Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = Mq3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2268 KiB  
Article
Hydnocarpin, a Natural Flavonolignan, Induces the ROS-Mediated Apoptosis of Ovarian Cancer Cells and Reprograms Tumor-Associated Immune Cells
by Jae-Yoon Kim, Yejin Kim, Soo-Yeon Woo, Jin-Ok Kim, Hyunsoo Kim, So-Ri Son, Dae Sik Jang and Jung-Hye Choi
Antioxidants 2025, 14(7), 846; https://doi.org/10.3390/antiox14070846 - 10 Jul 2025
Viewed by 443
Abstract
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, [...] Read more.
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, focusing on its effects on ovarian cancer and tumor-associated immune cells, including ovarian cancer-stimulated macrophages (MQs) and T cells. Hydnocarpin exhibited potent cytotoxicity against multiple ovarian cancer cell lines but only minimal toxicity against normal ovarian surface epithelial cells. Mechanistically, hydnocarpin triggered caspase-dependent apoptosis, as evidenced by the activation of caspase-9 and -3, with limited involvement of caspase-8, indicating the activation of the intrinsic apoptotic pathway. Experimental data implicated reactive oxygen species generation as a key mediator of hydnocarpin cytotoxicity, and reactive oxygen species inhibition significantly inhibited this cytotoxicity. In addition to its direct tumoricidal effects, hydnocarpin reprogrammed the tumor-associated immune cells, ovarian cancer-stimulated macrophages and T cells, by downregulating the levels of M2 MQ markers and pro-tumoral factors (matrix metalloproteinase-2/9, C–C motif chemokine ligand 5, transforming growth factor-β, and vascular endothelial growth factor) and enhancing MQ phagocytosis. Additionally, hydnocarpin promoted T-cell activation (interferon-γ and interleukin-2) and reduced the expression levels of immune evasion markers (CD80, CD86, and VISTA). Overall, this study demonstrated the dual anti-tumor effects of hydnocarpin on both ovarian cancer cells and immunosuppressive immune components in the tumor microenvironment, highlighting its potential as a novel therapeutic candidate for ovarian cancer. Full article
Show Figures

Graphical abstract

15 pages, 883 KiB  
Article
Comparison of Finger Flexor Strength and Muscle Quality Between Climbers and Non-Climbers: Influence of Sex and Grip Type
by Diego González-Martín, Javier Santos-Pérez, Sergio Maroto-Izquierdo, José Antonio de Paz and Ángel Gallego-Selles
Appl. Sci. 2025, 15(13), 7161; https://doi.org/10.3390/app15137161 - 25 Jun 2025
Viewed by 505
Abstract
Climbing demands exceptional isometric finger flexor strength and neuromuscular efficiency. This study aimed to compare maximum isometric strength and muscle quality (MQ) between climbers and non-climbers and examine the influence of sex and specific grip types. Methods: 33 climbers (14 women) and 29 [...] Read more.
Climbing demands exceptional isometric finger flexor strength and neuromuscular efficiency. This study aimed to compare maximum isometric strength and muscle quality (MQ) between climbers and non-climbers and examine the influence of sex and specific grip types. Methods: 33 climbers (14 women) and 29 non-climbers (15 women) volunteered in this study. Maximum isometric strength was measured for handgrip, three-finger drag, and half-crimp grips, while forearm muscle mass was estimated using DXA. MQ was calculated as the ratio of peak isometric force to forearm muscle mass. Results: Climbers demonstrated significantly higher isometric strength in both the three-finger drag and half-crimp grips compared to non-climbers (p < 0.01); however, non-significant differences were observed in handgrip strength. Despite similar forearm muscle mass, climbers exhibited greater MQ. Notably, female non-climbers showed higher MQ than their male counterparts (p < 0.05), a sex difference that was not evident among climbers. All tests exhibited high repeatability (ICC > 0.93, CV < 5.81%) with low SEM and MDC95 values. Conclusions: The findings underscore the necessity of employing climbing-specific strength assessments to capture the unique neuromuscular adaptations induced by climbing training. Muscle quality emerges as a sex-neutral biomarker for strength performance evaluation, with potential applications in the optimization of training programs. Future research should further explore the predictive value of MQ and strive for standardized testing protocols. Full article
(This article belongs to the Special Issue Biomechanics and Technology in Sports)
Show Figures

Figure 1

16 pages, 1415 KiB  
Article
Fractal-Based Quantitative Collateral Assessment for Thrombectomy Candidate Selection in Acute Ischemic Stroke: A Preliminary Study
by Chien-Hung Chang, Chi-Ming Ku, Tzong-Rong Ger and Wen-Piao Lin
Diagnostics 2025, 15(13), 1590; https://doi.org/10.3390/diagnostics15131590 - 23 Jun 2025
Viewed by 336
Abstract
Background: Acute ischemic stroke (AIS) remains a leading cause of mortality and disability worldwide. Accurate evaluation of collateral circulation is essential for predicting outcomes following endovascular thrombectomy (EVT). However, conventional visual collateral scoring (vCS) based on multiphase CT angiography (mCTA) is limited [...] Read more.
Background: Acute ischemic stroke (AIS) remains a leading cause of mortality and disability worldwide. Accurate evaluation of collateral circulation is essential for predicting outcomes following endovascular thrombectomy (EVT). However, conventional visual collateral scoring (vCS) based on multiphase CT angiography (mCTA) is limited by subjectivity and inter-observer variability. This preliminary study introduces the multiphase quantitative collateral score (mqCS), a novel imaging biomarker designed to provide an objective and reproducible assessment of both the morphological extent and temporal dynamics of collateral flow. Methods: In this exploratory study, 54 AIS patients treated with EVT were retrospectively analyzed. Collateral status was evaluated using both vCS (graded by two blinded neuroradiologists) and mqCS, derived from mCTA-based fractal dimension (FD) and delay indicator (DI) metrics. Logistic regression and receiver operating characteristic (ROC) analyses were performed to assess the predictive value of each scoring system for favorable 90-day functional outcomes (modified Rankin scale, mRS ≤ 2). Results: The mqCS was significantly associated with favorable outcomes. Patients with mqCS ≥ 0.8674 had significantly higher odds of achieving favorable outcomes (adjusted OR = 5.98, 95% CI: 1.38–25.93, p = 0.017; AUC = 0.80). In comparison, the visual collateral score (vCS) showed a lower adjusted predictive value (adjusted OR = 2.84, 95% CI: 1.17–6.89, p = 0.02; AUC = 0.79). Patients in the highest mqCS quartiles (Q3–Q4) exhibited significantly better recovery rates (69%, p < 0.01). Conclusions: This proof-of-concept study suggests that mqCS provides a potentially more objective and robust alternative to visual scoring for collateral assessment in AIS. By integrating structural and temporal characteristics, mqCS enhances outcome prediction and may inform EVT decision-making, particularly in borderline cases. These preliminary findings warrant validation in larger, prospective cohorts and support its potential integration into automated imaging platforms. Full article
(This article belongs to the Special Issue Cerebrovascular Lesions: Diagnosis and Management, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 845 KiB  
Article
Designing a Waste Heat Recovery Heat Exchanger for Polymer Electrolyte Membrane Fuel Cell Operation in Medium-Altitude Unmanned Aerial Vehicles
by Juwon Jang, Jaehyung Choi, Seung-Jun Choi and Seung-Gon Kim
Energies 2025, 18(13), 3262; https://doi.org/10.3390/en18133262 - 22 Jun 2025
Viewed by 338
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. [...] Read more.
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. Therefore, an effective preheating system is required to ensure stable PEMFC operation in high-altitude environments. This study aimed to mathematically model a shell-and-tube heat exchanger that utilizes waste heat recovery to prevent internal and external PEMFC damage in cold, high-altitude conditions. The waste heat from the PEMFC is estimated based on the thrust of the MQ-9 Reaper, and the proposed heat exchanger must be capable of heating air to −5 °C. As the heat exchanger utilizes only waste heat, the primary energy consumption arises from the coolant pumping process. Calculation results indicated that the proposed heat exchanger design improved the overall system efficiency by up to 15.7%, demonstrating its effectiveness in utilizing waste heat under aviation conditions. Full article
Show Figures

Figure 1

17 pages, 1556 KiB  
Article
Latency Analysis of Push–Pull and Publish–Subscribe Communication Protocols in U-Space Systems
by Neno Ruseno, Fabio Suim Chagas, Miguel-Ángel Fas-Millán and Aurilla Aurelie Arntzen Bechina
Electronics 2025, 14(12), 2453; https://doi.org/10.3390/electronics14122453 - 16 Jun 2025
Viewed by 483
Abstract
In the U-Space environment, seamless communication between key stakeholders—such as U-Space Service Providers (USSP), Common Information Service Providers (CISP), and drone operators—is very important for the safe and efficient management of Unmanned Aerial Vehicle (UAV) operations. A major challenge in this context is [...] Read more.
In the U-Space environment, seamless communication between key stakeholders—such as U-Space Service Providers (USSP), Common Information Service Providers (CISP), and drone operators—is very important for the safe and efficient management of Unmanned Aerial Vehicle (UAV) operations. A major challenge in this context is minimizing communication latency, which directly affects the performance of time-sensitive services. This study investigates latency issues by evaluating two communication protocols: push–pull (using REST-API and ZeroMQ) and publish–subscribe (using AMQP and MQTT). Through a case study focused on drone detection, the research examines latency across critical operational activities, including conformance monitoring, flight plan confirmation, and the transmission of alerts via the USSP system under varying message intervals and payload sizes. The results indicate that while message interval has a significant influence on latency, message size has a minimal effect. Furthermore, the push–pull protocols consistently deliver lower and more stable latency compared to publish–subscribe protocols under the tested conditions. Both approaches, however, achieve latency levels that align with EASA’s operational requirements for U-Space systems. Full article
(This article belongs to the Special Issue Innovative Technologies and Services for Unmanned Aerial Vehicles)
Show Figures

Figure 1

8 pages, 866 KiB  
Proceeding Paper
Internet of Things and Predictive Artificial Intelligence for SmartComposting Process in the Context of Circular Economy
by Soukaina Fouguira, Emna Ammar, Mounia Em Haji and Jamal Benhra
Eng. Proc. 2025, 97(1), 16; https://doi.org/10.3390/engproc2025097016 - 10 Jun 2025
Viewed by 533
Abstract
To promote sustainable development, adopting circular economy principles is crucial for preserving natural resources and ensuring environmental continuity. Among solid waste management strategies, composting plays a significant role by converting biodegradable waste into eco-friendly biofertilizers. Traditional composting methods, which rely on open-window techniques, [...] Read more.
To promote sustainable development, adopting circular economy principles is crucial for preserving natural resources and ensuring environmental continuity. Among solid waste management strategies, composting plays a significant role by converting biodegradable waste into eco-friendly biofertilizers. Traditional composting methods, which rely on open-window techniques, face challenges in controlling critical physico-chemical parameters such as temperature, humidity, and gaseous emissions. Additionally, these methods require significant labor and over 100 days to achieve compost maturity. To address these issues, we propose an intelligent, automated composting system leveraging the Internet of Things (IoT) and wireless sensor networks (WSNs). This system integrates sensors for real-time monitoring of key parameters: DS18b20 for waste temperature, HD-38 for humidity, DHT11 for ambient conditions, and MQ sensors for detecting CO2, NH3, and CH4. Controlled by an ESP32 microcontroller unit (MCU), the system employs a mixer and heating elements to optimize waste degradation based on sensor feedback. Data transmission is managed using the MQTT protocol, allowing real-time monitoring via a cloud-based platform (ThingSpeak). Furthermore, the degradation process was analyzed during the first 24 h, and a recurrent neural network (RNN) algorithm was employed to predict the time required for reaching optimal compost maturity, ensuring an efficient and sustainable solution. Full article
Show Figures

Figure 1

10 pages, 1763 KiB  
Communication
Multi-Mode Coupling Enabled Broadband Coverage for Terahertz Biosensing Applications
by Dongyu Hu, Mengya Pan, Yanpeng Shi and Yifei Zhang
Biosensors 2025, 15(6), 368; https://doi.org/10.3390/bios15060368 - 7 Jun 2025
Viewed by 559
Abstract
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection [...] Read more.
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection require complex large-angle illumination. Here, we propose a symmetry-engineered, all-dielectric metasurface that leverages multipolar interference coupling to overcome this limitation. By introducing angular perturbation, the metasurface transforms the original magnetic dipole (MD)-dominated QBIC resonance into hybridized, multipolar modes. It arises from the interference coupling between MD, toroidal dipole (TD), and magnetic quadrupole (MQ). This mechanism induces dual counter-directional, frequency-shifted, resonance branches within angular variations below 16°, achieving simultaneous 0.42 THz broadband coverage and high Q of 499. Furthermore, a derived analytical model based on Maxwell equations and mode coupling theory rigorously validates the linear relationship between frequency splitting interval and incident angle with the Relative Root Mean Square Error (RRMSE) of 1.4% and the coefficient of determination (R2) of 0.99. This work establishes a paradigm for miniaturized THz biosensors, advancing applications in practical molecular diagnostics and multi-analyte screening. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

15 pages, 1742 KiB  
Article
An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network
by Ioannis Michailidis, Petros Mountzouris, Panagiotis Triantis, Gerasimos Pagiatakis, Andreas Papadakis and Leonidas Dritsas
Electronics 2025, 14(12), 2330; https://doi.org/10.3390/electronics14122330 - 6 Jun 2025
Viewed by 858
Abstract
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are [...] Read more.
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are as follows: a DHT11 sensor for temperature and relative humidity sensing, a BMP180 sensor for pressure monitoring (with temperature compensation), a MQ7 sensor for the monitoring of the CO concentration, an Arduino Uno board, a GSM SIM900 module, and a buzzer, which is activated when the temperature exceeds 35 °C. The station operates as follows: the Arduino Uno board gathers the data collected by the sensors and, by means of the GSM SIM900 module, it transmits the data to the Cloud by using the mobile telephony network as well as the ThingSpeak software which is an open-code IoT application that, among others, enables saving and recovering of sensing and monitoring data. The main novelty of this work is the combined use of the GSM network and the Cloud which enhances the portability and usability of the proposed system and enables remote collection of data in a straightforward way. Additional merits of the system are the easiness and the low cost of its development (owing to the easily available, low-cost hardware combined with an open-code software) as well as its modularity and scalability which allows its customization depending on specific application it is intended for. The system could be used for real-time, remote monitoring of essential environmental parameters in spaces such as farms, warehouses, rooms etc. Full article
Show Figures

Figure 1

15 pages, 2785 KiB  
Article
Temperature-Driven Divergence in Microbial Consortia and Physicochemical Functionality: A Comparative Study of High- and Medium-Temperature Daqu
by Huawei Yuan, Jia Zheng, Liping Ding, Hong Wang, Qin Jiang, Chao Zhang, Tingna Xie, Guohui Nan, Li Li and Kai Lou
Microorganisms 2025, 13(6), 1312; https://doi.org/10.3390/microorganisms13061312 - 5 Jun 2025
Viewed by 447
Abstract
Daqu, a crucial fermentation starter for Chinese Baijiu, develops distinct microbial and physicochemical profiles depending on fermentation temperature, which significantly influence enzymatic activity and flavor formation. While high-temperature (HT-Daqu, 65 °C) and medium-temperature (MT-Daqu, 60 °C) variants [...] Read more.
Daqu, a crucial fermentation starter for Chinese Baijiu, develops distinct microbial and physicochemical profiles depending on fermentation temperature, which significantly influence enzymatic activity and flavor formation. While high-temperature (HT-Daqu, 65 °C) and medium-temperature (MT-Daqu, 60 °C) variants are known to produce different liquor aromas, systematic comparisons of their microbial and physicochemical dynamics remain limited. This study integrated physicochemical assays (moisture, starch, acidity, enzymatic activity) with 16S rRNA and ITS (Internal Transcribed Spacer) sequencing to analyze HT-Daqu (HQ1–HQ3) and MT-Daqu (MQ1–MQ3) from Sichuan breweries. Results revealed that HT-Daqu exhibited significantly lower moisture (p < 0.05) and starch content (p < 0.05) but higher acidity (p < 0.05) compared to MT-Daqu. Enzymatic activities were generally reduced in HT-Daqu, except for neutral protease. Microbial profiling revealed distinct microbial dynamics between HT-Daqu and MT-Daqu: HT-Daqu harbored thermophilic Bacillus (40–60% relative abundance) with reduced fungal diversity, while MT-Daqu prioritized fungal consortia—Aspergillus dominated MQ1 (78%) and Saccharomyces transiently peaked in MQ2 (35%)—which correlated with enhanced saccharification enzyme activities and esterification potential. Alpha-diversity indices confirmed higher bacterial diversity in HT-Daqu and greater fungal richness in MT-Daqu. Correlation networks highlighted temperature-driven linkages, such as Bacillus positively associating with acidity. These findings elucidate the trade-offs between microbial stress adaptation and metabolic efficiency under different thermal regimes, providing actionable insights for optimizing Daqu production through targeted microbial management and temperature control to enhance liquor quality. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

12 pages, 414 KiB  
Article
Effectiveness of Multisport Play-Based Practice on Motor Coordination in Children: A Cross-Sectional Study Using the KTK Test
by Nicola Mancini, Rita Polito, Francesco Paolo Colecchia, Dario Colella, Giovanni Messina, Vlad Teodor Grosu, Antonietta Messina, Siria Mancini, Antonietta Monda, Maria Ruberto and Fiorenzo Moscatelli
J. Funct. Morphol. Kinesiol. 2025, 10(2), 199; https://doi.org/10.3390/jfmk10020199 - 30 May 2025
Cited by 1 | Viewed by 488
Abstract
Objectives: This study aimed to evaluate the effectiveness of a structured multisport play-based program on the development of motor coordination in Italian children aged 6 to 10 years, using the Körperkoordinationstest für Kinder (KTK). Methods: An observational cross-sectional design was applied, involving 320 [...] Read more.
Objectives: This study aimed to evaluate the effectiveness of a structured multisport play-based program on the development of motor coordination in Italian children aged 6 to 10 years, using the Körperkoordinationstest für Kinder (KTK). Methods: An observational cross-sectional design was applied, involving 320 children (mean age 8.1 ± 1.4 years; 52% male) from the Puglia region in southern Italy. Participants were divided into a Multisport Group (MG; n = 162), engaged in multisport activities, and a Curricular Group (CG; n = 158), involved in standard physical education programs. Anthropometric measurements (weight, height, and BMI) and motor coordination outcomes (Motor Quotient, MQ) were assessed using the KTK. Statistical analyses included ANOVA, Pearson’s correlations, and logistic regression models. Results: The results showed that the MG achieved significantly higher MQ scores (108.3 ± 12.5) compared to the CG (101.2 ± 13.4; p < 0.001). Moreover, higher BMI values were significantly associated with an increased risk of lower MQ scores (OR = 2.35; 95% CI: 1.45–3.81; p < 0.001), indicating that children with elevated BMI had more than twice the likelihood of showing impaired motor coordination. Strong positive correlations were found between all KTK subtests and the total MQ score. Conclusions: Participation in structured multisport programs appears to enhance motor coordination in children and may represent a valuable educational and preventive strategy within primary school physical education and public health interventions. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

12 pages, 1686 KiB  
Article
Development of Single Nucleotide Polymorphism and Phylogenetic Analysis of Rhododendron Species in Zhejiang Province, China, Using ddRAD-Seq Technology
by Hong Zhu, Dongbin Li, Chunlei Yue and Hepeng Li
Plants 2025, 14(10), 1548; https://doi.org/10.3390/plants14101548 - 21 May 2025
Viewed by 517
Abstract
The genus Rhododendron presents significant challenges for systematic classification due to extensive hybridization and adaptive radiation. Here, we employed double-digest restriction site-associated DNA sequencing (ddRAD-seq) to resolve phylogenetic relationships among nine ecologically significant Rhododendron species (34 accessions) endemic to Zhejiang Province, China, a [...] Read more.
The genus Rhododendron presents significant challenges for systematic classification due to extensive hybridization and adaptive radiation. Here, we employed double-digest restriction site-associated DNA sequencing (ddRAD-seq) to resolve phylogenetic relationships among nine ecologically significant Rhododendron species (34 accessions) endemic to Zhejiang Province, China, a biodiversity hotspot for this genus. Using R. simsii as the reference genome, we generated 39.40 Gb of high-quality sequencing data with a Q30 score of 96.65% and a GC content of 39.63%, achieving an average alignment rate of 92.79%. Through stringent filtering (QD ≥ 2, MQ ≥ 40), we identified 14,048,702 genome-wide single nucleotide polymorphism (SNP), predominantly characterized by the mutation types T:A>C:G and C:G>T:A. The widespread R. simsii and R. simsii var. putuoense exhibited significant genetic diversity, whereas the low-altitude widespread R. molle and the endemic R. simiarum exhibited lower genetic diversity. Moderate genetic differentiation (Fst = 0.097) was observed between R. simsii and R. simsii var. putuoense, while substantial genetic differentiation was detected among the other Rhododendron species. Principal component analysis (PCA), combined with phylogenomic reconstruction, demonstrated that the Rhododendron genus can be stratified into six well-supported genetic clades. Furthermore, this study provides the first genomic validation of the sibling relationship between R. simsii and its variety, R. simsii var. putuoense, and clarifies the systematic position of R. huadingense, suggesting that it should be classified as a new subgenus. This study establishes ddRAD-seq as a cost-effective tool, providing both a theoretical framework for SNP-based phylogenetics and critical insights for conserving China’s azalea biodiversity. Full article
(This article belongs to the Special Issue Recent Advancements in Taxonomy and Phylogeny of Plants)
Show Figures

Figure 1

16 pages, 1153 KiB  
Article
Effects of Rapid Heat Hardening of Honeybee Queens (Apis mellifera) During the Larval Stage on the Oxidative Response of Their Workers During Heat Stress
by Shahera Talat Zaitoun, Abd Al-Majeed Ahmed Al-Ghzawi, Mohammad Borhan Al-Zghoul, Ilham Mustafa Al-Omary and Mohammad Nafi Solaiman Al-Sabi
Stresses 2025, 5(2), 32; https://doi.org/10.3390/stresses5020032 - 16 May 2025
Viewed by 947
Abstract
Exposing insects to mild and/or severe heat can protect them from future heat stress by regulating the expression of certain stress markers. In this study, 60 queen larvae, one day old, were divided into the following two groups: a control group of non-heat-treated [...] Read more.
Exposing insects to mild and/or severe heat can protect them from future heat stress by regulating the expression of certain stress markers. In this study, 60 queen larvae, one day old, were divided into the following two groups: a control group of non-heat-treated mother queens (nH-T MQ) kept for 15 min at 34.5 °C and 70% relative humidity (RH) and a pre-heat-treated mother queen group (pH-T MQ) that was kept for 15 min at 41 °C and 70% RH. Then, 500 daughter workers were collected from brood combs of each group and incubated at room temperature (22 °C) for 30 min, then divided into five groups (n = 100); each group was incubated for one hour at 35, 40, 45, 50, and 55 °C, respectively. The expression levels of several antioxidant genes and markers in 10 workers of each treatment were assessed by relative quantitative Real-Time qPCR and/or ELISA. The pH-T MQ showed improved basal and dynamic expression of several genes and enzymes, which indicated a protective response against heat stress and the effectiveness of tissue hardening on the biological process and/or mechanisms in oxidative stress and antioxidant activity response. These recorded changes may have global implications by improving thermotolerance acquisition during heat stress conditions. Full article
(This article belongs to the Section Animal and Human Stresses)
Show Figures

Figure 1

15 pages, 1537 KiB  
Systematic Review
Effects of Systemic and Local Vibration Therapies on the Functional Capacity of Knee Osteoarthritis Individuals: A Systematic Review of Randomized Clinical Trials
by Philipe Melo-Lima, André L. B. D. Cardoso, Ana Carolina Coelho-Oliveira, Aline Reis-Silva, Daniel Batouli-Santos, Ayman Alhammad, Ana Gabriellie Valério-Penha, Danúbia C. Sá-Caputo, Mario Bernardo-Filho and Redha Taiar
Appl. Sci. 2025, 15(10), 5349; https://doi.org/10.3390/app15105349 - 10 May 2025
Cited by 1 | Viewed by 670
Abstract
Knee osteoarthritis (KOA) is a growing health challenge with increasing prevalence. Early diagnosis and effective interventions are crucial to the management of KOA individuals. Vibration therapy has shown promise as an intervention for KOA. Systemic vibratory therapy (SVT) and local vibratory therapy (LVT) [...] Read more.
Knee osteoarthritis (KOA) is a growing health challenge with increasing prevalence. Early diagnosis and effective interventions are crucial to the management of KOA individuals. Vibration therapy has shown promise as an intervention for KOA. Systemic vibratory therapy (SVT) and local vibratory therapy (LVT) have gained interest in recent years. In these therapies, mechanical vibrations are transmitted to the body either systemically or locally. The current systematic review aims to comprehensively summarize SVT and LVT effects on the functional capacity of KOA individuals. Searches in PubMed, Web of Science, Scopus, PEDro, and EMBASE on 3 July 2024, including only randomized controlled trials, were performed. The data collected were participant characteristics, vibrating devices, intervention duration, and main findings. Risk of bias (RoB) was assessed with Cochrane tools, and methodological quality (MQ) was assessed via the Physiotherapy Evidence Database. Nine papers were selected from 922 articles: five on SVT and four on LVT, involving 352 individuals aged 40–80. SVT studies reported acute or chronic responses like increased muscle strength and improved functional capacity. LVT studies also indicated functional capacity improvements. RoB was classified as ‘high’ in three SVT studies and ‘low’ in two LVT studies. MQ was classified as ‘high’ in five SVT studies and one LVT study. Both SVT and LVT studies reported improvements in muscle strength, range of motion, and functional capacity. The current review revealed beneficial effects of both therapies on the functional capacity of KOA individuals. However, further well-designed studies are needed to reach definitive conclusions about the effect of SVT and LVT for KOA individuals. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

9 pages, 2975 KiB  
Proceeding Paper
Classification of Non-Frozen and Frozen–Thawed Pork with Adaptive Support Vector Machine and Electronic Nose
by Paul Christian E. Artista, Abraham M. Mendoza and Dionis A. Padilla
Eng. Proc. 2025, 92(1), 56; https://doi.org/10.3390/engproc2025092056 - 7 May 2025
Viewed by 318
Abstract
The quality of raw meat is important for community health as its freshness is crucial to preventing foodborne illnesses. In the United States, the related illness cases were 9.4 million cases with 55,961 hospital admissions and 1351 deaths annually. This underscores the urgent [...] Read more.
The quality of raw meat is important for community health as its freshness is crucial to preventing foodborne illnesses. In the United States, the related illness cases were 9.4 million cases with 55,961 hospital admissions and 1351 deaths annually. This underscores the urgent need for improved meat quality monitoring. This study aims to develop an electronic nose (E-nose) that can differentiate between frozen–thawed and fresh pork meat samples, thereby enhancing food safety. We designed the E-nose using MQ series gas sensor array with temperature and humidity sensors, and an Arduino Uno microcontroller. Sensors were calibrated for accurate data collection. An adaptive support vector machine (ASVM) was used for data classification. We evaluated the model’s accuracy using a confusion matrix. The ASVM model exhibited robust performance, achieving an accuracy of 88%. Its performance was evaluated with recall, F1 scores, and precision. To further enhance the model’s performance, future studies are mandated to integrate additional gas sensors, increase sample sizes, advance data preprocessing techniques, and explore different machine learning algorithms or ensemble methods. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

25 pages, 23822 KiB  
Article
Gas Chromatography/Mass Spectrometry Chemical Profiling of Volatile Compounds from Cranberry Plant Byproducts as Potential Antibacterials, Antifungals, and Antioxidants
by Martin Aborah, Frank Scarano and Catherine Neto
Molecules 2025, 30(9), 2047; https://doi.org/10.3390/molecules30092047 - 4 May 2025
Viewed by 700
Abstract
The increasing resistance of microorganisms to currently used antimicrobials requires the urgent development of new effective treatments. Plant-based natural products can be an alternative solution. The aerial plant parts of the cranberry (Vaccinium macrocarpon) present a potential new source of antimicrobial [...] Read more.
The increasing resistance of microorganisms to currently used antimicrobials requires the urgent development of new effective treatments. Plant-based natural products can be an alternative solution. The aerial plant parts of the cranberry (Vaccinium macrocarpon) present a potential new source of antimicrobial secondary metabolites. Volatile essential oils were extracted from Stevens, Early Black, and Mullica Queen variety plants by steam distillation (SD) and the Clevenger method (CM), and their profiles were characterized by GC-MS. The extracts and two identified constituents, cinnamaldehyde and terpineol, were screened by the disc diffusion assay against Gram-positive B. cereus ATCC 11778 and S. aureus ATCC 25923 and Gram-negative bacteria E. coli ATCC 25922, P. aeruginosa ATCC 27853, and C. albicans ATCC 14053. Radical scavenging antioxidant activity was also determined using the DPPH assay. The CM extracts were rich in fatty acids, sesquiterpenes, and diterpenes, whereas the SD extracts contained more aldehydes, monoterpenes, and phenylpropanoids. All volatile extracts showed promising antioxidant activity; leaf extract activity was significantly higher than the vine (p < 0.05). The CM leaf and vine extracts exhibited antimicrobial activity against B. cereus, S. aureus, E. coli, and C. albicans compared to the SD, and the leaf extracts were more effective than the vine extracts. Individual constituents of leaf and vine extracts, cinnamaldehyde and α-terpineol, also showed antimicrobial activity against these organisms. The active constituents of the CM extracts are yet to be identified. A multivariate analysis revealed a particular pattern of inhibition of the tested organisms. Based on our results, cranberry volatile extracts have potential for future valorization as antibacterials, antifungals, and antioxidants. Full article
Show Figures

Figure 1

Back to TopTop