mt. Etna. Sci. Rep. 2023, 13, 19543. [Google Scholar] [CrossRef] [PubMed]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bull. 2019, 132, 1615–1625. [Google Scholar] [CrossRef]
- Palano, M.; Viccaro, M.; Zuccarello, F.; Gresta, S. Magma transport and storage at Mt. Etna (Italy): A review of geodetic and petrological data for the 2002–03, 2004 and 2006 eruptions. J. Volcanol. Geotherm. Res. 2017, 347, 149–164. [Google Scholar] [CrossRef]
- Andronico, D.; Corsaro, R.A. Lava Fountains during the Episodic Eruption of South-East Crater (Mt. Etna), 2000: Insights into Magma-Gas Dynamics within the Shallow Volcano Plumbing System. Bull. Volcanol. 2011, 73, 1165–1178. [Google Scholar] [CrossRef]
- Andronico, D.; Cannata, A.; Di Grazia, G.; Ferrari, F. The 1986–2021 paroxysmal episodes at the summit craters of Mt. Etna: Insights into volcano dynamics and hazard. Earth-Sci. Rev. 2021, 220, 103686. [Google Scholar]
- Parfitt, E.A.; Wilson, L. The 1983-86 Pu′u ‘O’o Eruption of Kilauea Volcano, Hawaii: A Study of dike Geometry and Eruption Mechanisms for a Long-Lived Eruption. J. Volcanol. Geotherm. Res. 1994, 59, 179–205. [Google Scholar] [CrossRef]
- Allard, P.; Burton, M.; Muré, F. Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. Nature 2005, 433, 407–410. [Google Scholar] [CrossRef]
- Alparone, S.; Cannata, A.; Gresta, S. Time variation of spectral and wavefield features of volcanic tremor at Mt. Etna (January June 1999). J. Volcanol. Geotherm. Res. 2007, 161, 318–332. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Pecora, E.; Corradini, S.; Merucci, L.; Spata, G.; Coltelli, M. Eruption column height estimation of the 2011–2013 Etna lava fountains. Ann. Geophys. 2014, 57, 1–5. [Google Scholar] [CrossRef]
- Calvari, S.; Nunnari, G. Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy. Remote Sens. 2022, 14, 2392. [Google Scholar] [CrossRef]
- Wadge, G.; Walker, G.P.L.; Guest, J.E. The output of the Etna volcano. Nature 1975, 255, 385–387. [Google Scholar] [CrossRef]
- Guest, J.E. Styles of eruption and flow morphology on Mt. Etna. Mem. Soc. Geol. Ital. 1982, 23, 49–73. [Google Scholar]
- Romano, R.; Sturiale, C. The historical eruptions of Mt Etna (Volcanological data). Mem. Soc. Geol. It. 1982, 23, 75–97. [Google Scholar]
- Ganci, G.; Bilotta, G.; Zuccarello, F.; Calvari, S.; Cappello, A. A Multi-Sensor Satellite Approach to Characterize the Volcanic Deposits Emitted during Etna’s Lava Fountaining: The 2020–2022 Study Case. Remote Sens. 2023, 15, 916. [Google Scholar] [CrossRef]
- Marchese, F.; Filizzola, C.; Lacava, T.; Falconieri, A.; Faruolo, M.; Genzano, N.; Mazzeo, G.; Pietrapertosa, C.; Pergola, N.; Tramutoli, V.; et al. Mt. Etna Paroxysms of February–April 2021 Monitored and Quantified through a Multi-Platform Satellite Observing System. Remote Sens. 2021, 13, 3074. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Lombardo, V.; Merucci, L.; Musacchio, M.; Prestifilippo, M.; Scollo, S.; Silvestri, M.; Spata, G.; Stelitano, D. Proximal monitoring of the 2011-2015 Etna lava fountains using MSG-SEVIRI data. Geosciences 2018, 8, 140. [Google Scholar] [CrossRef]
- Plank, S. Rapid Damage Assessment by Means of Multi-Temporal SAR—A Comprehensive Review and Outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Harris, A.J.L. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade? J. Volcanol. Geotherm. Res. 2013, 249, 217–233. [Google Scholar] [CrossRef]
- Scollo, S.; Coltelli, M.; Prodi, F.; Folegani, M.; Natali, S. Terminal settling velocity measurements of volcanic ash during the 2002–2003 Etna eruption by an X-band microwave rain gauge disdrometer. Geophys. Res. Lett. 2005, 32, L10302. [Google Scholar] [CrossRef]
- Bonadonna, C.; Genco, R.; Gouhier, M.; Pistolesi, M.; Cioni, R.; Alfano, F.; Hoskuldsson, A.; Ripepe, M. Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J. Geophys. Res. 2011, 116, B12202. [Google Scholar] [CrossRef]
- Kozono, T.; Iguchi, M.; Miwa, T.; Miki, D. Characteristics of tephra fall from eruptions at Sakurajima volcano, revealed by optical disdrometer measurements. Bull. Volcanol. 2019, 81, 41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dozzo, M.; Ganci, G.; Lucchi, F.; Scollo, S. Exploiting PlanetScope Imagery for Volcanic Deposits Mapping. Technologies 2024, 12, 25. https://doi.org/10.3390/technologies12020025
Dozzo M, Ganci G, Lucchi F, Scollo S. Exploiting PlanetScope Imagery for Volcanic Deposits Mapping. Technologies. 2024; 12(2):25. https://doi.org/10.3390/technologies12020025
Chicago/Turabian StyleDozzo, Maddalena, Gaetana Ganci, Federico Lucchi, and Simona Scollo. 2024. "Exploiting PlanetScope Imagery for Volcanic Deposits Mapping" Technologies 12, no. 2: 25. https://doi.org/10.3390/technologies12020025
APA StyleDozzo, M., Ganci, G., Lucchi, F., & Scollo, S. (2024). Exploiting PlanetScope Imagery for Volcanic Deposits Mapping. Technologies, 12(2), 25. https://doi.org/10.3390/technologies12020025