Response to Oxidative Stress in Sporothrix schenckii
Abstract
:1. Introduction
2. Phagocyte-Induced Oxidative Stress and Evasion Strategies of S. schenckii During Infection
3. Proteomic Insights into the Response to Oxidative Stress and Its Impact on Virulence
4. Transcriptional Responses to ROS in S. schenckii
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Romero, E.; Reyes-Montes, M.D.R.; Perez-Torres, A.; Ruiz-Baca, E.; Villagomez-Castro, J.C.; Mora-Montes, H.M.; Flores-Carreón, A.; Toriello, C. Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol. 2011, 6, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Toriello, C.; Brunner-Mendoza, C.; Ruiz-Baca, E.; Duarte-Escalante, E.; Pérez-Mejía, A.; Reyes-Montes, M.D.R. Sporotrichosis in Mexico. Braz. J. Microbiol. 2020, 52, 49–62. [Google Scholar] [CrossRef]
- Silvero, M.G.S.; do Prado, C.M.; Spruijtenburg, B.; Codas, F.A.L.; Ojeda, M.L.; de Souza Lima, B.J.F.; Coronel, N.S.; Brunelli, J.P.; Vicente, V.A.; De Groot, T.; et al. The first autochthonous human case of sporotrichosis by Sporothrix brasiliensis in Paraguay. J. Mycol. Med. 2025, 35, 101536. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C.; Zancope-Oliveira, R.M. Molecular identification of the Sporothrix schenckii complex. Rev. Iberoam. Micol. 2014, 31, 2–6. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Della Terra, P.P.; Gremião, I.D.; Pereira, S.A.; Orofino-Costa, R.; de Camargo, Z.P. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia 2020, 185, 813–842. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, W.; Wang, H.; Zhang, R. Clinical Analysis of Patients Diagnosed with Cutaneous Sporotrichosis in China. Infect. Drug Resist. 2024, 17, 3265–3272. [Google Scholar] [CrossRef]
- Cruz, I.L.R.; Freitas, D.F.S.; de Macedo, P.M.; Gutierrez-Galhardo, M.C.; do Valle, A.C.F.; Almeida, M.A.; Almeida-Paes, R. Evolution of virulence-related phenotypes of Sporothrix brasiliensis isolates from patients with chronic sporotrichosis and acquired immunodeficiency syndrome. Braz. J. Microbiol. 2021, 52, 5–18. [Google Scholar] [CrossRef]
- Corrêa-Junior, D.; Bastos de Andrade, I.; Alves, V.; Avellar-Moura, I.; Brito de Souza Rabello, V.; Valdez, A.F.; Frases, S. Unveiling the Morphostructural Plasticity of Zoonotic Sporotrichosis Fungal Strains: Possible Implications for Sporothrix brasiliensis Virulence and Pathogenicity. J. Fungi 2023, 9, 701. [Google Scholar] [CrossRef]
- Barros, M.B.; de Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef]
- Gómez-Gaviria, M.; Martínez-Álvarez, J.A.; Mora-Montes, H.M. Current Progress in Sporothrix brasiliensis Basic Aspects. J. Fungi 2023, 9, 533. [Google Scholar] [CrossRef]
- Madrid, H.; Gené, J.; Cano, J.; Silvera, C.; Guarro, J. Sporothrix brunneoviolacea and Sporothrix dimorphospora, two new members of the Ophiostoma stenoceras—Sporothrix schenckii complex. Mycologia 2010, 102, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Nobre, A.F.D.; Sousa, A.M.S.; Costa, A.D.C.; Fernandes, M.R.; Kumar, R.; Ponne, S.; Rocha, M.G.; Rodrigues, A.M.; Camargo, Z.P.; Brilhante, R.S.N. Effect of proton pump inhibitors on susceptibility and melanogenesis of Sporothrix species. J. Med. Microbiol. 2024, 73, 001870. [Google Scholar] [CrossRef] [PubMed]
- García-Carnero, L.C.; Pérez-García, L.A.; Martínez-Álvarez, J.A.; Reyes-Martínez, J.E.; Mora-Montes, H.M. Current trends to control fungal pathogens: Exploiting our knowledge in the host-pathogen interaction. Infect. Drug Resist. 2018, 11, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Román-Casiano, K.; Martínez-Rocha, A.L.; Romo-Lozano, Y.; López-Rodríguez, A.; Cervantes-García, D.; Sierra-Campos, E.; Cuéllar-Cruz, M.; Ruiz-Baca, E. Enzyme activity and expression of catalases in response to oxidative stress in Sporothrix schenckii. Microb. Pathog. 2021, 161, 105270. [Google Scholar] [CrossRef]
- Vargas-Maya, N.I.; Olmedo-Monfil, V.; Ramírez-Prado, J.H.; Reyes-Cortés, R.; Padilla-Vaca, F.; Franco, B. Catalases in the pathogenesis of Sporothrix schenckii research. PeerJ 2022, 10, e14478. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Ferreira, L.S.; Manente, F.A.; de Faria, C.M.Q.G.; Polesi, M.C.; de Andrade, C.R.; Zamboni, D.S.; Carlos, I.Z. The NLRP3 inflammasome contributes to host protection during Sporothrix schenckii infection. Immunology 2017, 151, 154–166. [Google Scholar] [CrossRef]
- Salek-Ardakani, S.; Cota, E.; Bignell, E. Host-fungal interactions: Key players of antifungal immunity. Expert Rev. Anti Infect. 2012, 10, 149–151. [Google Scholar] [CrossRef]
- Guzman-Beltran, S.; Perez-Torres, A.; Coronel-Cruz, C.; Torres-Guerrero, H. Phagocytic receptors on macrophages distinguish between different Sporothrix schenckii morphotypes. Microbes Infect. 2012, 14, 1093–1101. [Google Scholar] [CrossRef]
- Krüger, T.; Luo, T.; Schmidt, H.; Shopova, I.; Kniemeyer, O. Challenges and strategies for proteome analysis of the interaction of human pathogenic fungi with host immune cells. Proteomes 2015, 3, 467–495. [Google Scholar] [CrossRef]
- de Miranda, L.H.M.; Santiago, M.A.; Frankenfeld, J.; Reis, E.G.D.; Menezes, R.C.; Pereira, S.A.; Conceição-Silva, F. Neutrophil Oxidative Burst Profile Is Related to a Satisfactory Response to Itraconazole and Clinical Cure in Feline Sporotrichosis. J. Fungi 2024, 10, 422. [Google Scholar] [CrossRef]
- Ramirez-Ortiz, Z.G.; Means, T.K. The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 2012, 3, 635–646. [Google Scholar] [CrossRef] [PubMed]
- García-Carnero, L.C.; Lozoya-Pérez, N.E.; González-Hernández, S.E.; Martínez-Álvarez, J.A. Immunity and treatment of Sporotrichosis. J. Fungi 2018, 4, 100. [Google Scholar] [CrossRef] [PubMed]
- Félix-Contreras, C.; Alba-Fierro, C.A.; Ríos-Castro, E.; Luna-Martínez, F.; Cuéllar-Cruz, M.; Ruiz-Baca, E. Proteomic analysis of Sporothrix schenckii cell wall reveals proteins involved in oxidative stress response induced by menadione. Microb. Pathog. 2020, 141, 103987. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Campa, D.O.; Martínez-Rocha, A.L.; Ríos-Castro, E.; Alba-Fierro, C.A.; Escobedo-Bretado, M.A.; Cuéllar-Cruz, M.; Ruiz-Baca, E. Proteomic analysis of Sporothrix schenckii exposed to oxidative stress induced by hydrogen peroxide. Pathogens 2022, 11, 230. [Google Scholar] [CrossRef]
- Romero-Martinez, R.; Wheeler, M.; Guerrero-Plata, A.; Rico, G.; Torres-Guerrero, H. Biosynthesis and Functions of Melanin in Sporothrix schenckii. Infect. Immun. 2000, 68, 3696–3703. [Google Scholar] [CrossRef]
- Mario, D.N.; Schaffer, L.F.; Peroza, L.R.; Jesus, F.P.K.; Denardi, L.B.; Fachinetto, R.; Alves, S.H. Sporothrix brasiliensis produces the highest levels of oxidative stress in a murine model among the species of the Sporothrix schenckii complex. Rev. Soc. Bras. Med. Trop. 2017, 50, 554–557. [Google Scholar] [CrossRef]
- Ortega, I.; Soares Felipe, M.S.; Vasconcelos, A.T.; Lopes Bezerra, L.M.; Da Silva Dantas, A. Peroxide sensing and signaling in the Sporothrix schenckii complex: An in silico analysis to uncover putative mechanisms regulating the Hog1 and AP-1 like signaling pathways. Med. Mycol. 2015, 53, 51–59. [Google Scholar] [CrossRef]
- Gómez-Gaviria, M.; Martínez-Duncker, I.; García-Carnero, L.C.; Mora-Montes, H.M. Differential Recognition of Sporothrix schenckii, Sporothrix brasiliensis, and Sporothrix globosa by Human Monocyte-Derived Macrophages and Dendritic Cells. Infect. Drug Resist. 2023, 16, 4817–4834. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Lin, P.; Zhang, J.; Xie, G.; Li, J.; Guo, C.; Lin, H.; Zhang, Y. Innate immune responses to Sporothrix schenckii: Recognition and elimination. Mycopathologia 2023, 188, 71–86. [Google Scholar] [CrossRef]
- Abreu, M.T.; Fukata, M.; Arditi, M. TLR signaling in the gut in health and disease. J. Immunol. 2005, 183, 2903–2910. [Google Scholar] [CrossRef] [PubMed]
- Collette, J.R.; Lorenz, M.C. Mechanisms of immune evasion in fungal pathogens. Curr. Opin. Microbiol. 2011, 14, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.F.; dos Santos, P.O.; Rodrigues, A.M.; Sasaki, A.A.; Burger, E.; de Camargo, Z.P. Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence 2013, 4, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Control of phagocytosis by microbial pathogens. Front. Immunol. 2017, 8, 1368. [Google Scholar] [CrossRef]
- Flannagan, R.S.; Jaumouillé, V.; Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 2012, 7, 61–98. [Google Scholar] [CrossRef]
- Chen, Y.; Junger, W.G. Measurement of oxidative burst in neutrophils. Methods Mol. Biol. 2012, 844, 115–124. [Google Scholar]
- Briones-Martin-Del-Campo, M.; Orta-Zavalza, E.; Juarez-Cepeda, J.; Gutierrez-Escobedo, G.; Cañas-Villamar, I.; Castaño, I.; De-Las-Peñas, A. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Rev. Iberoam. Micol. 2014, 31, 67–71. [Google Scholar] [CrossRef]
- Halliwell, B. Free Radicals and other reactive species in disease. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 1–7. [Google Scholar]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Aguirre, W.; Hansberg, W.; Navarro, R. Fungal responses to reactive oxygen species. Med. Mycol. 2006, 44, 101–107. [Google Scholar] [CrossRef]
- Ruiz-Baca, E.; Leyva-Sánchez, H.; Calderón-Barraza, B.; Esquivel-Naranjo, U.; López-Romero, E.; López-Rodríguez, A.; Cuéllar-Cruz, M. Identification of proteins in Sporothrix schenckii sensu stricto in response to oxidative stress induced by hydrogen peroxide. Rev. Iberoam. Micol. 2019, 36, 17–23. [Google Scholar] [CrossRef]
- Erwig, L.P.; Gow, N.A.R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 2016, 14, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Carlos, I.Z.; Sgarbi, D.B.; Santos, G.C.; Placeres, M.C. Sporothrix schenckii lipid inhibits macrophage phagocytosis: Involvement of nitric oxide and tumor necrosis factor alpha. Scand. J. Immunol. 2003, 57, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Haynes, K.; Quinn, J. Nitrosative and oxidative stress responses in fungal pathogenicity. Curr. Opin. Microbiol. 2009, 12, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, X.; Leng, X.; He, M.; Wang, J.; Cheng, S.; Wu, H. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch. Virol. 2017, 162, 603–610. [Google Scholar] [CrossRef]
- Seider, K.; Heyken, A.; Lüttich, A.; Miramón, P.; Hube, B. Interaction of pathogenic yeasts with phagocytes: Survival, persistence and escape. Curr. Opin. Microbiol. 2010, 13, 392–400. [Google Scholar] [CrossRef]
- Saïd-Sadier, N.; Padilla, E.; Langsley, G.; Ojcius, D.M. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS ONE 2010, 5, e10008. [Google Scholar] [CrossRef]
- Seider, K.; Brunke, S.; Schild, L.; Jablonowski, N.; Wilson, D.; Majer, O.; Hube, B. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J. Immunol. 2011, 187, 3072–3086. [Google Scholar] [CrossRef]
- Ruiz-Baca, E.; Pérez-Torres, A.; Romo-Lozano, Y.; Cervantes-García, D.; Alba-Fierro, C.A.; Ventura-Juárez, J.; Torriello, C. The role of macrophages in the host’s defense against Sporothrix schenckii. Pathogens 2021, 10, 905. [Google Scholar] [CrossRef]
- Wangsanut, T.; Pongpom, M. The role of the glutathione system in stress adaptation, morphogenesis and virulence of pathogenic fungi. Int. J. Mol. Sci. 2022, 23, 10645. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; Frases, S.; Araújo, G.D.; de Oliveira, M.M.E.; Gerfen, G.J.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Biosynthesis and functions of a melanoid pigment produced by species of the Sporothrix complex in the presence of L-tyrosine. Appl. Environ. Microbiol. 2012, 78, 8623–8630. [Google Scholar] [CrossRef]
- Fernandes, P.N.; Mannarino, S.C.; Silva, C.G.; Pereira, M.C.; Panek, A.D.; Eleutherio, E.C.A. Oxidative stress response in eukaryotes: Effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox Rep. 2007, 12, 236–244. [Google Scholar] [CrossRef]
- Hopke, A.; Brown, A.J.P.; Hall, R.A.; Wheeler, R.T. Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol. 2018, 26, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Arrillaga-Moncrieff, I.; Capilla, J.; Mayayio, E.; Marimon, R.; Mariné, M.; Gené, J.; Guarro, J. Different virulence levels of the species of Sporothrix in a murine model. Clin. Microbiol. Infect. 2009, 15, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.C.; de Loreto, E.S.; Mario, D.A.N.; Lopes, P.G.; Neves, L.V.; da Rocha, M.P.; Alves, S.H. Sporothrix schenckii complex: Susceptibilities to combined antifungal agents and characterization of enzymatic profiles. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 289–294. [Google Scholar] [CrossRef]
- Nikolaou, E.; Agrafioti, I.; Stumpf, M.; Quinn, J.; Stansfield, I.; Brown, A.J. Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol. Biol. 2009, 9, 44. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Y.Y.; Zhen, Y.; Si, H.N.; Guan, M.Q.; Cui, Y.; Li, S.S. Low-density neutrophil levels are correlated with sporotrichosis severity: Insights into subcutaneous fungal infection. J. Investig. Dermatol. 2024, S0022-202X, 02957–02959. [Google Scholar] [CrossRef]
- Teixeira, P.A.C.; de Castro, R.A.; Nascimento, R.C.; Tronchin, G.; Perez Torres, A.; Lazera, M.; Lopes-Bezerra, L.M. Cell surface expression of adhesins for fibronectin correlates with virulence in Sporothrix schenckii. Microbiology 2009, 155, 3730–3738. [Google Scholar] [CrossRef]
- Ruiz-Baca, E.; Toriello, C.; Pérez-Torres, A.; Sabanero-López, M.; Villagómez-Castro, J.C.; López-Romero, E. Isolation and some properties of a glycoprotein of 70 kDa (Gp70) from the cell wall of Sporothrix schenckii involved in fungal adherence to dermal extracellular matrix. Med. Mycol. 2009, 47, 185–196. [Google Scholar] [CrossRef]
- Castro, R.A.; Kubitschek-Barreira, P.H.; Teixeira, P.A.; Sanches, G.F.; Teixeira, M.M.; Quintella, L.P.; Lopes-Bezerra, L.M. Differences in cell morphometry, cell wall topography and Gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS ONE 2013, 8, e75656. [Google Scholar] [CrossRef]
- Karkowska-Kuleta, J.; Satala, D.; Bochenska, O.; Rapala-Kozik, M.; Kozik, A. Moonlighting proteins are variably exposed at the cell surfaces of Candida glabrata, Candida parapsilosis and Candida tropicalis under certain growth conditions. BMC Microbiol. 2019, 19, 44. [Google Scholar] [CrossRef]
- Rossato, L.; Moreno, L.F.; Jamalian, A.; Stielow, B.; de Almeida, S.R.; de Hoog, S.; Freeke, J. Proteins potentially involved in immune evasion strategies in Sporothrix brasiliensis elucidated by ultra-high-resolution mass spectrometry. Msphere 2018, 3, e00238-18. [Google Scholar] [CrossRef] [PubMed]
- Silva-Bailao, M.G.; de Souza Lima, P.; Evangelista-Oliveira, M.M.; Cardoso Oliveira, L.; Almeida-Paes, R.; Luiz Borges, C.; Melo Bailao, A.; Guedes Coelho, A.S.; Almeida Soares, C.M.; Zancope-Oliveira, R.M. Comparative proteomics in the three major human pathogenic species of the genus Sporothrix. Microbes Infect. 2021, 23, 104799. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Campos, E.; Valdez-Solana, M.A.; Ruiz-Baca, E.; Ventura-García, E.K.; Avitia-Domínguez, C.I.; Aguilera-Ortiz, M.; Téllez-Valencia, A. Anti-sporotrichotic activity, Lambert-W inhibition kinetics and 3D structural characterization of Sporothrix schenckii catalase as target glucosinolates from Moringa oleífera. Sci. Pharm. 2022, 90, 70. [Google Scholar] [CrossRef]
- Boyce, K.J.; Andrianopoulos, A. Fungal dimorphism: The switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol. Rev. 2015, 39, 797–811. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Yaakoub, H.; Mina, S.; Calenda, A.; Bouchara, J.P.; Papon, N. Oxidative stress response pathways in fungi. Cell. Mol. Life Sci. 2022, 79, 333. [Google Scholar] [CrossRef]
- Martínez-Soto, D.; Ruiz-Herrera, J. Functional analysis of the MAPK pathways in fungi. Rev. Iberoam. Micol. 2017, 34, 192–202. [Google Scholar] [CrossRef]
- Smith, D.A.; Nicholls, S.; Morgan, B.A.; Brown, A.J.; Quinn, J. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol. Biol. Cell 2004, 15, 4179–4190. [Google Scholar] [CrossRef]
- Correia, I.; Wilson, D.; Hube, B.; Pla, J. Characterization of a Candida albicans mutant defective in all MAPKs highlights the major role of Hog1 in the MAPK signaling network. J. Fungi 2020, 6, 230. [Google Scholar] [CrossRef]
- Basso, V.; Znaidi, S.; Lagage, V.; Cabral, V.; Schoenherr, F.; LeibundGut-Landmann, S.; d’Enfert, C.; Bachellier-Bassi, S. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation. Mol. Microbiol. 2017, 106, 157–182. [Google Scholar] [CrossRef]
- Saijo, T.; Miyazaki, T.; Izumikawa, K.; Mihara, T.; Takazono, T.; Kosai, K.; Imamura, Y.; Seki, M.; Kakeya, H.; Yamamoto, Y.; et al. Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Mycopathologia 2010, 169, 81–90. [Google Scholar] [CrossRef] [PubMed]
- He, X.J.; Mulford, K.E.; Fassler, J.S. Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot. Cell 2009, 8, 768–778. [Google Scholar] [CrossRef]
ROS | Function | Cell Involved and/or Enzyme | Reference |
---|---|---|---|
Superoxide (O2) | First ROS generated in the respiratory burst. Toxic to pathogens and is converted into other ROS. | Neutrophils and macrophages via NADPH oxidase. | [40] |
Hydrogen peroxide (H2O2) | Generated from superoxide, participates in pathogen destruction and can form hydroxyl radicals. | Neutrophils and macrophages via superoxide dismutase (SOD). | [41] |
Hydroxyl radical (OH) | Highly reactive ROS that damages lipids, proteins, and DNA of the fungus. | Formed by the Fenton reaction (Fe2+ + H2O2) in neutrophils. | [39] |
Hypochlorous acid (HOCl) | Potent microbicidal agent that oxidizes proteins and lipids in pathogens. | Neutrophils produced by the enzyme myeloperoxidase (MPO). | [42] |
Nitric oxide (NO) | Has antimicrobial properties and combines with superoxide to form peroxynitrite. | Activated macrophages via inducible nitric oxide synthase (iNOS). | [43] |
Peroxynitrite (ONOO) | Oxidizes essential components of the pathogen, such as lipids, proteins, and nucleic acids. | Formed by the interaction of O2⁻ and NO in activated macrophages. | [44] |
Singlet oxygen species (1O2) | Direct oxidative damage to pathogen biomolecules. | Neutrophils during the respiratory burst. | [45] |
Evasion Mechanism | Function | Reference |
---|---|---|
Melanin production | Neutralizes ROS such as O2⁻ and H2O2, acting as a natural antioxidant. Protects the fungus from oxidative damage and enhances resistance to phagocytosis. | [51] |
Antioxidant enzymes | ||
Superoxide dismutase (SOD) | Converts O2⁻ into H2O2, reducing direct oxidative damage. | [24] |
Catalase (CAT) | Decomposes H2O2 into water and oxygen, neutralizing its toxicity. | [14] |
Glutathione peroxidase (GPx) | Reduces H2O2 and other organic peroxides via the glutathione system. | [52] |
Cell wall (CW) | ||
CW remodeling | The composition of β-glucans, chitin, and proteins can be altered to resist ROS and adapt to oxidative stress. | [23,24,53] |
Heat shock protein (HSP) production | These proteins protect fungal proteins from denaturation and oxidative damage. | [23,24,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Baca, E.; Adame-Soto, P.J.; Alba-Fierro, C.A.; Martínez-Rocha, A.L.; Pérez-Torres, A.; López-Rodríguez, A.; Romo-Lozano, Y. Response to Oxidative Stress in Sporothrix schenckii. J. Fungi 2025, 11, 440. https://doi.org/10.3390/jof11060440
Ruiz-Baca E, Adame-Soto PJ, Alba-Fierro CA, Martínez-Rocha AL, Pérez-Torres A, López-Rodríguez A, Romo-Lozano Y. Response to Oxidative Stress in Sporothrix schenckii. Journal of Fungi. 2025; 11(6):440. https://doi.org/10.3390/jof11060440
Chicago/Turabian StyleRuiz-Baca, Estela, Pablo Jaciel Adame-Soto, Carlos Antonio Alba-Fierro, Ana Lilia Martínez-Rocha, Armando Pérez-Torres, Angélica López-Rodríguez, and Yolanda Romo-Lozano. 2025. "Response to Oxidative Stress in Sporothrix schenckii" Journal of Fungi 11, no. 6: 440. https://doi.org/10.3390/jof11060440
APA StyleRuiz-Baca, E., Adame-Soto, P. J., Alba-Fierro, C. A., Martínez-Rocha, A. L., Pérez-Torres, A., López-Rodríguez, A., & Romo-Lozano, Y. (2025). Response to Oxidative Stress in Sporothrix schenckii. Journal of Fungi, 11(6), 440. https://doi.org/10.3390/jof11060440