Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = Moonlight protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 (registering DOI) - 31 Jul 2025
Viewed by 198
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

18 pages, 506 KiB  
Review
Targeting Eukaryotic Elongation Factor 1A: How Small-Molecule Inhibitors Suppress Tumor Growth via Diverse Pathways
by Han Zhang, Siqi Yu, Ying Wang, Shanmei Wu, Changliang Shan and Weicheng Zhang
Int. J. Mol. Sci. 2025, 26(15), 7331; https://doi.org/10.3390/ijms26157331 - 29 Jul 2025
Viewed by 199
Abstract
Eukaryotic elongation factor 1A (eEF1A), the second most abundant intracellular protein, not only plays a key role in peptide elongation, but is also capable of numerous moonlighting functions. Within malignant cells, eEF1A is by no means a neutral bystander but instead actively participates [...] Read more.
Eukaryotic elongation factor 1A (eEF1A), the second most abundant intracellular protein, not only plays a key role in peptide elongation, but is also capable of numerous moonlighting functions. Within malignant cells, eEF1A is by no means a neutral bystander but instead actively participates in oncogenic transformations via a myriad of molecular pathways. Thus far, a broad range of small-molecule inhibitors have been identified, which, despite their structural diversity, suppress tumor growth by targeting eEF1A. Interestingly, just as eEF1A enables its oncogenic potential far beyond boosting protein translation, these targeted agents disrupt this oncoprotein via multiple axes distinct from mere protein synthesis inhibition. Whereas the oncogenic mechanisms of eEF1A has been well documented, there lacks a systemic survey of the eEF1A-targeting agents in terms of their mechanisms. Accordingly, the present work aims to examine their multifaceted modes of action more than just blocking protein synthesis. By unveiling these insights, our deepened knowledge of these eEF1A-binding inhibitors will inform the development of future eEF1A-targeted drugs for cancer treatment. Full article
Show Figures

Figure 1

13 pages, 1059 KiB  
Review
Response to Oxidative Stress in Sporothrix schenckii
by Estela Ruiz-Baca, Pablo Jaciel Adame-Soto, Carlos Antonio Alba-Fierro, Ana Lilia Martínez-Rocha, Armando Pérez-Torres, Angélica López-Rodríguez and Yolanda Romo-Lozano
J. Fungi 2025, 11(6), 440; https://doi.org/10.3390/jof11060440 - 10 Jun 2025
Viewed by 1313
Abstract
Oxidative stress is key in immune defense against fungal infections, such as those caused by Sporothrix schenckii, the dimorphic fungus responsible for sporotrichosis. Phagocytic cells utilize oxidative stress as a crucial mechanism to control pathogen spread. During S. schenckii infection, phagocytic cells [...] Read more.
Oxidative stress is key in immune defense against fungal infections, such as those caused by Sporothrix schenckii, the dimorphic fungus responsible for sporotrichosis. Phagocytic cells utilize oxidative stress as a crucial mechanism to control pathogen spread. During S. schenckii infection, phagocytic cells recognize pathogen-associated molecular patterns (PAMPs) on their surface through conserved transmembrane or soluble receptors, known as pattern recognition receptors (PRRs). This recognition triggers a cascade of immune responses, including the generation reactive oxygen species (ROS) essential for pathogen elimination. However, S. schenckii has developed sophisticated mechanisms to evade and counteract this response, contributing to its persistence in the host. These mechanisms include the production of antioxidant enzymes, alterations to its cell wall (CW), and the production of melanin, which helps neutralize oxidative stress. In addition, S. schenckii modulates the production of other proteins, such as moonlighting proteins, suggested to have roles in immune evasion and stress response, helping its survival in the host. These strategies, along with the modulation of gene expression, allow the fungus to survive and persist inside the immune system’s hostile environment, facilitating the progression of the infection. Understanding these interactions between phagocytic cells and S. schenckii is key to developing more effective therapeutic strategies to combat sporotrichosis. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Immunology)
Show Figures

Figure 1

14 pages, 2575 KiB  
Article
Lactic Acid Bacteria (LAB) and Their Bacteriocins for Applications in Food Safety Against Listeria monocytogenes
by Cristian Piras, Alessio Soggiu, Viviana Greco, Pierluigi Aldo Di Ciccio, Luigi Bonizzi, Anna Caterina Procopio, Andrea Urbani and Paola Roncada
Antibiotics 2025, 14(6), 572; https://doi.org/10.3390/antibiotics14060572 - 3 Jun 2025
Viewed by 962
Abstract
Background/Objectives: Listeria monocytogenes is a major foodborne pathogen responsible for listeriosis, a serious illness with high morbidity and mortality, particularly in vulnerable populations. Its persistence in food processing environments and resistance to conventional preservation methods pose significant food safety challenges. Lactic acid bacteria [...] Read more.
Background/Objectives: Listeria monocytogenes is a major foodborne pathogen responsible for listeriosis, a serious illness with high morbidity and mortality, particularly in vulnerable populations. Its persistence in food processing environments and resistance to conventional preservation methods pose significant food safety challenges. Lactic acid bacteria (LAB) offer a promising natural alternative due to their antimicrobial properties, especially through the production of bacteriocins. This study investigates the competitive interactions between Lactococcus lactis and L. monocytogenes under co-culture conditions, with a focus on changes in their secretomes to better understand how LAB-derived bacteriocins can help mitigate the Listeria burden. Methods: Proteomic approaches, including Tricine-SDS-PAGE, two-dimensional electrophoresis, and shotgun proteomics, were employed to analyze the molecular adaptations of both species in response to bacterial competition. Results: Our results reveal a significant increase in the secretion of enolase by L. monocytogenes when in competition with L. lactis, suggesting its role as a stress-responsive moonlighting protein involved in adhesion, immune evasion, and biofilm formation. Concurrently, L. lactis exhibited a shift in the production of its bacteriocin, nisin, favoring the expression of Nisin Z—a variant with improved solubility and diffusion properties. This differential regulation indicates that bacteriocin production is modulated by bacterial competition, likely as a defensive response to the presence of pathogens. Conclusions: These findings highlight the dynamic interplay between LAB and L. monocytogenes, underscoring the potential of LAB-derived bacteriocins as natural biopreservatives. Understanding the molecular mechanisms underlying microbial competition could enhance food safety strategies, particularly in dairy products, by reducing reliance on chemical preservatives and mitigating the risk of L. monocytogenes contamination. Full article
Show Figures

Figure 1

30 pages, 2591 KiB  
Review
Peroxiredoxin 6 in Stress Orchestration and Disease Interplay
by Jiangfeng Liao, Yusi Zhang, Jianwei Yang, Longfei Chen, Jing Zhang and Xiaochun Chen
Antioxidants 2025, 14(4), 379; https://doi.org/10.3390/antiox14040379 - 23 Mar 2025
Viewed by 1070
Abstract
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators [...] Read more.
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators in various conditions have yet to be comprehensively reviewed. In this study, these stressors were systematically reviewed both in vivo and in vitro and classified into chemical, physical, and biological categories. We found that the regulatory effects of these stressors on PRDX6 expression were primarily mediated via key transcriptional factors (e.g., NRF2, HIF-1α, SP1, and NF-κB), micro-RNAs, and receptor- or kinase-dependent signaling pathways. Additionally, certain stressors, including reactive oxygen species, pH fluctuations, and post-translational modifications, induced the structure-based functional switches in the PRDX6 enzyme. We further reviewed the altered expression of PRDX6 under various disease conditions, with a particular focus on neuropsychiatric disorders and cancers, and proposed the concept of PRDX6-related disorders (PRD), which refers to a spectrum of diseases mediated by or associated with dysregulated PRDX6 expression. Finally, we found that an exogenous supplementation of PRDX6 protein provided preventive and therapeutic potentials for oxidative stress-related injuries in both in vivo and in vitro models. Taken together, this review underscores the critical role of PRDX6 as a cellular orchestrator in response to various stressors, highlighting its clinical potential for disease monitoring and the development of therapeutic strategies. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

25 pages, 3514 KiB  
Article
Molecular Identification and Bioinformatics Analysis of Anaplasma marginale Moonlighting Proteins as Possible Antigenic Targets
by Rosa Estela Quiroz-Castañeda, Hugo Aguilar-Díaz, Eduardo Coronado-Villanueva, Diego Israel Catalán-Ochoa and Itzel Amaro-Estrada
Pathogens 2024, 13(10), 845; https://doi.org/10.3390/pathogens13100845 - 28 Sep 2024
Viewed by 1435
Abstract
Background: Diseases of veterinary importance, such as bovine Anaplasmosis, cause significant economic losses. Due to this, the study of various proteins of the causal agent Anaplasma marginale has focused on surface proteins. However, a vaccine for this disease is not yet available. To this [...] Read more.
Background: Diseases of veterinary importance, such as bovine Anaplasmosis, cause significant economic losses. Due to this, the study of various proteins of the causal agent Anaplasma marginale has focused on surface proteins. However, a vaccine for this disease is not yet available. To this end, in this work, moonlighting proteins (MLPs) are presented as an alternative approach for the design of immunogens against A. marginale. Methods: The proteins of the strain MEX-15-099-01 were analyzed, and its MLPs were identified. Subsequently, four virulence-associated MLP genes were selected and identified using PCR. The proteins were analyzed using a structural homology approach and the collection of B-cell epitopes was predicted for each MLP. Finally, a pair of AmEno peptides were synthesized and the antigenic potential was tested using an iELISA. Results: Our bioinformatics analysis revealed the potential of AmEno, AmGroEl, AmEF-Tu, and AmDnaK proteins as promising candidates for designing immunogens. The PCR allowed the gene sequence identification in the genome of the strain MEX-15-099-01. Notably, AmEno-derived synthetic peptides showed antigenicity in an ELISA. Conclusions: Our study has shed light on the potential use of MLPs for immunogen design, demonstrating the antigenic potential of AmEno. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens)
Show Figures

Figure 1

25 pages, 1059 KiB  
Review
Vitamin B12 Metabolism: A Network of Multi-Protein Mediated Processes
by Patryk Mucha, Filip Kus, Dominik Cysewski, Ryszard T. Smolenski and Marta Tomczyk
Int. J. Mol. Sci. 2024, 25(15), 8021; https://doi.org/10.3390/ijms25158021 - 23 Jul 2024
Cited by 12 | Viewed by 10768
Abstract
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is [...] Read more.
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways. Full article
Show Figures

Figure 1

14 pages, 6380 KiB  
Article
Novel Cases of Non-Syndromic Hearing Impairment Caused by Pathogenic Variants in Genes Encoding Mitochondrial Aminoacyl-tRNA Synthetases
by María Domínguez-Ruiz, Margarita Olarte, Esther Onecha, Irene García-Vaquero, Nancy Gelvez, Greizy López, Manuela Villamar, Matías Morín, Miguel A. Moreno-Pelayo, Carmelo Morales-Angulo, Rubén Polo, Martha L. Tamayo and Ignacio del Castillo
Genes 2024, 15(7), 951; https://doi.org/10.3390/genes15070951 - 19 Jul 2024
Cited by 1 | Viewed by 1448
Abstract
Dysfunction of some mitochondrial aminoacyl-tRNA synthetases (encoded by the KARS1, HARS2, LARS2 and NARS2 genes) results in a great variety of phenotypes ranging from non-syndromic hearing impairment (NSHI) to very complex syndromes, with a predominance of neurological signs. The diversity of [...] Read more.
Dysfunction of some mitochondrial aminoacyl-tRNA synthetases (encoded by the KARS1, HARS2, LARS2 and NARS2 genes) results in a great variety of phenotypes ranging from non-syndromic hearing impairment (NSHI) to very complex syndromes, with a predominance of neurological signs. The diversity of roles that are played by these moonlighting enzymes and the fact that most pathogenic variants are missense and affect different domains of these proteins in diverse compound heterozygous combinations make it difficult to establish genotype–phenotype correlations. We used a targeted gene-sequencing panel to investigate the presence of pathogenic variants in those four genes in cohorts of 175 Spanish and 18 Colombian familial cases with non-DFNB1 autosomal recessive NSHI. Disease-associated variants were found in five cases. Five mutations were novel as follows: c.766C>T in KARS1, c.475C>T, c.728A>C and c.1012G>A in HARS2, and c.795A>G in LARS2. We provide audiograms from patients at different ages to document the evolution of the hearing loss, which is mostly prelingual and progresses from moderate/severe to profound, the middle frequencies being more severely affected. No additional clinical sign was observed in any affected subject. Our results confirm the involvement of KARS1 in DFNB89 NSHI, for which until now there was limited evidence. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

20 pages, 2881 KiB  
Article
Surface-Exposed Protein Moieties of Burkholderia cenocepacia J2315 in Microaerophilic and Aerobic Conditions
by António M. M. Seixas, Carolina Silva, Joana M. M. Marques, Patrícia Mateus, Manuel J. Rodríguez-Ortega, Joana R. Feliciano, Jorge H. Leitão and Sílvia A. Sousa
Vaccines 2024, 12(4), 398; https://doi.org/10.3390/vaccines12040398 - 9 Apr 2024
Cited by 2 | Viewed by 2243
Abstract
Burkholderia cepacia complex infections remain life-threatening to cystic fibrosis patients, and due to the limited eradication efficiency of current treatments, novel antimicrobial therapies are urgently needed. Surface proteins are among the best targets to develop new therapeutic strategies since they are exposed to [...] Read more.
Burkholderia cepacia complex infections remain life-threatening to cystic fibrosis patients, and due to the limited eradication efficiency of current treatments, novel antimicrobial therapies are urgently needed. Surface proteins are among the best targets to develop new therapeutic strategies since they are exposed to the host’s immune system. A surface-shaving approach was performed using Burkholderia cenocepacia J2315 to quantitatively compare the relative abundance of surface-exposed proteins (SEPs) expressed by the bacterium when grown under aerobic and microaerophilic conditions. After trypsin incubation of live bacteria and identification of resulting peptides by liquid chromatography coupled with mass spectrometry, a total of 461 proteins with ≥2 unique peptides were identified. Bioinformatics analyses revealed a total of 53 proteins predicted as localized at the outer membrane (OM) or extracellularly (E). Additionally, 37 proteins were predicted as moonlight proteins with OM or E secondary localization. B-cell linear epitope bioinformatics analysis of the proteins predicted to be OM and E-localized revealed 71 SEP moieties with predicted immunogenic epitopes. The protegenicity higher scores of proteins BCAM2761, BCAS0104, BCAL0151, and BCAL0849 point out these proteins as the best antigens for vaccine development. Additionally, 10 of the OM proteins also presented a high probability of playing important roles in adhesion to host cells, making them potential targets for passive immunotherapeutic approaches. The immunoreactivity of three of the OM proteins identified was experimentally demonstrated using serum samples from cystic fibrosis patients, validating our strategy for identifying immunoreactive moieties from surface-exposed proteins of potential interest for future immunotherapies development. Full article
(This article belongs to the Special Issue Vaccinomics: Omics-System Biology Approach in Vaccine Development)
Show Figures

Figure 1

11 pages, 247 KiB  
Review
Targeting Moonlighting Enzymes in Cancer
by Chunxu Lin, Mingyang Yu, Ximei Wu, Hui Wang, Min Wei and Luyong Zhang
Molecules 2024, 29(7), 1573; https://doi.org/10.3390/molecules29071573 - 1 Apr 2024
Cited by 3 | Viewed by 2863
Abstract
Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves [...] Read more.
Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy. Full article
Show Figures

Graphical abstract

34 pages, 2250 KiB  
Review
Extraribosomal Functions of Bacterial Ribosomal Proteins—An Update, 2023
by Leonid V. Aseev, Ludmila S. Koledinskaya and Irina V. Boni
Int. J. Mol. Sci. 2024, 25(5), 2957; https://doi.org/10.3390/ijms25052957 - 3 Mar 2024
Cited by 11 | Viewed by 4730
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein–protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the [...] Read more.
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein–protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria. Full article
Show Figures

Figure 1

37 pages, 3370 KiB  
Review
The Lectin Pathway of the Complement System—Activation, Regulation, Disease Connections and Interplay with Other (Proteolytic) Systems
by József Dobó, Andrea Kocsis, Bence Farkas, Flóra Demeter, László Cervenak and Péter Gál
Int. J. Mol. Sci. 2024, 25(3), 1566; https://doi.org/10.3390/ijms25031566 - 26 Jan 2024
Cited by 34 | Viewed by 10025
Abstract
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation–fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense [...] Read more.
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation–fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary (“moonlighting”) functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components. Full article
(This article belongs to the Special Issue The Role of Protease and Protease Inhibitors in Human Diseases)
Show Figures

Figure 1

24 pages, 7450 KiB  
Article
Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of Candida albicans and Nakaseomyces glabratus Cells—A Moonlighting Protein That Binds Human Vitronectin and Plasminogen and Can Adsorb to Pathogenic Fungal Cells via Major Adhesins Als3 and Epa6
by Aneta Bednarek, Dorota Satala, Marcin Zawrotniak, Angela H. Nobbs, Maria Rapala-Kozik and Andrzej Kozik
Int. J. Mol. Sci. 2024, 25(2), 1013; https://doi.org/10.3390/ijms25021013 - 13 Jan 2024
Cited by 7 | Viewed by 2212
Abstract
Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed “moonlighting proteins”—proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In [...] Read more.
Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed “moonlighting proteins”—proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this “moonlighting” role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins—vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10−8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall—agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)—were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively. Full article
(This article belongs to the Special Issue Molecular Biology of Host and Pathogen Interactions)
Show Figures

Figure 1

13 pages, 1038 KiB  
Review
WD Repeat Domain 5 Inhibitors for Cancer Therapy: Not What You Think
by April M. Weissmiller, Stephen W. Fesik and William P. Tansey
J. Clin. Med. 2024, 13(1), 274; https://doi.org/10.3390/jcm13010274 - 3 Jan 2024
Cited by 5 | Viewed by 3614
Abstract
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule [...] Read more.
WDR5 is a conserved nuclear protein that scaffolds the assembly of epigenetic regulatory complexes and moonlights in functions ranging from recruiting MYC oncoproteins to chromatin to facilitating the integrity of mitosis. It is also a high-value target for anti-cancer therapies, with small molecule WDR5 inhibitors and degraders undergoing extensive preclinical assessment. WDR5 inhibitors were originally conceived as epigenetic modulators, proposed to inhibit cancer cells by reversing oncogenic patterns of histone H3 lysine 4 methylation—a notion that persists to this day. This premise, however, does not withstand contemporary inspection and establishes expectations for the mechanisms and utility of WDR5 inhibitors that can likely never be met. Here, we highlight salient misconceptions regarding WDR5 inhibitors as epigenetic modulators and provide a unified model for their action as a ribosome-directed anti-cancer therapy that helps focus understanding of when and how the tumor-inhibiting properties of these agents can best be understood and exploited. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

4 pages, 164 KiB  
Proceeding Paper
Microbial Heat Shock Proteins: Roles Other Than Just Stress Proteins
by Jasleen Kour and B. V. Sunil Kumar
Biol. Life Sci. Forum 2024, 31(1), 33; https://doi.org/10.3390/ECM2023-16407 - 30 Nov 2023
Viewed by 470
Abstract
Heat shock proteins are named stress proteins or stress molecules due to their secretion being triggered by stress encountered by living beings. Although their primary documented role has been maintaining and regulating protein conformations to reduce effects of aberrant conditions faced by the [...] Read more.
Heat shock proteins are named stress proteins or stress molecules due to their secretion being triggered by stress encountered by living beings. Although their primary documented role has been maintaining and regulating protein conformations to reduce effects of aberrant conditions faced by the host, heat shock proteins have been found to have therapeutic effects in the treatments of many diseases and conditions. Those derived from certain bacteria, in particular, have been found to have high immunomodulatory potential and are being considered as adjuvants and immune stimulators in immunocompromised individuals. Extensive research has been conducted establishing their role as potential vaccine antigens or epitopes targeted in cancer therapies. Certain neuropathies and assumedly incurable autoimmune diseases have also seen light in terms of therapeusis mediated by heat shock proteins. This review focuses on providing an extensive study about multiple moonlighting roles of heat shock proteins derived from microorganisms, at a molecular level, which are being used to immunise and treat diseases in many mammalian species, including humans. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Microbiology)
Back to TopTop