Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = Mo isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5465 KiB  
Article
Molybdenite Re-Os Isotopic Ages of Two Late Mesozoic Giant Mo Deposits in the Eastern Qinling Orogenic Belt, Central China
by Yuanshuo Zhang, Li Yang, Herong Gui, Dejin Wang, Mengqiu He and Jun He
Minerals 2025, 15(8), 800; https://doi.org/10.3390/min15080800 - 30 Jul 2025
Viewed by 145
Abstract
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we [...] Read more.
Precise Re-Os isotopic ages of the Jinduicheng and Donggou Mo deposits in the East Qinling orogenic belt can shed light on the controversies about multiple-stage pulses of mineralization and further elucidate the genesis and metallogenic process of the deposits. In this study, we propose two major events of Mo mineralization in this orogenic belt occurring during the Late Mesozoic: the early stage of 156–130 Ma and late stage of 122–114 Ma. Results of molybdenite Re-Os isotopic analysis reveal that the Jinduicheng deposit formed at 139.2 ± 2.9 Ma, while the Donggou deposit exhibited two-stage mineralization at 115.4 ± 1.6 Ma and 111.9 ± 1.3 Ma. These isotopic ages align with the spatiotemporal evolution of coeval ore-barren granites exposed in eastern Qinling, pointing to a close genetic relationship between the magmatism and mineralization that was controlled by the same tectonic activity, likely in a post-collisional setting. This highlights the multiple-stage Mo mineralization and provides evidence for further understanding the geodynamics and metallogenic process in the eastern Qinling orogenic belt. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

34 pages, 8503 KiB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 443
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 40890 KiB  
Article
Contrasts in Two-Stage Superimposed Magmatism of the Shizhuzi Magmatic Complex-Mo-Cu-Au System, Liaodong Peninsula, North China Craton
by Jinjian Wu, Jinzhong Yang, Jinhui Yang and Qingdong Zeng
Minerals 2025, 15(6), 631; https://doi.org/10.3390/min15060631 - 10 Jun 2025
Viewed by 405
Abstract
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au [...] Read more.
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au deposits in the Liaodong Peninsula. This study presents new zircon U-Pb ages and Hf isotope data, along with whole-rock major and trace element geochemical data. Meanwhile, by incorporating published datasets, the magmatism and mineralization of the SMC are discussed. Two-stage magmatic activity is identified in the SMC as follows: (1) Stage I (130–126 Ma) associated with mineralization, and (2) Stage II (121–117 Ma), both corresponding to the peak destruction of the NCC. The mineralized granitoids exhibit I-type affinities and formed in an extension setting. Quartz diorites within this suite were derived from the partial melting of an enriched mantle source, and the high-temperature thermal underplating associated with this process subsequently triggered partial melting of the basaltic lower crust, leading to the generation of granodiorites and monzonitic granites. These rocks experienced limited fractional crystallization (dominated by plagioclase + biotite) and are linked to Mo-Cu-Au mineralization. In contrast, the non-mineralized granitoids are high-K calc-alkaline, peraluminous A-type granites, which developed in an extremely extensional tectonic setting. They were derived from partial melting of ancient lower crust and display characteristics of highly fractionated granites, having undergone extensive crystallization differentiation involving plagioclase + K-feldspar during magmatic evolution. The mineralized and non-mineralized granitoids exhibit distinct differences in lithology, major/trace element characteristics, Hf isotopes, and degree of fractional crystallization. Our proposed two-stage magmatic model—coupled with a mineralization phase—provides significant insights into both magmatic processes and metallogenesis in the Liaodong Peninsula. It further offers key perspectives into the Early Cretaceous decratonization of the NCC in terms of its tectonic–magmatic–mineralization evolution. Full article
Show Figures

Figure 1

28 pages, 9029 KiB  
Article
Petrogenesis, Geochemistry, and Geological Significance of the Kongco Granitic Porphyry Dykes in the Northern Part of the Central Lhasa Microblock, Tibet
by Anping Xiang, Hong Liu, Wenxin Fan, Qing Zhou, Hong Wang and Kaizhi Li
Minerals 2025, 15(3), 283; https://doi.org/10.3390/min15030283 - 11 Mar 2025
Viewed by 765
Abstract
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced [...] Read more.
The Kongco area of Nima in the northern part of the Lhasa terrane has a suite of alkaline granitic porphyry dykes associated with Early Cretaceous granites and accompanied by Cu/Mo mineralization. LA-ICP-MS 206Pb/238U zircon geochronology performed on the dykes produced an age of 104.15 ± 0.94 Ma (MSWD = 0.98), indicating the Early Cretaceous emplacement of the dykes. The dykes exhibit high silica (SiO2 = 76.22~77.90 wt.%), high potassium (K2O = 4.97~6.21 wt.%), high alkalinity (K2O + Na2O = 8.07~8.98 wt.%), low calcium (CaO = 0.24~0.83 wt.%), low magnesium (MgO = 0.06~0.20 wt.%), and moderate aluminum content (Al2O3 = 11.93~12.45 wt.%). The Rieterman index (σ) ranges from 1.93 to 2.34. A/NK (molar ratio Al2O3/(Na2O + K2O)) and A/CNK (molar ratio Al2O3/(CaO + Na2O + K2O)) values of the dykes range from 1.06 to 1.18 and 0.98 to 1.09, respectively. The dykes are relatively enriched in Rb, Th, U, K, Ta, Ce, Nd, Zr, Hf, Sm, Y, Yb, and Lu, and they show a noticeable relative depletion in Ba, Nb, Sr, P, Eu, and Ti, as well as an average differentiation index (DI) of 96.42. The dykes also exhibit high FeOT/MgO ratios (3.60~10.41), Ga/Al ratios (2.22 × 10−4~3.01 × 10−4), Y/Nb ratios (1.75~2.40), and Rb/Nb ratios (8.36~20.76). Additionally, they have high whole-rock Zr saturation temperatures (884~914 °C), a pronounced Eu negative anomaly (δEu = 0.04~0.23), and a rightward-sloping “V-shaped” rare earth element pattern. These characteristics suggest that the granitic porphyry dykes can be classified as A2-type granites formed in a post-collisional tectonic environment and that they are weakly peraluminous, high-potassium, and Calc-alkaline basaltic rocks. Positive εHf(t) values = 0.43~3.63 and a relatively young Hf crustal model age (TDM2 = 826~1005 Ma, 87Sr/86Sr ratios = 0.7043~0.7064, and εNd(t) = −8.60~−2.95 all indicate lower crust and mantle mixing. The lower crust and mantle mixing model is also supported by (206Pb/204Pb)t = 18.627~18.788, (207Pb/204Pb)t = 15.707~15.719, (208Pb/204Pb)t = 39.038~39.110). Together, the Hf, Sr and Pb isotopic ratios indicate that the Kongco granitic porphyry dykes where derived from juvenile crust formed by the addition of mantle material to the lower crust. From this, we infer that the Kongco granitic porphyry dykes are related to a partial melting of the lower crust induced by subduction slab break-off and asthenospheric upwelling during the collision between the Qiangtang and Lhasa terranes and that they experienced significant fractional crystallization dominated by potassium feldspar and amphibole. These dykes are also accompanied by significant copper mineralization (five samples, copper content 0.2%), suggesting a close relationship between the magmatism associated with these dykes and regional metallogenesis, indicating a high potential for mineral exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

26 pages, 3476 KiB  
Review
Research Progress on Major Medical Radionuclide Generators
by Yixiao Feng, Yang Shao, Ziao Li, Min Luo, Diandou Xu and Lingling Ma
Processes 2025, 13(2), 521; https://doi.org/10.3390/pr13020521 - 13 Feb 2025
Cited by 2 | Viewed by 1098
Abstract
As the concept of integrated diagnosis and treatment gains increasing prominence, the utilization of radiopharmaceuticals in personalized medicine has garnered unprecedented attention. However, the production of these radiopharmaceuticals continues to encounter numerous technical challenges. It plays an important role in improving the efficiency [...] Read more.
As the concept of integrated diagnosis and treatment gains increasing prominence, the utilization of radiopharmaceuticals in personalized medicine has garnered unprecedented attention. However, the production of these radiopharmaceuticals continues to encounter numerous technical challenges. It plays an important role in improving the efficiency and convenience of nuclear medicine services and can quickly and conveniently provide the required radioactive isotopes to meet the needs of integrated clinical diagnosis and treatment while reducing dependence on external supplies and improving safety and the economy. At present, commonly used medical radioactive isotope generators include 99Mo/99mTc, 68Ge/68Ga, 90Sr/90Y, 188W/188Re, etc. This article reviews the latest research progress on three main medical radioactive isotope generators of 99Mo/99mTc, 68Ge/68Ga, and 90Sr/90Y. It also evaluates the highly anticipated new 44Ti/44Sc generator and proposes research prospects for current medical radioactive isotope generators, providing exploration directions for the future development of nuclear medicine. Full article
Show Figures

Figure 1

22 pages, 29178 KiB  
Article
Molybdenite Re–Os and Zircon U–Pb Isotopic Constraints on Gold Mineralization Associated with Fine-Grained Granite in the Xiawolong Deposit, Jiaodong Peninsula, East China
by Mingchao Wu, Zhongliang Wang and Pengyu Liu
Appl. Sci. 2025, 15(3), 1199; https://doi.org/10.3390/app15031199 - 24 Jan 2025
Viewed by 730
Abstract
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so [...] Read more.
Molybdenite Re–Os and zircon U–Pb isotopic data are first obtained from the stockwork and disseminated-style gold-bearing ores and the fine-grained granite hosting these ores in the Xiawolong gold mine, respectively, which is located within the Muping–Rushan gold metallogenic belt, eastern Jiaodong Peninsula, so as to illustrate the genesis of gold mineralization and its implication for exploration. Four molybdenite samples yield a well-defined Re–Os isochron age of 118.4 ± 2.5 Ma (2σ), which is identical to the weighted average Re–Os model age of 118 ± 1.7 Ma (2σ). Integration of the new geochronologic data with those reported recently from the other gold mines in the Muping–Rushan gold metallogenic belt suggests that a discrete gold event occurred in Xiawolong ca. 4 m.y. older than that for the other gold mineralization at ca. 114 Ma in eastern Jiaodong. In addition, two fine-grained granite samples, measured using the LA-ICP-MS zircon U–Pb method, produce the first precise ages of 118 ± 2 to 117 ± 2 Ma (2σ), identical to the molybdenite Re–Os ages, within the margin of error and obtained in this study. The fine-grained granite has a similar lithology and emplacement age as those of the medium-grained monzogranite consisting of the marginal facies of the Sanfoshan batholith, and is considered to be the crystallization products of Sanfoshan granitic magma in the late stage. Combined with the previous S-Pb-D-O isotope, fluid inclusion and geological studies, which suggest that the ore-forming fluid of Xiawolong gold mineralization is from magmatic water, and the identification that the magnetite coexists with the gold-bearing pyrite and molybdenite in the gold ores, which indicates a high oxygen fugacity (fO2) of both the magma and resultant hydrothermal fluids, it is logical to infer that the Xiawolong gold deposit is genetically in relation to the Sanfoshan granitic magmatism, which is high in fO2 and rich in Au at the magmatic–hydrothermal transition stage, and the change in fO2 mostly likely makes a significant contribution to the precipitation of Au. This result reveals that the late-stage granitic magma with high fO2, which is crystallized into the fine-grained granite, probably is also rich in Au, except the W–Mo–Cu–Zn–U–Be–Li–Nb–Ta–Sn–Bi-elements. Therefore, based on the extensional tectonic regime for the early Cretaceous Jiaodong gold deposits, we propose that gold exploration in the Jiaodong should not only focus on the fault-hosted Au but also on the fine-grained granite-hosted Au around the apical portions of the late Early Cretaceous small-granitic intrusions with high fO2. This model could also be important for prospecting in other gold ore districts, which have a similar tectonic setting. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

17 pages, 22158 KiB  
Article
Ore Genesis of the Langcun Porphyry W-Mo Deposit, South China: Constraints from Fluid Inclusion and H-O-S Isotopics
by Kai Cui, Yunwei Qu, Yuling Xie, Kejun Yang and Zhaoqiang Huang
Minerals 2025, 15(2), 109; https://doi.org/10.3390/min15020109 - 23 Jan 2025
Viewed by 638
Abstract
The Langcun W-Mo deposit, located in the Zhejiang Province of South China, is a medium-sized porphyry deposit. The ore bodies mainly occur in aplite, granite porphyry, and the contact zone with hornfels of the Nanhua System. Four stages of mineralization are recognized in [...] Read more.
The Langcun W-Mo deposit, located in the Zhejiang Province of South China, is a medium-sized porphyry deposit. The ore bodies mainly occur in aplite, granite porphyry, and the contact zone with hornfels of the Nanhua System. Four stages of mineralization are recognized in the Langcun deposit, including the quartz–K-feldspar stage (stage I), quartz–sericite–molybdenite stage (stage II), quartz–chlorite–pyrite stage (stage III), and calcite stage (stage IV). Stages I and II are the main ore-forming stages for wolframite and molybdenite. The petrographic and microthermometric results show that four types of fluid inclusions exist in the Langcun W-Mo deposit, including two-phase liquid-rich fluid inclusions (type LV), three-phase CO2-rich fluid inclusions (type LC), pure CO2 fluid inclusions (type C), vapor H2O inclusions (type V), and multi-phase inclusions with daughter minerals (type LDV). In stage I, the fluid inclusion assemblage is LDV + LV + V, and the LDV and LV fluid inclusions have similar homogenization temperatures (281–387 °C), indicating a boiling fluid inclusions association. In stage II, the fluid inclusion assemblage is LC + C, indicating immiscibility between CO2 and aqueous fluids. The homogenization temperatures of type LC are in the range of 228–342 °C, and the salinities are in the range of 2.77–5.14 wt.% NaCl equiv. The fluid inclusions in stages III and IV are type LV, with homogenization temperatures in the ranges of 224–275 °C and 200–225 °C, respectively, and salinities in the ranges of 1.74 to 4.96 wt.% NaCl equiv and 1.06 to 3.39 wt.% NaCl equiv, respectively. Hydrogen and oxygen isotopic results indicate that the ore-forming fluids mainly come from magmatic water in the early stage and may have received an input of meteoric water in the late stage, which results in the decrease in the temperature and salinity of ore-forming fluid. Early W-Mo precipitation was induced by CO2 escape because of decompression, and fluid mixing resulted in Mo precipitation in the later stage. Full article
Show Figures

Figure 1

30 pages, 7272 KiB  
Article
A Genetic Model for the Biggenden Gold-Bearing Fe Skarn Deposit, Queensland, Australia: Geology, Mineralogy, Isotope Geochemistry, and Fluid Inclusion Studies
by Mansour Edraki, Alireza K. Somarin and Paul M. Ashley
Minerals 2025, 15(1), 95; https://doi.org/10.3390/min15010095 - 20 Jan 2025
Cited by 1 | Viewed by 1521
Abstract
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, [...] Read more.
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, which formed in different tectonic settings, including island arc, back arc, and mid-ocean ridge. This group has experienced a hornblende-hornfels grade of contact metamorphism due to the intrusion of the Late Triassic Degilbo Granite. The intrusion is a mildly oxidized I-type monzogranite that has geochemical characteristics intermediate between those of granitoids typically associated with Fe-Cu-Au and Sn-W-Mo skarn deposits. The skarn mineralogy indicates that there was an evolution from prograde to various retrograde assemblages. Prograde garnet (Adr11-99Grs1-78Alm0-8Sps0-11), clinopyroxene (Di30-92Hd7-65Jo0-9), magnetite, and scapolite formed initially. Epidote and Cl-bearing amphibole (mainly ferropargasite) were the early retrograde minerals, followed by chlorite, calcite, actinolite, quartz, and sulfides. Late-stage retrograde reactions are indicated by the development of nontronite, calcite, and quartz. Gold is mainly associated with sulfide minerals in the retrograde sulfide stage. The fluids in equilibrium with the ore-stage calcites had δ13C and δ18O values that indicate deposition from magmatically derived fluids. The calculated δ18O values of the fluids in equilibrium with the skarn magnetite also suggest a magmatic origin. However, the fluids in equilibrium with epidote were a mixture of magmatic and meteoric water, and the fluids that deposited chlorite were at least partly meteoric. δD values for the retrograde amphibole and epidote fall within the common range for magmatic water. Late-stage chlorite was deposited from metasomatic fluids depleted in deuterium (D), implying a meteoric water origin. Sulfur isotopic compositions of the Biggenden sulfides are similar to other skarn deposits worldwide and indicate that sulfur was most probably derived from a magmatic source. Based on the strontium (87Sr/86Sr) and lead (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) isotope ratios, the volcanic and sedimentary rocks of the Gympie Group may have contributed part of the metals to the hydrothermal fluids. Lead isotope data are also consistent with a close age relationship between the mineralization at Biggenden and the crystallization of the Degilbo Granite. Microthermometric analysis indicates that there is an overall decrease in fluid temperature and salinity from the prograde skarn to retrograde alterations. Fluid inclusions in prograde skarn calcite and garnet yield homogenization temperatures of 500 to 600 °C and have salinities up to 45 equivalent wt % NaCl. Fluid inclusions in quartz and calcite from the retrograde sulfide-stage homogenized between 280 and 360 °C and have lower salinities (5–15 equivalent wt % NaCl). In a favored genetic model, hydrothermal fluids originated from the Degilbo Granite at depth and migrated through the shear zone, intrusive contact, and permeable Gympie Group rocks and leached extra Fe and Ca and deposited magnetite upon reaction with the adjacent marble and basalt. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

12 pages, 1674 KiB  
Article
Effect of Manganese Oxide Mineralogy and Surface Mo Coverage on Mo Isotope Fractionation During the Adsorption Process
by Akihiro Okuyama, Teruhiko Kashiwabara, Minako Kurisu, Yoshio Takahashi and Keisuke Fukushi
Minerals 2025, 15(1), 79; https://doi.org/10.3390/min15010079 - 16 Jan 2025
Cited by 1 | Viewed by 1299
Abstract
The large molybdenum (Mo) isotope fractionation from seawater is caused by the adsorption of Mo on manganese oxides. However, the effects of the manganese oxide mineralogy (crystal structure) and surface Mo coverage on Mo isotope fractionation have not been investigated. In this study, [...] Read more.
The large molybdenum (Mo) isotope fractionation from seawater is caused by the adsorption of Mo on manganese oxides. However, the effects of the manganese oxide mineralogy (crystal structure) and surface Mo coverage on Mo isotope fractionation have not been investigated. In this study, the isotope fractionation of Mo by adsorption on synthetic todorokite, birnessite, and δMnO2 was investigated under a wide range of surface Mo coverages. The Mo isotope fractionation changed from Δ98/95Mo = 2.18 ± 0.05‰ to 2.61 ± 0.06‰ for todorokite; from 1.25 ± 0.05‰ to 2.10 ± 0.05‰ for birnessite; and from 2.19 ± 0.07‰ to 2.73 ± 0.08‰ for δMnO2. The Mo isotope fractionations of the three manganese oxides were negatively correlated with surface coverage normalized to the specific surface area. The independence of the obtained correlation of the manganese oxide species indicates that the Mo isotope fractionation depends on the surface coverage but not on the mineralogy of the manganese oxides. The experimentally observed Mo isotope fractionation (<2.7‰) in manganese oxides generally underestimates the isotope fractionation in natural ferromanganese oxides (~3‰). According to the dependency of the Mo isotope fractionation on the surface coverage, the underestimation relative to previous experimental studies can be attributed to the lower Mo surface coverage of natural ferromanganese oxides. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

20 pages, 21100 KiB  
Article
Petrogenesis and Metallogenic Significance of the Demingding Mo-Cu Porphyry Deposit in the Gangdese Belt, Xizang: Insights from U-Pb and Re-Os Geochronology and Geochemistry
by Sudong Shi, Shuyuan Chen, Sangjiancuo Luo, Huan Ren and Xiaojia Jiang
Minerals 2024, 14(12), 1232; https://doi.org/10.3390/min14121232 - 3 Dec 2024
Viewed by 1111
Abstract
The 1500 km-long Gangdese magmatic belt is a crucial region for copper polymetallic mineralization, offering valuable insights into collisional porphyry copper systems. This study focuses on the Demingding deposit, a newly identified occurrence of molybdenum–copper (Mo-Cu) mineralization within the eastern segment of the [...] Read more.
The 1500 km-long Gangdese magmatic belt is a crucial region for copper polymetallic mineralization, offering valuable insights into collisional porphyry copper systems. This study focuses on the Demingding deposit, a newly identified occurrence of molybdenum–copper (Mo-Cu) mineralization within the eastern segment of the belt. While the mineralization age, magmatic characteristics, and tectonic context are still under investigation, we examine the deposit’s petrology, zircon U-Pb geochronology, whole-rock chemistry, and Re-Os isotopic data. The Demingding deposit exhibits a typical alteration zoning, transitioning from an inner potassic zone to an outer propylitic zone, which is significantly overprinted by phyllic alteration closely associated with Mo and Cu mineralization. Zircon U-Pb dating of the ore-forming monzogranite porphyries reveals crystallization ages ranging from 21 to 19 Ma, which is indistinguishable within error from the mean Re-Os age of 21.3 ± 0.4 Ma for Mo veins and veinlets hosted by these porphyries. This alignment suggests a late Miocene magmatic event characterized by Mo-dominated mineralization, coinciding with the continuous thickening of the continental crust during the collision of the Indian and Asian continents. The ore-forming porphyries range in composition from granodiorite to monzogranite and are classified as high-K calc-alkaline with adakite-like features, primarily resulting from the partial melting of subduction-modified thickened mafic lower crust. Notably, the ore-forming porphyries exhibit higher fO2 and H2O levels than barren porphyries in this area during crustal thickening, highlighting the significant contributions of hydrous and oxidized fluids from their source to the Mo-Cu mineralization process. Regional data indicate that the Gangdese porphyry metallogenic belt experienced concentrated Cu-Mo mineralization between 17 and 13 Ma. The formation of Mo-dominated deposits such as Demingding and Tangbula in the eastern segment of the belt, with slightly older ages around 20 Ma, underscores the presence of a significant porphyry Mo metallogenic event during this critical post-collision mineralization period. Full article
Show Figures

Graphical abstract

14 pages, 5994 KiB  
Article
The Effect of Ar and N2 Background Gas Pressure on H Isotope Detection and Separation by LIBS
by Indrek Jõgi, Jasper Ristkok and Peeter Paris
J. Nucl. Eng. 2024, 5(4), 531-544; https://doi.org/10.3390/jne5040033 - 22 Nov 2024
Cited by 1 | Viewed by 1156
Abstract
Laser-Induced Breakdown Spectroscopy (LIBS) is one candidate for analyzing the fuel retention in ITER plasma-facing components during maintenance breaks when the reactor is filled with near atmospheric pressure nitrogen or dry air. It has been shown that using argon flow during LIBS measurements [...] Read more.
Laser-Induced Breakdown Spectroscopy (LIBS) is one candidate for analyzing the fuel retention in ITER plasma-facing components during maintenance breaks when the reactor is filled with near atmospheric pressure nitrogen or dry air. It has been shown that using argon flow during LIBS measurements increases the LIBS signal at atmospheric pressure conditions and helps to distinguish the hydrogen isotopes. However, atmospheric pressure might be suboptimal for such LIBS measurements. The present study investigated the effect of argon or nitrogen gas at different pressures on the hydrogen Hα line emission intensity during the LIBS measurements. Laser pulses with an 8 ns width were used to ablate a small amount of a molybdenum (Mo) target with hydrogen impurity. The development of the formed plasma plume was investigated by time- and space-resolved emission spectra and photographs. Photographs showed that the plasma plume development was similar for both gases, while the total intensity of the plume was higher in argon. Space-resolved emission spectra also had stronger Hα line intensities in argon. Shorter delay times necessitated the use of lower pressures to have sufficiently narrow lines for the distinguishing of the hydrogen isotopes. At the same line widths, the line intensities were higher at lower gas pressures and in argon. Hα and Mo I line emissions were spatially separated, which suggests that the geometry of collection optics should be considered when using LIBS. Full article
Show Figures

Figure 1

24 pages, 10810 KiB  
Article
Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes
by Zhiwei Qiu, Zhenju Zhou, Nan Qi, Pocheng Huang, Junming Yao, Yantao Feng and Yanjing Chen
Minerals 2024, 14(11), 1173; https://doi.org/10.3390/min14111173 - 19 Nov 2024
Cited by 1 | Viewed by 954
Abstract
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages [...] Read more.
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages of 150.1 ± 1.3 Ma and 151.0 ± 1.1 Ma for the monzogranite and 148.1 ± 1.0 Ma and 148.5 ± 1.3 Ma for the syenogranite. The pluton is characterized by geochemical features of high silicon, metaluminous, and high-K calc-alkaline compositions, enriched in Rb, U, Th, and Pb, and exhibits high Sr/Y (18.53–58.82), high (La/Yb)N (9.01–35.51), and weak Eu anomalies. These features indicate a source region from a thickened lower crust with garnet and rutile as residual phases at depths of approximately 40–60 km. Sr-Nd-Pb isotopic analyses suggest that the magmatic source is mainly derived from the Taihua and Xiong’er Groups of the Huaxiong Block, mixed with juvenile crustal rocks from the Kuanping and Erlangping Groups of the North Qinling Accretion Belt. Combined with geological and isotopic characteristics, it is concluded that the Shibaogou pluton formed during the compression–extension transition period associated with the collision between the Yangtze Block and the North China Craton, reflecting the complex partial melting processes in the thickened lower crust. The present study reveals that the magmatic–hydrothermal activity at Shibaogou lasted approximately 5 Ma, showing multi-phase characteristics, further demonstrating the close relationship between the pluton and the Mo-W mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

21 pages, 21536 KiB  
Review
A Review on Uranium Mineralization Related to Na-Metasomatism: Indian and International Examples
by Priyanka Mishra, Manju Sati and Rajagopal Krishnamurthi
Geosciences 2024, 14(11), 304; https://doi.org/10.3390/geosciences14110304 - 12 Nov 2024
Cited by 2 | Viewed by 1649
Abstract
Uranium mineralization related to Na-metasomatism is known as Na-metasomatite or albitite-type. They represent the fourth-largest uranium resource globally and constitute fifty thousand tons of U resources. The present work gives details about well-known Na-metasomatic uranium occurrences worldwide in terms of structures, metasomatic stages, [...] Read more.
Uranium mineralization related to Na-metasomatism is known as Na-metasomatite or albitite-type. They represent the fourth-largest uranium resource globally and constitute fifty thousand tons of U resources. The present work gives details about well-known Na-metasomatic uranium occurrences worldwide in terms of structures, metasomatic stages, geochemical characteristics, fluid inclusions, and compositions of stable isotopes. The host rocks are granite, granitoid, and metamorphosed volcano-sedimentary rocks, and these rocks experienced two/three deformational stages. U mineralization is mainly confined to faults and characterized by granitic intrusive, cataclasis, mylonitization, and albitization. The albitized rocks exhibit two to three metasomatic and late hydrothermal stages. The first stage is marked by the replacement of pre-existing host minerals during a ductile shear regime. The second stage is related to U mineralization contemporaneous with the brittle deformation. The albitized rocks exhibit depletion in Si, K, Ba, and heavy rare-earth elements relative to the host rocks and enrichments in Na, Ca, U, Zr, P, V, Sr, and light rare-earth elements. U-enrichment is positively correlated with Na, Mo, Cu, and high-field strength elements. The pressure–temperature (P-T) conditions of U mineralization are considered to be epithermal and mesothermal. Fluid inclusion studies indicate that the mineralizing fluids were rich in Na+, Mg2+, Cl, CO2, H2O, F, and PO43− and meteoric–magmatic derived. The geological processes responsible for the genesis of Na-metasomatic U deposits of the North Delhi Fold Belt (India) are comparable with some international examples, i.e., Australia, Ukraine, Cameroon, Brazil, Guyana, China, and the USA. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

24 pages, 6880 KiB  
Article
Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization
by Yang Liu, De-You Sun, Yang Gao, Hong-Chao Wang, Yu-Xin Ma, Jun Xu and Xin-Tong Liu
Minerals 2024, 14(11), 1104; https://doi.org/10.3390/min14111104 - 29 Oct 2024
Viewed by 881
Abstract
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, [...] Read more.
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, while the W mineralization is most closely related to greisenization. Zircon samples from granodiorite, biotite monzogranite, granodiorite porphyry, and syenogranite in the Waxing deposit yielded U-Pb ages of 172.3 Ma, 172.8 Ma, 173.0 Ma, and 171.4 Ma, respectively. Six molybdenite samples from porphyry Mo ores yielded a Re-Os isochron age of 172.0 ± 1.1 Ma. The granitoids in the ore district are relatively high in total alkali (Na2O + K2O), are metaluminous to weakly peraluminous, and are classified as I-type granitoids. The zircon samples from all granitoids showed a relatively consistent Hf isotopic composition, as shown by positive εHf(t) values (3.1–8.3) and young TDM2 ages (0.69–1.25 Ga). These results, combined with the whole-rock geochemistry, suggest that the magma source of these rocks most likely derived from partial melting of a juvenile middle-lower continental crust, with a minor contribution from the mantle. These granitoids have compositional characteristics of adakites such as relatively high Sr contents (e.g., >400 ppm) and Sr/Y ratios (e.g., >33), as well as weak Eu anomalies (e.g., Eu/Eu* = 0.8–1.1), indicating extensive fractionation crystallization of a hydrous magma. The apatite geochemistry indicates that the ore-related magma in Waxing is F-rich and has a relatively low content of sulfur. The zircon geochemistry reveals that the granodiorite, biotite monzogranite, and granodiorite porphyry have relatively high oxygen fugacity (i.e., ΔFMQ = +1.1~1.3), whereas the fO2 values of the granite porphyry and syenogranite are relatively low (i.e., ΔFMQ = +0.1~0.5). The whole-rock and mineral geochemistry suggest that the Mo mineralization in Waxing is probably genetically related to granitoids (i.e., granodiorite, biotite monzogranite, and granodiorite porphyry), with higher oxygen fugacity and a high water content, whereas the magmatic S concentration is not the key factor controlling the mineralization. A comparison of the geochemical compositions of ore-forming and barren stocks for porphyry Mo deposits in the LXZR showed that geochemical ratios, including Eu/Eu* (>0.8), 10,000*(Eu/Eu*)/Y (>600), Sr/Y (>33), and V/Sc (>8), could be effective indicators in discriminating fertile granitoids for porphyry Mo deposits from barren ones in the region. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

19 pages, 8741 KiB  
Article
Genesis of Xinjiazui Gold Deposit: In Situ Geochemical Constraints from Arsenopyrite
by Ji Liu, Shaolei Kou, Zhanbin Wang, Yixiang Zhang, Yuan Pan, Dongping Ji, Yuan Tian, Hao Chen and Chao Gao
Minerals 2024, 14(10), 1031; https://doi.org/10.3390/min14101031 - 15 Oct 2024
Cited by 1 | Viewed by 1049
Abstract
The Xinjiazui gold deposit marks a notable significance in prospecting within the Back-Longmenshan tectonic belt, located on the northwest margin of the Yangtze Block, China. Despite the extensive studies conducted on this deposit, the source of the ore-forming materials remains unclear, leading to [...] Read more.
The Xinjiazui gold deposit marks a notable significance in prospecting within the Back-Longmenshan tectonic belt, located on the northwest margin of the Yangtze Block, China. Despite the extensive studies conducted on this deposit, the source of the ore-forming materials remains unclear, leading to ongoing debates regarding the genesis of this deposit. This study analyzed in situ (EPMA and LA-ICP-MS) trace elements and S-Pb isotopes of arsenopyrite, solely from the principal metallogenic stage and paragenetic with native gold. The results show that the gold in arsenopyrite occurs as invisible gold (Au3+), with an average concentration of 9.38 ppm, whereas the concentrations of magma-related elements, such as W, Sn, Mo, and Bi, are very low. The sulfur isotopes (34S) of arsenopyrite range from 8.32‰ to 10.16‰, aligning closely with the deep metamorphic basement (Pt3l). Meanwhile, the lead isotopes in arsenopyrite display characteristics typical of those found in orogenic belts. A comprehensive analysis of the abundance of gold indicated that the metallogenic materials (sulfur and gold) primarily originated from Pt3l. Additionally, the arsenopyrite thermobarometer indicated that the Xinjiazui gold deposit formed in a medium–low-temperature, medium metallogenic environment (5.57–8.69 km), with a sulfur fugacity (log f (S2)) below −8.4. Combined with previous research results, this study proposes that the Xinjiazui gold deposit is a subduction-related mesozonal orogenic gold deposit. In gold prospecting and exploration in the Back-Longmenshan tectonic belt, it is essential to focus on the distribution of brittle-ductile shear zones and location of the quartz veins associated with pyrite and arsenopyrite mineralization. Full article
(This article belongs to the Special Issue The Formation and Evolution of Gold Deposits in China)
Show Figures

Figure 1

Back to TopTop