Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = MnO2 nanoflakes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4314 KB  
Article
Rationally Designed PPy-Coated Fe2O3 Nanoneedles Anchored on N-C Nanoflakes as a High-Performance Anode for Aqueous Supercapacitors
by Zhiqiang Cui, Siqi Zhan, Yatu Luo, Yunfeng Hong, Zexian Liu, Guoqiang Tang, Dongming Cai and Rui Tong
Crystals 2025, 15(4), 346; https://doi.org/10.3390/cryst15040346 - 7 Apr 2025
Cited by 29 | Viewed by 1202
Abstract
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In [...] Read more.
Flexible supercapacitors have emerged as pivotal energy storage components in wearable smart electronic systems, owing to their exceptional electrochemical performance. However, the widespread application of flexible supercapacitors in smart electronic devices is significantly hindered by the developmental bottleneck of high-performance anode materials. In this study, a novel electrode composed of surface-modified Fe2O3 nanoneedles uniformly coated with a polypyrrole (PPy) film and anchored on Co-MOF-derived N-C nanoflake arrays (PPy/Fe2O3/N-C) is designed. This composite electrode, grown in situ on carbon cloth (CC), demonstrated outstanding specific capacity, rate performance, and mechanical flexibility, attributed to its unique hierarchical 3D arrayed structure and the protective PPy layer. The fabricated PPy/Fe2O3/N-C@CC (P-FONC) composite electrode exhibited an excellent specific capacitance of 356.6 mF cm−2 (143 F g−1) at a current density of 2 mA cm−2. The current density increased to 20 mA cm−2, and the composite electrode material preserved a specific capacitance of 278 mF cm−2 (112 F g−1). Furthermore, the assembled quasi-solid-state Mn/Fe asymmetric supercapacitor, configured with P-FONC as the negative electrode and MnO2/N-C@CC as the positive electrode, demonstrated robust chemical stability and notable mechanical flexibility. This study sheds fresh light on the creation of three-dimensional composite electrode materials for highly efficient, flexible energy storage systems. Full article
Show Figures

Figure 1

19 pages, 4373 KB  
Article
Modulation of the Morphological Architecture of Mn2O3 Nanoparticles to MnCoO Nanoflakes by Loading Co3+ Via a Co-Precipitation Approach for Mosquitocidal Development
by Rania A. Mohamed, Lamyaa M. Kassem, Niveen M. Ghazali, Elsayed Elgazzar and Wageha A. Mostafa
Micromachines 2023, 14(3), 567; https://doi.org/10.3390/mi14030567 - 27 Feb 2023
Cited by 4 | Viewed by 2581
Abstract
The spread of many infectious diseases by vectors is a globally severe issue. Climate change and the increase of vector resistance are the primary sources of rising mosquito populations. Therefore, advanced approaches are needed to prevent the dispersal of life-threatening diseases. Herein, Mn [...] Read more.
The spread of many infectious diseases by vectors is a globally severe issue. Climate change and the increase of vector resistance are the primary sources of rising mosquito populations. Therefore, advanced approaches are needed to prevent the dispersal of life-threatening diseases. Herein, Mn2O3 NPs and MnCoO nanocomposites were presented as mosquitocidal agents. The synthesized samples were prepared by a co-precipitation route and characterized using different techniques indicating the change of host Mn2O3 structure to 2D MnCoO nanoflakes with Co3+ integration. The thermal decomposition of the nanoparticles was examined by TGA analysis, showing high stability. The energy gap (Eg) of Mn2O3 was estimated within the visible spectrum of the value 2.95 eV, which reduced to 2.80 eV with doping support. The impact of Mn2O3 and MnCoO on immature stages was investigated by semithin photomicrographs exhibiting significant changes in the midgut, fat tissue and muscles of the third larval instar. Moreover, the external deformations in pupae were examined using scanning electron microscopy (SEM). Full article
Show Figures

Figure 1

9 pages, 3991 KB  
Communication
A Novel Oxidation–Reduction Route for the Morphology-Controlled Synthesis of Manganese Oxide Nanocoating as Highly Effective Material for Pseudocapacitors
by Artem A. Lobinsky, Ilya A. Kodintzev, Maxim I. Tenevich and Vadim I. Popkov
Coatings 2023, 13(2), 361; https://doi.org/10.3390/coatings13020361 - 5 Feb 2023
Cited by 4 | Viewed by 2017
Abstract
In recent years, pseudocapacitors have been receiving much attention as low-cost and safe energy storage technology for emerging applications in flexible and safe devices. However, creating high-energy-density electrode materials is now the main limit for high-performance pseudocapacitors. In this work, we propose a [...] Read more.
In recent years, pseudocapacitors have been receiving much attention as low-cost and safe energy storage technology for emerging applications in flexible and safe devices. However, creating high-energy-density electrode materials is now the main limit for high-performance pseudocapacitors. In this work, we propose a novel reduction route for the synthesis of uniform MnO2 nanocoating with porous morphology on nickel foam via the SILD method as electrode material for high-effective pseudocapacitors. The obtained nanocoatings were characterized by SEM, TEM, EDX, XRD, XPS, and electrochemical techniques. Comparisons of MnO2 coatings were conducted to obtain the reduction and oxidative routes of synthesis. The influence of the oxidation–reduction reaction type on the structures, morphologies, and capacity performance of manganese oxide was investigated. The results show that the nanocoatings synthesized via the reduction route were formed of amorphous uniform ultra-thick coating MnO2 with a porous morphology of “nanoflakes.” Due to the unique morphology and uniform coating of nanosized manganese oxide, electrodes based on this process have shown a high specific capacity (1490 F/g at 1 A/g) and excellent cycling stability (97% capacity retention after 1000 charge–discharge cycles). Full article
Show Figures

Figure 1

10 pages, 6462 KB  
Article
A Hierarchical SnO2@Ni6MnO8 Composite for High-Capacity Lithium-Ion Batteries
by Jiying Li, Jiawei Long, Tianli Han, Xirong Lin, Bai Sun, Shuguang Zhu, Jinjin Li and Jinyun Liu
Materials 2022, 15(24), 8847; https://doi.org/10.3390/ma15248847 - 11 Dec 2022
Cited by 1 | Viewed by 2065
Abstract
Semiconductor-based composites are potential anodes for Li-ion batteries, owing to their high theoretical capacity and low cost. However, low stability induced by large volumetric change in cycling restricts the applications of such composites. Here, a hierarchical SnO2@Ni6MnO8 composite [...] Read more.
Semiconductor-based composites are potential anodes for Li-ion batteries, owing to their high theoretical capacity and low cost. However, low stability induced by large volumetric change in cycling restricts the applications of such composites. Here, a hierarchical SnO2@Ni6MnO8 composite comprising Ni6MnO8 nanoflakes growing on the surface of a three-dimensional (3D) SnO2 is developed by a hydrothermal synthesis method, achieving good electrochemical performance as a Li-ion battery anode. The composite provides spaces to buffer volume expansion, its hierarchical profile benefits the fast transport of Li+ ions and electrons, and the Ni6MnO8 coating on SnO2 improves conductivity. Compared to SnO2, the Ni6MnO8 coating significantly enhances the discharge capacity and stability. The SnO2@Ni6MnO8 anode displays 1030 mAh g−1 at 0.1 A g−1 and exhibits 800 mAh g−1 under 0.5 A g−1, along with high Coulombic efficiency of 95%. Furthermore, stable rate performance can be achieved, indicating promising applications. Full article
Show Figures

Figure 1

19 pages, 5082 KB  
Article
Carbon Nanotube Fibers Decorated with MnO2 for Wire-Shaped Supercapacitor
by Luman Zhang, Xuan Zhang, Jian Wang, David Seveno, Jan Fransaer, Jean-Pierre Locquet and Jin Won Seo
Molecules 2021, 26(11), 3479; https://doi.org/10.3390/molecules26113479 - 7 Jun 2021
Cited by 40 | Viewed by 5710
Abstract
Fibers made from CNTs (CNT fibers) have the potential to form high-strength, lightweight materials with superior electrical conductivity. CNT fibers have attracted great attention in relation to various applications, in particular as conductive electrodes in energy applications, such as capacitors, lithium-ion batteries, and [...] Read more.
Fibers made from CNTs (CNT fibers) have the potential to form high-strength, lightweight materials with superior electrical conductivity. CNT fibers have attracted great attention in relation to various applications, in particular as conductive electrodes in energy applications, such as capacitors, lithium-ion batteries, and solar cells. Among these, wire-shaped supercapacitors demonstrate various advantages for use in lightweight and wearable electronics. However, making electrodes with uniform structures and desirable electrochemical performances still remains a challenge. In this study, dry-spun CNT fibers from CNT carpets were homogeneously loaded with MnO2 nanoflakes through the treatment of KMnO4. These functionalized fibers were systematically characterized in terms of their morphology, surface and mechanical properties, and electrochemical performance. The resulting MnO2–CNT fiber electrode showed high specific capacitance (231.3 F/g) in a Na2SO4 electrolyte, 23 times higher than the specific capacitance of the bare CNT fibers. The symmetric wire-shaped supercapacitor composed of CNT–MnO2 fiber electrodes and a PVA/H3PO4 electrolyte possesses an energy density of 86 nWh/cm and good cycling performance. Combined with its light weight and high flexibility, this CNT-based wire-shaped supercapacitor shows promise for applications in flexible and wearable energy storage devices. Full article
(This article belongs to the Special Issue Research on Nanostructured Materials)
Show Figures

Figure 1

18 pages, 4989 KB  
Article
Effect of Concentration on the Charge Storage Kinetics of Nanostructured MnO2 Thin-Film Supercapacitors Synthesized by the Hydrothermal Method
by Aviraj M. Teli, Sonali A. Beknalkar, Sachin A. Pawar, Deepak P. Dubal, Tukaram D. Dongale, Dipali S. Patil, Pramod S. Patil and Jae Cheol Shin
Energies 2020, 13(22), 6124; https://doi.org/10.3390/en13226124 - 22 Nov 2020
Cited by 59 | Viewed by 4343
Abstract
In this study, amorphous manganese oxide (MnO2) nanostructured thin films were synthesized by a simple hydrothermal method. It is well known that the nanostructure plays a crucial role in energy storage applications. Herein, MnO2 nanostructures ranging from plates to flakes [...] Read more.
In this study, amorphous manganese oxide (MnO2) nanostructured thin films were synthesized by a simple hydrothermal method. It is well known that the nanostructure plays a crucial role in energy storage applications. Herein, MnO2 nanostructures ranging from plates to flakes were synthesized without the use of any hard or soft templates. The 4+ oxidation state of Mn was confirmed by X-ray photoelectron spectroscopy. The MnO2 nanoflake structure has a specific surface area of 46 m2g−1, which provides it with an excellent rate capability and an exactly rectangular cyclic voltammogram (CV) curve. The MnO2 nanoflake electrode has a high specific capacitance of about 433 Fg−1, an energy density of 60 Whkg−1 at 0.5 mAcm−2, and an excellent cyclic stability of 95% over 1000 CV cycles in 1 M aq. Na2SO4. Kinetics analysis of the charge storage in the nanoflake MnO2 sample shows a 55.6% diffusion-controlled contribution and 44.4% capacitive-controlled contribution to the total current calculated at a scan rate of 100 mVs−1 from the CV curve. Full article
(This article belongs to the Special Issue Advanced Materials for Supercapacitor Electrodes)
Show Figures

Figure 1

12 pages, 4058 KB  
Article
Upcycling of Wastewater via Effective Photocatalytic Hydrogen Production Using MnO2 Nanoparticles—Decorated Activated Carbon Nanoflakes
by Sankar Sekar, Sejoon Lee, Preethi Vijayarengan, Kaliyappan Mohan Kalirajan, Thirumavalavan Santhakumar, Saravanan Sekar and Sutha Sadhasivam
Nanomaterials 2020, 10(8), 1610; https://doi.org/10.3390/nano10081610 - 17 Aug 2020
Cited by 35 | Viewed by 5401
Abstract
In the present work, we demonstrated the upcycling technique of effective wastewater treatment via photocatalytic hydrogen production by using the nanocomposites of manganese oxide-decorated activated carbon (MnO2-AC). The nanocomposites were sonochemically synthesized in pure water by utilizing MnO2 nanoparticles and [...] Read more.
In the present work, we demonstrated the upcycling technique of effective wastewater treatment via photocatalytic hydrogen production by using the nanocomposites of manganese oxide-decorated activated carbon (MnO2-AC). The nanocomposites were sonochemically synthesized in pure water by utilizing MnO2 nanoparticles and AC nanoflakes that had been prepared through green routes using the extracts of Brassica oleracea and Azadirachta indica, respectively. MnO2-AC nanocomposites were confirmed to exist in the form of nanopebbles with a high specific surface area of ~109 m2/g. When using the MnO2-AC nanocomposites as a photocatalyst for the wastewater treatment, they exhibited highly efficient hydrogen production activity. Namely, the high hydrogen production rate (395 mL/h) was achieved when splitting the synthetic sulphide effluent (S2− = 0.2 M) via the photocatalytic reaction by using MnO2-AC. The results stand for the excellent energy-conversion capability of the MnO2-AC nanocomposites, particularly, for photocatalytic splitting of hydrogen from sulphide wastewater. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 3078 KB  
Article
Controllable Carbonization of Plastic Waste into Three-Dimensional Porous Carbon Nanosheets by Combined Catalyst for High Performance Capacitor
by Xueying Mu, Yunhui Li, Xiaoguang Liu, Changde Ma, Hanqing Jiang, Jiayi Zhu, Xuecheng Chen, Tao Tang and Ewa Mijowska
Nanomaterials 2020, 10(6), 1097; https://doi.org/10.3390/nano10061097 - 2 Jun 2020
Cited by 54 | Viewed by 5703
Abstract
Polyethylene terephthalate (PET) plastic has been extensively used in our social life, but its poor biodegradability has led to serious environmental pollution and aroused worldwide concern. Up to now, various strategies have been proposed to address the issue, yet such strategies remain seriously [...] Read more.
Polyethylene terephthalate (PET) plastic has been extensively used in our social life, but its poor biodegradability has led to serious environmental pollution and aroused worldwide concern. Up to now, various strategies have been proposed to address the issue, yet such strategies remain seriously impeded by many obstacles. Herein, waste PET plastic was selectively carbonized into three-dimensional (3D) porous carbon nanosheets (PCS) with high yield of 36.4 wt%, to be further hybridized with MnO2 nanoflakes to form PCS-MnO2 composites. Due to the introduction of an appropriate amount of MnO2 nanoflakes, the resulting PCS-MnO2 composite exhibited a specific capacitance of 210.5 F g−1 as well as a high areal capacitance of 0.33 F m−2. Furthermore, the PCS-MnO2 composite also showed excellent cycle stability (90.1% capacitance retention over 5000 cycles under a current density of 10 A g−1). The present study paved an avenue for the highly efficient recycling of PET waste into high value-added products (PCSs) for electrochemical energy storage. Full article
(This article belongs to the Special Issue Nanocarbon Based Materials)
Show Figures

Graphical abstract

17 pages, 4947 KB  
Article
Binder Free and Flexible Asymmetric Supercapacitor Exploiting Mn3O4 and MoS2 Nanoflakes on Carbon Fibers
by Amjid Rafique, Usman Zubair, Mara Serrapede, Marco Fontana, Stefano Bianco, Paola Rivolo, Candido F. Pirri and Andrea Lamberti
Nanomaterials 2020, 10(6), 1084; https://doi.org/10.3390/nano10061084 - 31 May 2020
Cited by 38 | Viewed by 6044
Abstract
Emerging technologies, such as portable electronics, have had a huge impact on societal norms, such as access to real time information. To perform these tasks, portable electronic devices need more and more accessories for the processing and dispensation of the data, resulting in [...] Read more.
Emerging technologies, such as portable electronics, have had a huge impact on societal norms, such as access to real time information. To perform these tasks, portable electronic devices need more and more accessories for the processing and dispensation of the data, resulting in higher demand for energy and power. To overcome this problem, a low cost high-performing flexible fiber shaped asymmetric supercapacitor was fabricated, exploiting 3D-spinel manganese oxide Mn3O4 as cathode and 2D molybdenum disulfide MoS2 as anode. These asymmetric supercapacitors with stretched operating voltage window of 1.8 V exhibit high specific capacitance and energy density, good rate capability and cyclic stability after 3000 cycles, with a capacitance retention of more than 80%. This device has also shown an excellent bending stability at different bending conditions. Full article
(This article belongs to the Special Issue Design and Synthesis of Nanomaterials for Energy Storage)
Show Figures

Graphical abstract

12 pages, 1487 KB  
Article
The Synthesis of NiCo2O4–MnO2 Core–Shell Nanowires by Electrodeposition and Its Supercapacitive Properties
by Ai-Lan Yan, Wei-Dong Wang, Wen-Qiang Chen, Xin-Chang Wang, Fu Liu and Ji-Peng Cheng
Nanomaterials 2019, 9(10), 1398; https://doi.org/10.3390/nano9101398 - 1 Oct 2019
Cited by 48 | Viewed by 6580
Abstract
Hierarchical composite films grown on current collectors are popularly reported to be directly used as electrodes for supercapacitors. Highly dense and conductive NiCo2O4 nanowires are ideal backbones to support guest materials. In this work, low crystalline MnO2 nanoflakes are [...] Read more.
Hierarchical composite films grown on current collectors are popularly reported to be directly used as electrodes for supercapacitors. Highly dense and conductive NiCo2O4 nanowires are ideal backbones to support guest materials. In this work, low crystalline MnO2 nanoflakes are electrodeposited onto the surface of NiCo2O4 nanowire films pre-coated on nickel foam. Each building block in the composite films is a NiCo2O4–MnO2 core–shell nanowire on conductive nickel foam. Due to the co-presence of MnO2 and NiCo2O4, the MnO2@NiCo2O4@Ni electrode exhibits higher specific capacitance and larger working voltage than the NiCo2O4@Ni electrode. It can have a high specific capacitance of 1186 F·g−1 at 1 A·g−1. When the core–shell NiCo2O4–MnO2 composite and activated carbon are assembled as a hybrid capacitor, it has the highest energy density of 29.6 Wh·kg−1 at a power density of 425 W·kg−1 with an operating voltage of 1.7 V. This work shows readers an easy method to synthesize composite films for energy storage. Full article
Show Figures

Figure 1

17 pages, 7148 KB  
Article
Fiber-Shaped Supercapacitors Fabricated Using Hierarchical Nanostructures of NiCo2O4 Nanoneedles and MnO2 Nanoflakes on Roughened Ni Wire
by Jing Zhang, Prashant S. Shewale and Kwang-Seok Yun
Energies 2019, 12(16), 3127; https://doi.org/10.3390/en12163127 - 14 Aug 2019
Cited by 24 | Viewed by 5080
Abstract
Electrostatic capacitors have high power density but low energy density. In contrast, batteries and fuel cells have high energy density but low power density. However, supercapacitors can simultaneously achieve both high power density and energy density. Herein, we propose a supercapacitor, in which [...] Read more.
Electrostatic capacitors have high power density but low energy density. In contrast, batteries and fuel cells have high energy density but low power density. However, supercapacitors can simultaneously achieve both high power density and energy density. Herein, we propose a supercapacitor, in which etched nickel wire was used as a current collector due to its high conductivity. Two redox reactive materials, MnO2 nanoflakes and NiCo2O4 nanoneedles, were used in a hierarchical structure to cover the roughened surface of the Ni wire to maximize the effective surface area. Thus, a specific capacitance, energy density, and power density of 14.4 F/cm3, 2 mWh/cm3, and 0.1 W/cm3, respectively, was obtained via single-electrode experiments. A fiber-shaped supercapacitor was prepared by twisting two electrodes with solid electrolytes made of KOH and polyvinyl alcohol. Although the solid electrolyte had a low ionic conductivity, the energy density and power density were determined to be 0.97 mWh/cm3 and 49.8 mW/cm3, respectively. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

12 pages, 4110 KB  
Article
Basic Medium Heterogeneous Solution Synthesis of α-MnO2 Nanoflakes as an Anode or Cathode in Half Cell Configuration (vs. Lithium) of Li-Ion Batteries
by Kyungho Kim, Geoffrey Daniel, Vadim G. Kessler, Gulaim A. Seisenbaeva and Vilas G. Pol
Nanomaterials 2018, 8(8), 608; https://doi.org/10.3390/nano8080608 - 9 Aug 2018
Cited by 21 | Viewed by 5812
Abstract
Nano α-MnO2 is usually synthesized under hydrothermal conditions in acidic medium, which results in materials easily undergoing thermal reduction and offers single crystals often over 100 nm in size. In this study, α-MnO2 built up of inter-grown ultra-small nanoflakes with 10 [...] Read more.
Nano α-MnO2 is usually synthesized under hydrothermal conditions in acidic medium, which results in materials easily undergoing thermal reduction and offers single crystals often over 100 nm in size. In this study, α-MnO2 built up of inter-grown ultra-small nanoflakes with 10 nm thickness was produced in a rapid two-step procedure starting via partial reduction in solution in basic medium subsequently followed by co-proportionation in thermal treatment. This approach offers phase-pure α-MnO2 doped with potassium (cryptomelane type K0.25Mn8O16 structure) demonstrating considerable chemical and thermal stability. The reaction pathways leading to this new morphology and structure have been discussed. The MnO2 electrodes produced from obtained nanostructures were tested as electrodes of lithium ion batteries delivering initial discharge capacities of 968 mAh g−1 for anode (0 to 2.0 V) and 317 mAh g−1 for cathode (1.5 to 3.5 V) at 20 mA g−1 current density. At constant current of 100 mA g−1, stable cycling of anode achieving 660 mAh g−1 and 145 mAh g−1 for cathode after 200 cycles is recorded. Post diagnostic analysis of cycled electrodes confirmed the electrode materials stability and structural properties. Full article
Show Figures

Graphical abstract

Back to TopTop