Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Microbial Source Tracking (MST)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1365 KB  
Article
Marker- and Microbiome-Based Microbial Source Tracking and Evaluation of Bather Health Risk from Fecal Contamination in Galveston, Texas
by Karalee A. Corbeil, Anna Gitter, Valeria Ruvalcaba, Nicole C. Powers, Md Shakhawat Hossain, Gabriele Bonaiti, Lucy Flores, Jason Pinchback, Anish Jantrania and Terry Gentry
Water 2025, 17(15), 2310; https://doi.org/10.3390/w17152310 - 3 Aug 2025
Viewed by 1098
Abstract
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the [...] Read more.
(1) The beach areas of Galveston, Texas, USA are heavily used for recreational activities and often experience elevated fecal indicator bacteria levels, representing a potential threat to ecosystem services, human health, and tourism-based economies that rely on suitable water quality. (2) During the span of 15 months (March 2022–May 2023), water samples that exceeded the U.S. Environmental Protection Agency-accepted alternative Beach Action Value (BAV) for enterococci of 104 MPN/100 mL were analyzed via microbial source tracking (MST) through quantitative polymerase chain reaction (qPCR) assays. The Bacteroides HF183 and DogBact as well as the Catellicoccus LeeSeaGull markers were used to detect human, dog, and gull fecal sources, respectively. The qPCR MST data were then utilized in a quantitative microbial risk assessment (QMRA) to assess human health risks. Additionally, samples collected in July and August 2022 were sequenced for 16S rRNA and matched with fecal sources through the Bayesian SourceTracker2 program. (3) Overall, 26% of the 110 samples with enterococci exceedances were positive for at least one of the MST markers. Gull was revealed to be the primary source of identified fecal contamination through qPCR and SourceTracker2. Human contamination was detected at very low levels (<1%), whereas dog contamination was found to co-occur with human contamination through qPCR. QMRA identified Campylobacter from canine sources as being the primary driver for human health risks for contact recreation for both adults and children. (4) These MST results coupled with QMRA provide important insight into water quality in Galveston that can inform future water quality and beach management decisions that prioritize public health risks. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 4443 KB  
Article
Assessment of Chicken Fecal Contamination Using Microbial Source Tracking (MST) and Environmental DNA (eDNA) Profiling in Silway River, Philippines
by Lonny Mar Opog, Joan Cecilia Casila, Rubenito Lampayan, Marisa Sobremisana, Abriel Bulasag, Katsuhide Yokoyama and Soufiane Haddout
J. Xenobiot. 2024, 14(4), 1941-1961; https://doi.org/10.3390/jox14040104 - 12 Dec 2024
Viewed by 2823
Abstract
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup [...] Read more.
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup of contaminants due to direct discharge of waste from chicken farms and existing water quality conditions has led to higher fecal matter in the Silway River. While there were technical reports in the early 2000s about poultry farming, this is the first study where fecal coliform from poultry farming was detected in the Silway River using highly sensitive protocols like qPCR. This study characterized the effect of flow velocity and physicochemical water quality parameters on chicken fecal contamination. Gene markers such as Ckmito and ND5-CD were used to detect and quantify poultry manure contamination through microbial source tracking (MST) and environmental DNA (eDNA) profiling. The results of this study showed the presence of chicken fecal bacteria in all stations along the Silway River. The results revealed that normal levels of water quality parameters such as temperature, pH, and high TSS concentrations create favorable conditions for chicken fecal coliforms to thrive. Multiple regression analysis showed that flow velocity and DO significantly affect chicken fecal contamination. A lower cycle threshold (Ct) value indicated higher concentration of the marker ND5-CD, which means higher fecal contamination. It was found that there was an inverse relationship between the Ct value and both velocity (R2 = 0.55, p = 0.01) and DO (R2 = 0.98, p = 0.2), suggesting that low flow velocity and low DO can lead to higher fecal contamination. Findings of fecal contamination could negatively impact water resources, the health of nearby residents, and surrounding farms and industries, as well as the health and growth of fish. Full article
Show Figures

Figure 1

27 pages, 5611 KB  
Article
Applying Microbial Source Tracking Techniques for Identification of Pathways of Faecal Pollution from Water Sources to Point of Use in Vhembe District, South Africa
by Opelo Tlotlo Wryl Mochware, Mathoto Lydia Thaoge-Zwane and Maggy Ndombo Benkete Momba
Water 2024, 16(14), 2014; https://doi.org/10.3390/w16142014 - 16 Jul 2024
Cited by 1 | Viewed by 1636
Abstract
A safe water supply is a necessity, but it remains one of the backlogs of services rendered in rural areas of developing countries. This leads to vulnerable communities using water from available sources that is unsafe as it is contaminated with faecal matter. [...] Read more.
A safe water supply is a necessity, but it remains one of the backlogs of services rendered in rural areas of developing countries. This leads to vulnerable communities using water from available sources that is unsafe as it is contaminated with faecal matter. Microbial source tracking (MST) methods are gold-standard techniques that detect the exact sources of faecal contamination. This study, therefore, tracked and identified the exact sources of faecal contamination from the catchment to the point of use in rural areas of Vhembe District Municipality. Collected water samples (n = 1048) were concentrated by membrane filtration for the enumeration and detection of E. coli, followed by DNA extraction. The extracted DNA was subjected to a quantitative polymerase chain reaction (qPCR) to track target host-specific Bacteroidales genetic markers from the water source to the point of use. Rivers and dams exhibited maximum E. coli counts of up to 90 CFU/100 mL during the wet season and up to 50 CFU/100 mL during the dry season. Due to the effective treatment of these water sources, no E. coli bacteria were detected in any of the sampled municipal drinking water treatment plants at the point of treatment, while this indicator bacterium was detected at the point of use (households), with a maximum of 4 CFU/100 mL recorded during both the wet and dry seasons. Overall, the most prevalent MST marker exhibited during the wet season was BacCan (dog-associated, 6.87%), followed by BacCow (cow-associated, 5.53%), while Pig-2-Bac (pig-associated, 2.48%) was the least prevalent. The most prevalent marker exhibited during the dry season was BacCan (5.34%), followed by BacCow, with Pig-2-Bac (1.72%) being the least prevalent. A positive correlation (r = 0.31, p = 0.001) was established between the presence of the MST markers and detected E. coli from water sources to the point of use. The knowledge of the faecal contamination attributes in both public and domestic domains will assist in developing prevention and control strategies. Full article
(This article belongs to the Special Issue Water Quality Monitoring and Public Health)
Show Figures

Figure 1

21 pages, 4349 KB  
Article
Assessing the Occurrence of Host-Specific Faecal Indicator Markers in Water Systems as a Function of Water, Sanitation and Hygiene Practices: A Case Study in Rural Communities of Vhembe District Municipality, South Africa
by Dikeledi Prudence Mothiba, Colette Mmapenya Khabo-Mmekoa, Renay Ngobeni-Nyambi and Maggy Ndombo Benteke Momba
Pathogens 2024, 13(1), 16; https://doi.org/10.3390/pathogens13010016 - 23 Dec 2023
Cited by 4 | Viewed by 2057
Abstract
In settings where humans and animals closely coexist, the introduction of faecal material into unprotected water sources significantly increases the risk of contracting diarrhoeal and zoonotic waterborne diseases. The data were gathered from a survey conducted through interviews at randomly sampled villages; additionally, [...] Read more.
In settings where humans and animals closely coexist, the introduction of faecal material into unprotected water sources significantly increases the risk of contracting diarrhoeal and zoonotic waterborne diseases. The data were gathered from a survey conducted through interviews at randomly sampled villages; additionally, water samples were collected in randomly selected households and their associated feeder catchments. Molecular techniques were used, specifically qPCR, to run host-specific Bacteroides microbial source tracking (MST) assays for human, cattle, pig, chicken and dog faecal contamination. Unexpectedly, the qPCR assays revealed dogs to be the most prevalent (40.65%) depositor of faecal matter in unprotected surface water, followed by humans (40.63%); this finding was contradictory to survey findings indicating cattle as the leading source. At the household level, dogs (16.67%) and chickens (15.28%) played prominent roles, as was expected. Reflecting on some of the basic daily practices in households, nearly 89.00% of the population was found to store water due to erratic supply, in contrast to 93.23% using an improved water source. Additionally, a significant association was found between water, sanitation and hygiene (WASH) variables and the occurrence of MST markers after performing a bivariate linear regression. However, the inconsistency between the MST results and household surveys suggests pervasive sanitation issues, even in households without domesticated animals. Full article
(This article belongs to the Special Issue Water-Borne Pathogens)
Show Figures

Figure 1

9 pages, 3672 KB  
Communication
Upper-Layer Bacterioplankton Potentially Impact the Annual Variation and Carbon Cycling of the Bathypelagic Communities in the South China Sea
by Xiuping Liu, Jiaqian Li, Xueyan Ding, Kalyani Sen, Yaodong He, Mohan Bai and Guangyi Wang
Water 2023, 15(19), 3359; https://doi.org/10.3390/w15193359 - 25 Sep 2023
Viewed by 1705
Abstract
Pelagic bacterioplankton exhibit biogeographical patterns linked with exporting organic carbon and energy fluxes into the deep ocean. However, knowledge of the mechanisms shaping deep-sea bacterial communities remains largely elusive. In this study, we used high throughput sequencing of the 16S rRNA gene to [...] Read more.
Pelagic bacterioplankton exhibit biogeographical patterns linked with exporting organic carbon and energy fluxes into the deep ocean. However, knowledge of the mechanisms shaping deep-sea bacterial communities remains largely elusive. In this study, we used high throughput sequencing of the 16S rRNA gene to reveal significant annual bacterioplankton community dynamics in the South China Sea during three summer cruises (2016–2018). As we expected, the epipelagic–bathypelagic connective amplicon sequence variants (ASVs, mostly belonging to Actinobacteriota, Firmicutes, and Cyanobacteria) suggested that they not only affect the community structure but also influence the carbon cycling functions of bathypelagic bacterioplankton in different years. However, the microbial source tracking (MST) analysis indicated that the directly linked proportions between the bathypelagic and epipelagic samples were minimal. Thus, the epipelagic bacteria communities may form “seeds” rather than directly sinking into the deep ocean to influence bathypelagic bacteria. This study provides a new perspective on the mechanisms shaping the deep ocean bacterioplankton communities. Full article
(This article belongs to the Special Issue Emerging Challenges in Ocean Engineering and Environmental Effects)
Show Figures

Figure 1

14 pages, 1740 KB  
Article
Host-Associated Bacteroides 16S rDNA-Based Markers for Source Tracking of Fecal Pollution in Laguna Lake, Philippines
by Gicelle T. Malajacan, Mae Ashley G. Nacario, Marie Christine M. Obusan and Windell L. Rivera
Microorganisms 2023, 11(5), 1142; https://doi.org/10.3390/microorganisms11051142 - 27 Apr 2023
Cited by 6 | Viewed by 3278
Abstract
Sources of fecal contamination in Laguna Lake, Philippines, were identified using a library-independent microbial source tracking method targeting host-associated Bacteroides 16S rDNA-based markers. Water samples from nine lake stations were assessed for the presence of the fecal markers HF183 (human), BoBac (cattle), Pig-2-Bac [...] Read more.
Sources of fecal contamination in Laguna Lake, Philippines, were identified using a library-independent microbial source tracking method targeting host-associated Bacteroides 16S rDNA-based markers. Water samples from nine lake stations were assessed for the presence of the fecal markers HF183 (human), BoBac (cattle), Pig-2-Bac (swine), and DuckBac (duck) from August 2019 to January 2020. HF183 (average concentration = 1.91 log10 copies/mL) was the most frequently detected, while Pig-2-Bac (average concentration = 2.47 log10 copies/mL) was the most abundant. The detected marker concentrations in different stations corresponded to the land use patterns around the lake. Generally, all marker concentrations were higher during the wet season (August–October), suggesting the effect of rainfall-associated factors on the movement and retention of markers from sources. There was a significant association (ρ = 0.45; p < 0.001) between phosphate and the concentration of HF183, suggesting domestic sewage-derived pollution. The markers had acceptable sensitivity and specificity, i.e., HF183 (S = 0.88; R = 0.99), Pig-2-Bac (S = 1.00; R = 1.00), and DuckBac (S = 0.94; R = 1.00), and therefore may be used for the continuous monitoring of fecal pollution in the lake and in designing interventions to improve the quality of the lake water. Full article
(This article belongs to the Special Issue Water Microorganisms Associated with Human Health)
Show Figures

Figure 1

27 pages, 2762 KB  
Review
Application of the Human Viral Surrogate Pepper Mild Mottle Virus for Wastewater Fecal Pollution Management
by Khalid Maniah, Islam Nour, Atif Hanif, Mohamed Taha Yassin, Abdulrahman Alkathiri, Yazeed Alharbi, Riyadh Alotaibi, Abdullah E. Al-Anazi and Saleh Eifan
Water 2022, 14(24), 4033; https://doi.org/10.3390/w14244033 - 10 Dec 2022
Cited by 3 | Viewed by 6729
Abstract
Global water scarcity has led to significant dependence on reclaimed or recycled water for potable uses. Effluents arising from human and animal gut microbiomes highly influence water quality. Wastewater pollution is, therefore, frequently monitored using bacterial indicators (BI). However, threats to public health [...] Read more.
Global water scarcity has led to significant dependence on reclaimed or recycled water for potable uses. Effluents arising from human and animal gut microbiomes highly influence water quality. Wastewater pollution is, therefore, frequently monitored using bacterial indicators (BI). However, threats to public health arise from the frequent incidence of wastewater-mediated viral infections–undetected by BI. Moreover, the enteric viromes contaminating wastewater are characterized by high abundance, genetic diversity and persistence in various water environments. Furthermore, humans usually suffer a minimum of a single acute diarrheal episode over their lifetime arising from extraneously acquired enteric microbiomes. A wide range of management methods are employed—in particular, microbial source tracking (MST) approaches to confront infections arising from exposure to contaminated wastewater. This review elaborates the viral contamination of treated wastewater and associated public health issues. Latterly, we discuss the various management strategies of wastewater pollution using conventional fecal indicators, viral indicators and human viral surrogates, with particular interest in the pepper mild mottle virus (PMMoV). Globally, PMMoV has been detected in rivers, aquifers, irrigation systems, and coastal and marine waters at high prevalence rates and concentrations greater than 105 genome copies per liter (gc/L). PMMoV was also found in almost all untreated wastewater environments. PMMoV concentrations in wastewater vary from 103 to 107 gc/L. These values are more than the maximum recorded viral indicator concentrations in wastewater for other proposed indicators. Limited variability in the daily concentrations of PMMoV in fecal wastewater has been studied, with an estimated average concentration of 105 gc/L with insignificant seasonal variability. The information summarized in this article offers fundamental knowledge for decision making in terms of defining the suitability criteria of candidate fecal indicators, risk assessment application and efficient wastewater management. Full article
(This article belongs to the Special Issue Microbial Risk Assessment for Recreational Waters)
Show Figures

Figure 1

17 pages, 1511 KB  
Article
Microbial Source Tracking as a Method of Determination of Beach Sand Contamination
by Elisabete Valério, Maria Leonor Santos, Pedro Teixeira, Ricardo Matias, João Mendonça, Warish Ahmed and João Brandão
Int. J. Environ. Res. Public Health 2022, 19(13), 7934; https://doi.org/10.3390/ijerph19137934 - 28 Jun 2022
Cited by 19 | Viewed by 4104
Abstract
Beach sand may act as a reservoir for numerous microorganisms, including enteric pathogens. Several of these pathogens originate in human or animal feces, which may pose a public health risk. In August 2019, high levels of fecal indicator bacteria (FIB) were detected in [...] Read more.
Beach sand may act as a reservoir for numerous microorganisms, including enteric pathogens. Several of these pathogens originate in human or animal feces, which may pose a public health risk. In August 2019, high levels of fecal indicator bacteria (FIB) were detected in the sand of the Azorean beach Prainha, Terceira Island, Portugal. Remediation measures were promptly implemented, including sand removal and the spraying of chlorine to restore the sand quality. To determine the source of the fecal contamination, during the first campaign, supratidal sand samples were collected from several sites along the beach, followed by microbial source tracking (MST) analyses of Bacteroides marker genes for five animal species, including humans. Some of the sampling sites revealed the presence of marker genes from dogs, seagulls, and ruminants. Making use of the information on biological sources originating partially from dogs, the municipality enforced restrictive measures for dog-walking at the beach. Subsequent sampling campaigns detected low FIB contamination due to the mitigation and remediation measures that were undertaken. This is the first case study where the MST approach was used to determine the contamination sources in the supratidal sand of a coastal beach. Our results show that MST can be an essential tool to determine sources of fecal contamination in the sand. This study shows the importance of holistic management of beaches that should go beyond water quality monitoring for FIB, putting forth evidence for beach sand monitoring. Full article
Show Figures

Figure 1

18 pages, 341 KB  
Review
An Overview of Microbial Source Tracking Using Host-Specific Genetic Markers to Identify Origins of Fecal Contamination in Different Water Environments
by Lisa Paruch and Adam M. Paruch
Water 2022, 14(11), 1809; https://doi.org/10.3390/w14111809 - 4 Jun 2022
Cited by 21 | Viewed by 8405
Abstract
Fecal contamination of water constitutes a serious health risk to humans and environmental ecosystems. This is mainly due to the fact that fecal material carries a variety of enteropathogens, which can enter and circulate in water bodies through fecal pollution. In this respect, [...] Read more.
Fecal contamination of water constitutes a serious health risk to humans and environmental ecosystems. This is mainly due to the fact that fecal material carries a variety of enteropathogens, which can enter and circulate in water bodies through fecal pollution. In this respect, the prompt identification of the polluting source(s) is pivotal to guiding appropriate target-specific remediation actions. Notably, microbial source tracking (MST) is widely applied to determine the host origin(s) contributing to fecal water pollution through the identification of zoogenic and/or anthropogenic sources of fecal environmental DNA (eDNA). A wide array of host-associated molecular markers have been developed and exploited for polluting source attribution in various aquatic ecosystems. This review is intended to provide the most up-to-date overview of genetic marker-based MST studies carried out in different water types, such as freshwaters (including surface and groundwaters) and seawaters (from coasts, beaches, lagoons, and estuaries), as well as drinking water systems. Focusing on the latest scientific progress/achievements, this work aims to gain updated knowledge on the applicability and robustness of using MST for water quality surveillance. Moreover, it also provides a future perspective on advancing MST applications for environmental research. Full article
16 pages, 2234 KB  
Article
Microbial Source Tracking Approach to Investigate Fecal Waste at the Strawberry Creek Watershed and Clam Beach, California, USA
by Jeremy A. Corrigan, Steven R. Butkus, Michael E. Ferris and Jill C. Roberts
Int. J. Environ. Res. Public Health 2021, 18(13), 6901; https://doi.org/10.3390/ijerph18136901 - 27 Jun 2021
Cited by 6 | Viewed by 3821
Abstract
Clam Beach is located in Northern California, USA, and is listed as an impaired waterway by the federal government. The scope of this study was to investigate this beach and surrounding watershed to determine, if possible, the source of the impairment by conducting [...] Read more.
Clam Beach is located in Northern California, USA, and is listed as an impaired waterway by the federal government. The scope of this study was to investigate this beach and surrounding watershed to determine, if possible, the source of the impairment by conducting an 11-h beach study and 8-week watershed study. We used traditional fecal indicator bacteria (FIB) and microbial source tracking (MST) methods to help identify source(s) of the FIB. Our study was focused on four possible contributors: human, ruminant, canine, and bird. A total of 169 samples were collected, analyzed, and compared to the California Department of Health single sample maximum (SSM) objective. In the beach study, 29 (44%) samples exceeded at least one SSM objective, which would have resulted in a resample per state regulations for recreational primary contact use. MST methods showed that the most abundant marker detected was bird, in 65% of the samples, but varied by sample location, which is likely due to a natural population of nearshore birds regularly observed along Clam Beach. The watershed study highlighted the potential influence from ruminants throughout the region, while humans did not appear to be a significant contributor. Health risk to humans appears to be low. Full article
(This article belongs to the Section Water Science and Technology)
Show Figures

Graphical abstract

27 pages, 1214 KB  
Article
Picking Up Where the TMDL Leaves Off: Using the Partnership Wild and Scenic River Framework for Collaborative River Restoration
by Alan R. Hunt, Meiyin Wu, Tsung-Ta David Hsu, Nancy Roberts-Lawler, Jessica Miller, Alessandra Rossi and Lee H. Lee
Sustainability 2021, 13(4), 1878; https://doi.org/10.3390/su13041878 - 9 Feb 2021
Cited by 6 | Viewed by 4538
Abstract
The National Wild and Scenic Rivers Act protects less than ¼ of a percent of the United States’ river miles, focusing on free-flowing rivers of good water quality with outstandingly remarkable values for recreation, scenery, and other unique river attributes. It predates the [...] Read more.
The National Wild and Scenic Rivers Act protects less than ¼ of a percent of the United States’ river miles, focusing on free-flowing rivers of good water quality with outstandingly remarkable values for recreation, scenery, and other unique river attributes. It predates the enactment of the Clean Water Act, yet includes a clear anti-degradation principle, that pollution should be reduced and eliminated on designated rivers, in cooperation with the federal Environmental Protection Agency and state pollution control agencies. However, the federal Clean Water Act lacks a clear management framework for implementing restoration activities to reduce non-point source pollution, of which bacterial contamination impacts nearly 40% of the Wild and Scenic Rivers. A case study of the Musconetcong River, in rural mountainous New Jersey, indicates that the Wild and Scenic Rivers Act can be utilized to mobilize and align non-governmental, governmental, philanthropic, and private land-owner resources for restoring river water quality. For example, coordinated restoration efforts on one tributary reduced bacterial contamination by 95%, surpassing the TMDL goal of a 93% reduction. Stakeholder interviews and focus groups indicated widespread knowledge and motivation to improve water quality, but resource constraints limited the scale and scope of restoration efforts. The authors postulate that the Partnership framework, enabled in the Wild and Scenic Rivers Act, facilitated neo-endogenous rural development through improving water quality for recreational usage, whereby bottom-up restoration activities were catalyzed via federal designation and resource provision. However, further efforts to address water quality via voluntary participatory frameworks were ultimately limited by the public sector’s inadequate funding and inaction with regard to water and wildlife resources in the public trust. Full article
(This article belongs to the Special Issue Durable Protections for Free-Flowing Rivers)
Show Figures

Figure 1

16 pages, 1043 KB  
Article
Human Health Risks Associated with Recreational Waters: Preliminary Approach of Integrating Quantitative Microbial Risk Assessment with Microbial Source Tracking
by Anna Gitter, Kristina D. Mena, Kevin L. Wagner, Diane E. Boellstorff, Kyna E. Borel, Lucas F. Gregory, Terry J. Gentry and Raghupathy Karthikeyan
Water 2020, 12(2), 327; https://doi.org/10.3390/w12020327 - 23 Jan 2020
Cited by 21 | Viewed by 5721
Abstract
Gastrointestinal (GI) illness risks associated with exposure to waters impacted by human and nonhuman fecal sources were estimated using quantitative microbial risk assessment (QMRA). Microbial source tracking (MST) results had identified Escherichia coli (E. coli) contributors to the waterbody as human [...] Read more.
Gastrointestinal (GI) illness risks associated with exposure to waters impacted by human and nonhuman fecal sources were estimated using quantitative microbial risk assessment (QMRA). Microbial source tracking (MST) results had identified Escherichia coli (E. coli) contributors to the waterbody as human and unidentified (10%), cattle and domestic animals (25%), and wildlife (65%) in a rural watershed. The illness risks associated with ingestion during recreation were calculated by assigning reference pathogens for each contributing source and using pathogen dose–response relationships. The risk of GI illness was calculated for a specific sampling site with a geometric mean of E. coli of 163 colony forming units (cfu) 100 mL−1, and the recreational standard of E. coli, 126 cfu 100 mL−1. While the most frequent sources of fecal indicator bacteria at the sampling site were nonhuman, the risk of illness from norovirus, the reference pathogen representing human waste, contributed the greatest risk to human health. This study serves as a preliminary review regarding the potential for incorporating results from library-dependent MST to inform a QMRA for recreational waters. The simulations indicated that identifying the sources contributing to the bacterial impairment is critical to estimate the human health risk associated with recreation in a waterbody. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

12 pages, 2270 KB  
Article
Microfluidic Array Chip for Parallel Detection of Waterborne Bacteria
by Lena Gorgannezhad, Kamalalayam Rajan Sreejith, Jun Zhang, Gregor Kijanka, Melody Christie, Helen Stratton and Nam-Trung Nguyen
Micromachines 2019, 10(12), 883; https://doi.org/10.3390/mi10120883 - 16 Dec 2019
Cited by 15 | Viewed by 5126
Abstract
The polymerase chain reaction (PCR) is a robust technique used to make multiple copies of a segment of DNA. However, the available PCR platforms require elaborate and time-consuming operations or costly instruments, hindering their application. Herein, we introduce a sandwiched glass–polydimethylsiloxane (PDMS)–glass microchip [...] Read more.
The polymerase chain reaction (PCR) is a robust technique used to make multiple copies of a segment of DNA. However, the available PCR platforms require elaborate and time-consuming operations or costly instruments, hindering their application. Herein, we introduce a sandwiched glass–polydimethylsiloxane (PDMS)–glass microchip containing an array of reactors for the real-time PCR-based detection of multiple waterborne bacteria. The PCR solution was loaded into the array of reactors in a single step utilising capillary filling, eliminating the need for pumps, valves, and liquid handling instruments. Issues of generating and trapping bubbles during the loading chip step were addressed by creating smooth internal reactor surfaces. Triton X-100 was used to enhance PCR compatibility in the chip by minimising the nonspecific adsorption of enzymes. A custom-made real-time PCR instrument was also fabricated to provide thermal cycling to the array chip. The microfluidic device was successfully demonstrated for microbial faecal source tracking (MST) in water. Full article
(This article belongs to the Special Issue 10th Anniversary of Micromachines)
Show Figures

Figure 1

14 pages, 999 KB  
Article
Two Drinking Water Outbreaks Caused by Wastewater Intrusion Including Sapovirus in Finland
by Ari Kauppinen, Tarja Pitkänen, Haider Al-Hello, Leena Maunula, Anna-Maria Hokajärvi, Ruska Rimhanen-Finne and Ilkka T. Miettinen
Int. J. Environ. Res. Public Health 2019, 16(22), 4376; https://doi.org/10.3390/ijerph16224376 - 9 Nov 2019
Cited by 46 | Viewed by 5810
Abstract
Drinking water outbreaks occur worldwide and may be caused by several factors, including raw water contamination, treatment deficiencies, and distribution network failure. This study describes two drinking water outbreaks in Finland in 2016 (outbreak I) and 2018 (outbreak II). Both outbreaks caused approximately [...] Read more.
Drinking water outbreaks occur worldwide and may be caused by several factors, including raw water contamination, treatment deficiencies, and distribution network failure. This study describes two drinking water outbreaks in Finland in 2016 (outbreak I) and 2018 (outbreak II). Both outbreaks caused approximately 450 illness cases and were due to drinking water pipe breakage and subsequent wastewater intrusion into the distribution system. In both outbreaks, the sapovirus was found in patient samples as the main causative agent. In addition, adenoviruses and Dientamoeba fragilis (outbreak I), and noroviruses, astroviruses, enterotoxigenic and enterohemorragic Escherichia coli (ETEC and EHEC, respectively) and Plesiomonas shigelloides (outbreak II) were detected in patient samples. Water samples were analyzed for the selected pathogens largely based on the results of patient samples. In addition, traditional fecal indicator bacteria and host-specific microbial source tracking (MST) markers (GenBac3 and HF183) were analyzed from water. In drinking water, sapovirus and enteropathogenic E. coli (EPEC) were found in outbreak II. The MST markers proved useful in the detection of contamination and to ensure the success of contaminant removal from the water distribution system. As mitigation actions, boil water advisory, alternative drinking water sources and chlorination were organized to restrict the outbreaks and to clean the contaminated distribution network. This study highlights the emerging role of sapoviruses as a waterborne pathogen and warrants the need for testing of multiple viruses during outbreak investigation. Full article
Show Figures

Figure 1

11 pages, 2121 KB  
Article
Indoor Microbiome and Antibiotic Resistance on Floor Surfaces: An Exploratory Study in Three Different Building Types
by Mridula Gupta, Seungjun Lee, Michael Bisesi and Jiyoung Lee
Int. J. Environ. Res. Public Health 2019, 16(21), 4160; https://doi.org/10.3390/ijerph16214160 - 28 Oct 2019
Cited by 25 | Viewed by 6132
Abstract
Floor materials in indoor environments are known to be reservoirs of microbes. We focused on examining bacterial community composition, antibiotic resistance (AR) and microbial source tracking (MST) of fecal bacteria on the floor surfaces. Swab samples were collected from carpet and vinyl floors [...] Read more.
Floor materials in indoor environments are known to be reservoirs of microbes. We focused on examining bacterial community composition, antibiotic resistance (AR) and microbial source tracking (MST) of fecal bacteria on the floor surfaces. Swab samples were collected from carpet and vinyl floors in three different buildings (medical, veterinary, and office buildings) from high and low traffic areas. Bacterial communities were determined with 16S rRNA sequencing, and AR (tetracycline (tetQ), sulfonamide, and carbapenem (KPC)) and MST (human-, canine-, avian-, and ruminant-specific fecal bacteria) were examined with quantitative polymerase chain reaction (PCR). The results show that Proteobacteria and Actinobacteria were the most abundant phyla. Traffic level significantly affected the number of operational taxonomic units. Traffic level was a key factor for distinctive bacterial community in the medical center. Targeted ARGs were detected from all buildings and tetQ concentration was related with traffic level, and KPC was only detected from the medical center. Most of the floor surfaces showed the presence of dog-specific fecal bacteria (83%) followed by bird-specific fecal bacteria (75%). The results suggest that traffic levels affected the bacterial levels and fecal contamination is prevalent on the floor surfaces. This is the first study that reports KPC presence on the floor surfaces. Full article
(This article belongs to the Special Issue Environmental Microbiology and Urban Health)
Show Figures

Graphical abstract

Back to TopTop