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Abstract: Global water scarcity has led to significant dependence on reclaimed or recycled water for
potable uses. Effluents arising from human and animal gut microbiomes highly influence water qual-
ity. Wastewater pollution is, therefore, frequently monitored using bacterial indicators (BI). However,
threats to public health arise from the frequent incidence of wastewater-mediated viral infections–
undetected by BI. Moreover, the enteric viromes contaminating wastewater are characterized by
high abundance, genetic diversity and persistence in various water environments. Furthermore,
humans usually suffer a minimum of a single acute diarrheal episode over their lifetime arising from
extraneously acquired enteric microbiomes. A wide range of management methods are employed—in
particular, microbial source tracking (MST) approaches to confront infections arising from exposure to
contaminated wastewater. This review elaborates the viral contamination of treated wastewater and
associated public health issues. Latterly, we discuss the various management strategies of wastewater
pollution using conventional fecal indicators, viral indicators and human viral surrogates, with partic-
ular interest in the pepper mild mottle virus (PMMoV). Globally, PMMoV has been detected in rivers,
aquifers, irrigation systems, and coastal and marine waters at high prevalence rates and concentra-
tions greater than 105 genome copies per liter (gc/L). PMMoV was also found in almost all untreated
wastewater environments. PMMoV concentrations in wastewater vary from 103 to 107 gc/L. These
values are more than the maximum recorded viral indicator concentrations in wastewater for other
proposed indicators. Limited variability in the daily concentrations of PMMoV in fecal wastewater
has been studied, with an estimated average concentration of 105 gc/L with insignificant seasonal
variability. The information summarized in this article offers fundamental knowledge for decision
making in terms of defining the suitability criteria of candidate fecal indicators, risk assessment
application and efficient wastewater management.

Keywords: wastewater; indicators; management; pepper mild mottle virus; fecal contamination;
waterborne viruses

1. Introduction

The wastewater virome is a distinct subset of the microbiome owing to frequent
infection of humans and domestic/companion animals [1–4]. For instance, a typical
healthy human is estimated to harbor more than 10 virus-mediated chronic infections and
occasionally more [5]. In particular, the human gut virome composition is intensively
studied because of the continuous introduction of newly pathogenic agents and altered
pathogenesis patterns, along with changes in immune responses owing to selection pressure
imposed on the existent virome [6,7]. Gastroenteritis displays the potential pathogenesis
of acquired gut virome [3,8]. For instance, rotavirus A, noroviruses and astroviruses are
considered as the major causes of acute gastroenteritis worldwide and mainly result in
infantile acute diarrhea [9–11].
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Exposure to wastewater represents a common transmission route of enteric viruses via
recreation water, surface water usage, wastewater/greywater-mediated irrigation and toilet
flushing [12–16]. Therefore, wastewater reuse guidelines were suggested for safe use of
wastewater. Moreover, fecal contamination indicators were proposed to ensure compliance
with these guidelines. Coliform members represent the frequently used fecal indicators;
however, other indicators have also been proposed involving bacteriophages, enterococci
and sulfite-reducing bacteria [17–20]. These have not, however, met the expected sensitivity
of enteric viruses’ detection [21]. On the contrary, microbial source tracking (MST) tools
provided higher specificity. Currently, MST professionals adopt a toolbox approach, i.e.,
implementing numerous MST markers, such as using pepper mild mottle virus (PMMoV)
together with cross-assembly phage crAssphage [22–24].

However, MST protocols are commonly hampered by the low viral concentrations
in water, thus demanding efficient water concentration methods to enable enteric viruses’
detection [25]. Establishment of concentration methods for enteric viruses is mainly
aimed at viral recovery from small water volumes [26]. Currently, recent methods in-
cluding skimmed milk flocculation, monolithic adsorption filtration columns and the
VirWaTest method depicted great success in enteric viruses’ recovery from different water
sources [27–30].

2. Viral Contamination of Treated Wastewater

Viruses are obligatory intracellular parasites of both eukaryotic and prokaryotic cells,
and considered as the smallest microorganisms capable of replication [31]. Since they
are unable to metabolize, they cannot engage in any energy-dependent processes like
growth, respiration or reproduction on their own [32]. The main component of viruses
is nucleic acid (DNA or RNA), which is shielded by a protein capsid that, in some cases,
is surrounded by a lipid envelope [33]. Despite their apparent simplicity, viruses can
nevertheless penetrate host cells using a number of physical and chemical mechanisms that
are part of both the virus and the cell’s structure. Moreover, viruses can also manipulate
cellular processes to produce progeny viruses using various routes of entry [34]. Of
particular interest is that enteric viruses are transmitted via the fecal–oral pathway. Enteric
viruses are considered as the most persistent fecal microorganisms even during treatment
approaches of contaminated raw water owing to their unique characteristics [35]. These
viruses have an icosahedral structure, are between 20 and 100 nm in size, and primarily
show a negative charge at neutral pH [36]. They are principal causes of viral gastroenteritis,
hepatitis and poliomyelitis, displaying their adverse effect on public health. In addition,
some enteric viruses, including polyomaviruses, have been linked to cancer [37]. Moreover,
enteric viruses are highly efficient at surviving outside the gut for long periods, thus are
easily disseminated through water resources [38].

Inappropriate wastewater treatment has caused viral contamination of shellfish, fresh
produce and recreational waterways [39]. Many developing nations struggle with this
ongoing problem because they lack the resources for effective wastewater treatment [40].
It is not surprising that, in current US frameworks, viruses demand substantially bigger
reductions than bacteria or protozoan parasites when wastewater is reused for potable
reasons. Target log10 removal value (LRV) attributions are computed using a risk-modelling
methodology, assuming the worst-case scenario (very high viral concentrations, as would
be the situation during a big epidemic), and a final risk of less than one illness in 10,000 ex-
posures, per year [41]. Currently, states are choosing between one of these three LRV
programs that were previously developed [42]. Although Texas’ requirements seem to be
less stringent than those of California or the National Water Research Institute (NWRI),
it should be emphasized that Texas only counts LRVs from treated effluent toward final
product water, excluding wastewater treatment reduction [43]. The wastewater treatment
plant must exhibit its ability to eliminate pathogens to the levels required by the state prior
to earning an LRV attribution, typically through a pilot demonstration [44].
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Validating virus elimination is necessary for LRV attribution in reuse schemes. How-
ever, pathogenic virus concentrations in sewage and treated effluent vary, and frequently
are not at levels that might effectively verify an 8–12 LRV [45]. It is frequently not practical
or safe to spike pathogenic viruses at each phase to confirm overall LRV. Non-pathogenic
viruses are frequently used as a process indicator [46].

According to conservative estimates, a good process indicator should: (i) be present
in higher concentrations than human pathogenic viruses throughout treatment; (ii) be
eliminated less effectively than human pathogenic viruses; (iii) correlate favorably with
human pathogenic viruses; and (iv) be simple to detect and applicable to a variety of
treatment processes [47].

3. Human Health Risk of Virus-Associated Water Pollution

On an annual basis, there are over 4 billion instances of waterborne diarrheal illnesses,
which cause 2 million deaths, with under-five year olds the majority [48]. Enteric viral
infections account for a sizable fraction of these diseases [49]. The most crucial way for
enteric viruses to spread is through direct contact with infected individuals. Enteric viruses
are spreading via the fecal–oral pathway as shown in Figure 1 [50]. However, the majority
of enteric viruses remain persistent in areas where residential wastewater discharges exist
and are frequently linked to waterborne epidemics [50]. Although typical wastewater treat-
ment techniques can be comparatively inefficient at eliminating enteric viruses, wastewater
is frequently treated before being released into the environment [51]. Fecal matter pol-
lutes the environment and drinking water sources in poor countries since many locations
lack suitable sanitary infrastructure and wastewater treatment facilities [52]. Additionally,
significant amounts of untreated wastewater may be released by combined sewer over-
flows (CSOs) during periods of high rainfall as well as through dry water overflows, such
as those caused by snowmelt, tidal infiltration, system failures and obstructions [53–55].
Consequently, people who come into direct or indirect contact with contaminated waters
are prone to the risk of contracting viral infections as a result of these events, which al-
low enteric pathogens to contaminate the environment directly [56]. Enteric viruses are
extremely contagious in ambient waters and can stick to particles in the water column or
accumulate in sediment [57]. They might subsequently be consumed by aquatic organisms,
such as bivalve shellfish harvested for human consumption [58]. Additionally, wastewater
is regularly used for irrigation in areas with a shortage of freshwater; as a result, enteric
viruses may directly contaminate fruit and salad vegetables, and result in foodborne out-
breaks [54]. The typical duration of gastroenteritis caused by enteric viruses is 2–5 days [59].
In certain circumstances, the infection goes asymptomatic or causes symptoms in the
skin, neurological system or respiratory system [60]. The Picornaviridae, Caliciviridae,
Reoviridae, and Adenoviridae families make up the majority of those responsible for gas-
troenteritis (Table 1). For instance, noroviruses (family Caliciviridae) account for a sizable
portion of gastroenteritis infections worldwide, causing 685 million cases and roughly
200,000 fatalities [61], with a total direct cost to the healthcare system of USD 4.2 billion
and associated societal costs of USD 60.3 billion annually [61]. The main etiological agents
of gastroenteritis in newborns and young children are rotaviruses (family Reoviridae) and
group F mastadenoviruses (AdVs; family Adenoviridae) [62]. The three most frequent viral
pathogens linked to waterborne and water-associated foodborne outbreaks are noroviruses,
hepatitis A virus (family Picornaviridae) and AdVs [63]. Infection can cause significant
illness, such as acute hepatitis [64].
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Figure 1. Diagrammatic representation of the fecal–oral route for transmission of enteric viruses.
Human excreta go through land runoff and sewage that contaminate oceans, rivers, lakes and ground
water. Moreover, sewage can contaminate irrigation water. The contaminated oceans, rivers and
lakes influence filter feeders (shellfish) and recreation water, whereas the direct water supply would
be affected by the improperly decontaminated ground water and rivers. Crops and irrigation-based
aerosols are also contaminated by inadequately treated irrigation water. On the other hand, the
human excreta give rise to solid wastes that affect the groundwater, leading to unclean water supply.
Absence of a sanitation barrier and a properly clean water supply barrier lead to enteric virus infection
of a new human host.

Several studies have linked the pollution of wastewater with rotaviruses, enteroviruses,
sapoviruses, astroviruses, Aichi virus (AiV) and hepatitis E virus [65–68]. For instance,
in Maharashtra state, India in 2017, contaminated drinking water wells were the source
of a rotavirus B outbreak with a 22.8% attack rate [66]. A number of viral gastroenteritis
outbreaks connected to sewage-contaminated water that contained enteroviruses such as
AdV, norovirus, sapovirus, astrovirus and rotavirus have also been reported [67]. Hepatitis
E virus was linked to the greatest viral waterborne outbreak in Kanpur, India, which
affected almost 80,000 individuals [68].

Environmental waterways have recently been found to include both recently discov-
ered viruses and well-known viruses that weren’t previously connected to wastewater
(Table 1). Infected people’s feces and urine have only lately been found to include human
polyomaviruses (PyVs) and papillomaviruses, which were initially identified in the 1970s
and 1950s, respectively [69]. High concentrations of several PyVs, such as BKPyV, WUPyV,
KIPyV, MCPyV and JCPyV, have been found in wastewater, river and ocean, silt, swimming
pools, and tap water (up to 108 genome copies (gc)/l) [70,71]. Although the method of
transmission of these viruses is not yet known because healthy persons frequently show no
symptoms, aquatic infections are most likely [72]. On the other hand, the first description
of Bocaviruses (family Parvoviridae), which cause gastroenteritis and respiratory tract
infections, was made in 2005 [73]. Since then, human bocaviruses have been discovered
in wastewater at quantities of 103–105 genome copies (gc)/l in both untreated and treated
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wastewater [74]. Additionally, sewage and contaminated river waters have been shown to
contain the gastroenteritis-causing torque teno virus (family Anelloviridae). Similar to bo-
caviruses, the torque teno virus has much lower concentrations (up to 106 gc/l) than other,
more prevalent enteric viruses (104–109 gc/l) [75]. Additionally, human picobirnaviruses
(family Picobirnaviridae) have been found in contaminated rivers and wastewater with con-
centrations ranging from 103 to 106 gc/l [76]. Wastewater has also been shown to contain
the entire or partial genomes of circoviruses (family Circoviridae), cardioviruses (family
Picornaviridae), and enveloped viruses (coronaviruses, influenza virus) [77]. Human in-
fections from aquatic corona- and influenza viruses (such as SARS-CoV-2) are uncommon
since enveloped viruses break down quickly in water [78].

Table 1. Human pathogenic viruses detected in the aquatic environment.

Virus Size of Viral Particle Zoonotic Transmission Aquatic Environment References

Mastadenovirus A–F 70–90 nm No Wastewater [79,80]
Torque teno virus 30 nm Yes River [79–81]

Astrovirus 28–30 nm Potentially Sewage water [79,82,83]
Norovirus GI, GII 35–40 nm No River [79,84]
Sapovirus GI, GII No Wastewater and river [75,79]

Human-associated circovirus 15–25 nm No Sewage [85,86]
Hepatitis E virus type 1–4 27–34 nm Yes Tap and bottled water [87,88]
Assorted papillomaviruses 55 nm No Wastewater [89,90]
Human bocavirus type 1–4 22 nm No Recycled water and sewage [79,91]

Aichivirus A–B 30–32 nm No Sewage and surface water [92]
Cosavirus A No River and waste water [85,93]

Coxsackievirus B No Sewage water [93,94]
Enterovirus A–D No Groundwater [93,95]

Poliovirus type 1–3 No Wastewater [93,96]
Hepatitis A virus 40–45 nm No Wastewater [93,97]
BK polyomavirus No River and sewage water [98]
JC polyomavirus No Wastewater [99]

Rotavirus A 60–80 nm Potentially Drinking water [79,100]

4. Management Strategies for Wastewater Pollution
4.1. Traditional Fecal Bacterial Indicators

The microbiological safety of irrigation water is monitored using indicator organ-
isms [101]. E. coli is classified as specifically having fecal origin and is a member of the
coliform subgroup known as the fecal coliforms [102]. The primary indicator of fecal
contamination of water is frequently E. coli [103]. There are several problems with E. coli as
a fecal indicator. To begin with, the presence of viral infections is not correlated with E. coli
which is not host-specific. Moreover, E. coli also decays in the environment more quickly
compared to other foodborne bacteria [104]. In contrast, the standard fecal indicator should
show environmental survival and movement across the matrix that are equal to or greater
than those of the pathogen, exist at higher concentrations than the pathogen, and provide
source specificity [105]. Also, the indicator organism assay method should be accurate,
specific, quick, quantitative, sensitive, widely applicable and indicative of infectivity [106].

Levels of fecal contamination in water have conventionally been assessed using
fecal indicator bacteria (FIB; including coliform bacteria, Enterococcus, E. coli and
Streptococcus spp.) [107]. In this context, bacterial pathogens, like fecal coliforms, can sur-
vive for up to 15 days on the surface of food and up to 30 days in water and sewage [108].
However, bacteria have been demonstrated to be substantially less persistent in the envi-
ronment and significantly less resistant to wastewater treatment than enteric viruses [31].
Consequently, FIB are subpar predictors of the risk of viral infection, which implies that
current water-quality monitoring programs based only on FIB are insufficient [109].
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4.2. Viral Indicators

Human enteric viruses come in about 100 different varieties and the number is grow-
ing due to newly discovered and emerging strains [110]. Surrogates and indicators are
frequently employed to study the fate and transport of pathogenic strains in the environ-
ment owing to the high diversity of viral pathogens [111]. An indicator may be useful
for evaluating pathogen abundance, persistence, adsorption and transit in the aquatic
environment, as well as for making a general assessment of the effectiveness of wastewater
and drinking water treatment [44]. Therefore, a good viral indicator should ideally have
comparable inactivation and retention of the target pathogens and should be present year-
round in wastewater and habitats impacted by wastewater [112]. This would allow for
ongoing monitoring and provide information on the degree of pollution and the probability
that pathogens are present [113]. Table 2 lists some enteric viruses that are connected to
wastewater and may be utilized as indicators, but not all of these viruses meet the criteria.
High concentrations of influenza, corona-, circo- and papillomaviruses have been found
in wastewater but not in contaminated areas, which may be because of how quickly they
degrade in water [114].

Additionally, several enteric viruses (such as the astrovirus, rotavirus, torque teno
virus and hepatitis E virus) may be zoonotic; as a result, their occurrence in the environment
may be caused by things other than human waste, such as agricultural operations [115].
Although the hepatitis A and E viruses are widespread in less developed countries, they
only sometimes cause epidemics in more developed areas [116]. Furthermore, in temperate
regions, enteroviruses, noroviruses and sapoviruses all exhibit distinct seasonality, peaking
either in the summer (for enteroviruses) or the winter (for noroviruses and sapoviruses) [52].
Consequently, these viruses are not constantly present in contaminated environments and
wastewater throughout the year [117]. On the other hand, it has been proposed that
human adenovirus, polyomaviruses and Aichi viruses can serve as accurate fecal markers
because they are frequently found in sewage and other contaminated areas without any
discernible seasonality [118].

Table 2. Survival of enteric viruses in various water environments.

Organism Habitat Temperature Duration
(Days) Log Reduction Reference

Adenovirus Groundwater
4 132 1.00

[119]20 36 1.00

Adenovirus 40
Seawater

15 28 1.40

[120]15 85 2.00

Drinking water 4 60 0.49
4 92 2.00

Adenovirus 41
Seawater

15 28 1.60

[120]15 77 2.00

Drinking water 4 60 1.00
4 304 2.00

Rotavirus

Fresh water
20 10 2.00

[121]4 32 2.00
Seawater 37 7 5.00 [122]

Soil 37 7 1.70 [123]
Drinking water 20 64 2.00 [124]

Norovirus

Groundwater 25 1266 1.79 [125]

Mineral water
25 80 1.30

[126]4 80 0.89

Tap water 25 80 0.80
4 80 3.00

Hepatitis A virus

Seawater 20 28 4.00 [127]
Artificial
seawater

25 11 1.00 [128]24 19 1.00

Drinking water 4 60 1.60 [120]4 56 2.00
Bottled water 21 21 1.99 [129]

Astrovirus Tap water 20 30 2.00
[130]4 60 2.00
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4.3. Human Viral Surrogates

New possible human virus surrogates were also discovered in wastewater thanks to
advancements in genome-based approaches, with the candidates pepper mild mottle virus
(PMMoV) and crAssphage emerging as particularly intriguing ones [46]. Despite being
morphologically and physiologically dissimilar from human enteric viruses, these possible
human viral surrogates are present in large amounts in municipal wastewater [57].

4.3.1. Coliphages

Wastewater is frequently contaminated with bacteriophages that attack microorgan-
isms related to the human gut [131]. Coliphages, which are present in human feces, are
bacterial viruses that attack E. coli [132]. Furthermore, coliphages can be counted as plaque-
forming units (PFU) on agar containing the host bacteria using culture-based procedures,
which are simple and affordable to use [133]. This method offers a rough estimate of
the presence and quantity of infectious coliphage viruses [134]. Moreover, this technique
helped overcome the drawbacks of PCR, which estimates genetic material regardless of
infectivity [135]. In general, coliphages are predicted to be persistent in environmental
waters and respond to treatment similarly to human enteric viruses, although thorough
analyses of environmental data have revealed a variety of patterns [136]. The discovery of
an infectious coliphage in recycled water suggests that there may be an infectious human
virus present in the same wastewater or that the treatment process failed to eliminate the
infective virus [137]. It is common practice to evaluate wastewater pollution using somatic
coliphages (phages that infect E. coli) and F-specific RNA bacteriophages (FRNAP; phages
that infect bacteria through the F-pili) [138]. Moreover, it is worth mentioning that the
European Union introduced in the revised drinking water directive (2020/2184) analyses of
somatic coliphages from raw waters with an established reference value of not more than
50 PFU/100 mL [139].

4.3.2. CrAssphage

Bacteriophages that infect Bacteroides species may also be a sign of contaminated
wastewater [140]. These phages include the recently identified class of viruses known as
crAss-like phages [141]. Wastewater contains a significant amount of CrAssphage, which is
excreted by 50–70% of humans [142]. Importantly, crAssphage can be particularly linked to
people and is a sign of human waste that can be distinguished from animal waste [143].
The genome of CrAssphage (metagenome-assembled genome), co-evolved with humans
and is a member of the typical gut virome [57].

4.3.3. Pepper Mild Mottle Virus

Pepper mild mottle viruses (PMMoV) have a rod-shaped, non-enveloped and single-
stranded RNA (ssRNA) genome [46]. In high concentrations, PMMoV is found in human
feces all throughout the world [144]. Additionally, PMMoV virions are resilient to a variety
of environmental conditions [145]. PMMoV could be a more reliable indicator of fecal load
than viruses that cause human disease because its presence is dietary in origin [32].

Due to its dietary origin in feces, pepper mild mottle virus (PMMoV; family Vir-
gaviridae), a plant virus from the genus Tobamovirus [146], differs from other suggested
surrogates for enteric viruses in terms of host, transmission route (Figure 2), higher persis-
tence, abundance and human waste correlation–discussed later. For instance, PMMoV has
been demonstrated to be connected to human waste, and it can be detected in contaminated
surface water, groundwater and drinking water [54]. Quantitative PCR verified discharged
amounts of 106 to 109 viral copies per gram (dry weight) of human feces, when PMMoV
was found to predominate the RNA viral metagenome of human feces [147]. Consumption
of peppers (Capsicum spp.) and food products made with peppers that are contaminated
with the virus is the main cause of PMMoV in human excreta [148]. Despite the fact that
PMMoV’s size and shape (17–300 nm rod-shaped capsid) differ from other pathogenic
viruses with icosahedral capsids, its fate and behavior in the environment may be different,
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it has been suggested that PMMoV can be a useful indicator of wastewater contamina-
tion [47]. Since its discovery in human feces in 2006, high concentrations of PMMoV have
been detected in food products, human feces and wastewater in Asia, Europe and the
United States [147,149–152].

Water 2022, 14, 4033 8 of 27 
 

 

feces all throughout the world [144]. Additionally, PMMoV virions are resilient to a vari-

ety of environmental conditions [145]. PMMoV could be a more reliable indicator of fecal 

load than viruses that cause human disease because its presence is dietary in origin [32]. 

Due to its dietary origin in feces, pepper mild mottle virus (PMMoV; family Vir-

gaviridae), a plant virus from the genus Tobamovirus [146], differs from other suggested 

surrogates for enteric viruses in terms of host, transmission route (Figure 2), higher per-

sistence, abundance and human waste correlation–discussed later. For instance, PMMoV 

has been demonstrated to be connected to human waste, and it can be detected in contam-

inated surface water, groundwater and drinking water [54]. Quantitative PCR verified 

discharged amounts of 106 to 109 viral copies per gram (dry weight) of human feces, when 

PMMoV was found to predominate the RNA viral metagenome of human feces [147]. 

Consumption of peppers (Capsicum spp.) and food products made with peppers that are 

contaminated with the virus is the main cause of PMMoV in human excreta [148]. Despite 

the fact that PMMoV’s size and shape (17–300 nm rod-shaped capsid) differ from other 

pathogenic viruses with icosahedral capsids, its fate and behavior in the environment may 

be different, it has been suggested that PMMoV can be a useful indicator of wastewater 

contamination [47]. Since its discovery in human feces in 2006, high concentrations of 

PMMoV have been detected in food products, human feces and wastewater in Asia, Eu-

rope and the United States [147,149–152]. 

In a French study, food products tested from France, U.S., Mexico and unknown or-

igins were positive for PMMoV and showed as much as 107 PMMoV copies/mL [151]. In 

addition, PMMoV concentrations in wastewater vary from 106 to 1010 copies/mL [144,150]. 

These values are more than the maximum recorded viral indicator concentrations in 

wastewater for other proposed indicators [150]. There is limited variability in the daily 

concentrations of PMMoV in fecal wastewater with an estimated average concentration 

of 108 copies/mL, when investigated over a two-week period [144], and insignificant sea-

sonal variability was also detected [123]. 

 

Figure 2. Transmission routes of PMMoV. PMMoV-infected pepper (a) is either used for preparation 

of powdered pepper products, in chili sauces (b) or directly consumed as a fresh product by humans 

(c). The human excreta (d) containing PMMoV are discharged into sewage water (e) that is prone to 

treatment approaches (f) for reuse in irrigation (g). 

Given the large quantities of enteric viruses in wastewater, PMMoV has potential as 

a process indicator for tracking enteric virus eradication during potable water and 

wastewater treatment. However, compared to enteric viruses, PMMoV is extremely re-

sistant to the (waste) water treatment process, with as little as 1-log10 PMMoV elimination 

Figure 2. Transmission routes of PMMoV. PMMoV-infected pepper (a) is either used for preparation
of powdered pepper products, in chili sauces (b) or directly consumed as a fresh product by humans
(c). The human excreta (d) containing PMMoV are discharged into sewage water (e) that is prone to
treatment approaches (f) for reuse in irrigation (g).

In a French study, food products tested from France, U.S., Mexico and unknown
origins were positive for PMMoV and showed as much as 107 PMMoV copies/mL [151]. In
addition, PMMoV concentrations in wastewater vary from 106 to 1010 copies/mL [144,150].
These values are more than the maximum recorded viral indicator concentrations in
wastewater for other proposed indicators [150]. There is limited variability in the daily
concentrations of PMMoV in fecal wastewater with an estimated average concentration of
108 copies/mL, when investigated over a two-week period [144], and insignificant seasonal
variability was also detected [123].

Given the large quantities of enteric viruses in wastewater, PMMoV has potential
as a process indicator for tracking enteric virus eradication during potable water and
wastewater treatment. However, compared to enteric viruses, PMMoV is extremely resis-
tant to the (waste) water treatment process, with as little as 1-log10 PMMoV elimination
following a variety of wastewater treatment techniques [153,154]. The possibility exists
that PMMoV detection in surface waters may exaggerate the degree of fecal pollution
due to the high concentrations of PMMoV in household wastewater and its resilience
during the wastewater treatment process [63]. However, prior research has discovered a
number of benefits to employing PMMoV as a marker of human fecal pollution in surface
waterways [144,147,149,153]. These advantages of PMMoV include that it is absent in envi-
ronmental waters devoid of recognized wastewater sources [155]. Furthermore, PMMoV
was reported to be regularly present in quantifiable proportions in wastewater [144]. In
addition, PMMoV co-occurs with interesting enteric viruses in river and seawater exposed
to point sources of wastewater pollution [152]. Moreover, PMMoV concentration is rela-
tively high in human feces (105–107 copies/mg) [147,151] in comparison to animal feces
(102–103 copies/mg in seabird, goose, chicken and cow feces; [144,152]). Interestingly, PM-
MoV revealed host specificity ranging from 90 to 92% and a host sensitivity of 100% [156].
As PMMoV becomes more widely used for microbial water quality assessments, it is im-
portant to understand the locations and settings in which PMMoV can be utilized as a
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surrogate for enteric viruses, and the extent to which its detection suggests a significant
health risk [157].

5. PMMoV Application as Fecal Indicator
5.1. Characteristics of Ideal Viral Indicator

The repetitive investigation of environmental water samples for the prevalence of
pathogenic viral strains is often problematic owing to low density and sensitivity of detec-
tion methods such as cell culture and molecular-based assays [158]. The infectivity cannot
be determined by molecular-based tests [159]. It has been predicted that it will be difficult
to estimate the concentration of infectious enteric viruses in recycled water [133]. Indicator
viruses, which co-occur with enteric viruses and are simple to count and grow, have thus
been the subject of investigation [160].

An ideal viral indicator for fecal contamination of waters should have the following
characteristics: (i) it should not be able to replicate in contaminated water; (ii) it should
specifically relate to contamination by human feces and pathogens; (iii) it should be non-
pathogenic to humans; (iv) it should have physical characteristics similar to pathogenic
viruses; (v) it should be at least as resistant to inactivation as pathogenic viruses; (vi) it
should be a member of the intestinal microflora of warm-blooded animals; (vii) it should
be easy to detect; and (viii) it should be applicable to all types of waters [137].

Novel viruses that are prevalent in human feces and wastewater samples have recently
been identified thanks to developments in metagenomics and high-throughput sequencing
technology [77]. Examples of novel indicators of sewage contamination tracking and
wastewater treatment procedures are crAssphage and pepper mild mottle virus (PMMoV),
which were discovered using this method [161]. A fecal marker, on the other hand, is used
to signal the presence of harmful viruses arising from fecal contamination, while a process
indicator virus is used to evaluate the efficacy of a treatment procedure [162]. Simplicity of
measurement and detection, association with human waste, high amounts of presence in
wastewater, wastewater treatment resistance, determination in aquatic environments and
global dispersion should exist in any candidate fecal indicator [163].

5.1.1. Ease of Detection and Quantification

Environmental samples are frequently concentrated before viruses are detected in
order to identify low viral titers accurately [54]. As previously discussed [164], ultracen-
trifugation, ultrafiltration, adsorption/elution and flocculation are frequently utilized for
the concentration of water samples. The sort of concentration technique utilized, the type
of sample and the virus type all affect how effectively viruses can be recovered [165].
Therefore, indicator viruses should be those that can be readily and consistently recovered
utilizing straightforward concentration methods [159]. qPCR-based assays are mostly used
to identify and quantify enteric viruses, crAssphage and PMMoV [166]. Plaque assay or
integrated cell culture–qPCR (ICC-qPCR) were, however, employed in a small number of
investigations for AdV identification [167].

The combined methodology of cell culture and qPCR is utilized for the investigation
of viral replication, enabling the detection of infectious viruses, which grew slowly and/or
failed to exhibit cytopathic effects [168]. This method has decreased the time needed for
infectivity analysis from one week to two days, allowing for rapid detection [167]. The
greater concentrations identified using ICC-qPCR associated with the traditional culturing
assays suggest that using qPCR-based quantification of cultured viruses is further sensitive
and therefore more consistent in environmental settings [169]. Contrarily, any culturing-
based technique for enteric virus identification has the drawback of requiring specialized
staff, BSL2 or BSL3 environments, and equipment (like a CO2 incubator), which may not
be available in routine monitoring facilities [170].
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5.1.2. Human Waste Association

It makes sense to employ viruses like the human-specific AdV, PyV and AiV strains as
indicators of human fecal contamination [118]. The source of contamination (e.g., human
vs. wildlife, livestock, etc.) can be evaluated using these viruses and their matching animal-
associated strains [171]. By differentiating between human, bovine, porcine, canine and
avian AdV genome sequences based on their melting temperatures, Staggemeier et al.
(2015) used SYBR Green qPCR for the identification and quantification of AdVs in water
and sediment samples [172].

It has been demonstrated that PMMoV correlates well with other human markers such
as Bacteriodes HF183 and PyV, suggesting that it is associated with human waste [173]. PM-
MoV has been found at high concentrations in domestic raw and treated fecal wastewater
and also in wastewater-polluted environments [54]. In addition, qPCR assays targeting PM-
MoV demonstrate great sensitivity [156]. Further research into the prevalence of PMMoV
is necessary because it has been claimed that areas with higher consumption of pepper
products have higher concentrations of PMMoV in feces and wastewater [155].

5.1.3. Presence in Wastewater at High Concentrations

With concentrations larger than 105 genome copies gc/L, these analyses revealed
that PMMoV was found in practically all untreated wastewater samples. According to a
recent study conducted in Costa Rica, a human-specific (HF183) Bacteroides marker has a
specificity of 94 percent compared to the 100 percent PMMoV qPCR signal for domestic
wastewater [174]. Additionally, Stachler et al. demonstrated that about 0.02% ± 0.06%
of the metagenomic sequence reads originating from sewage wastewater and biosolids
samples from the United States and Spain were mapped to PMMoV, showing the high
abundance of PMMoV in wastewater samples compared to the other viral pathogens of
humans (average number of mapped sequence reads was found to be 395 ± 619 for PMMoV
while mapped sequences for norovirus were found to be 102 ± 66) [143]. Collectively, these
results demonstrate the value of PMMoV as a precise viral marker for domestic wastewater.
High concentrations of PMMoV (up to 1010 gc/l) have also been found in wastewater
(Figure 3). The highest reported PMMoV concentrations were detected in Florida and other
US states [144], Germany (107–108 gc/l) [152], New Zealand (107 gc/l) [157], Vietnam and
the US (Arizona; 106–107 gc/l) [150,154].
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5.1.4. Resistance to Wastewater Treatment

Traditional wastewater treatment techniques have been demonstrated to be only mod-
erately effective against enteric viruses [181]. Comparative studies have been carried out to
examine enteric virus resistance and potential indicators during wastewater treatment since
removal performance differs between locations and the type of treatment technique [182].
According to the available data, PMMoV is stable during secondary treatment and chlori-
nation, resulting in a <2 log reduction [148]. Haramoto et al. investigated drinking water
sources in Japan from seven distinct geographic regions and discovered that PMMoV was
detected in 140/184 total samples (76%) [153]. There were no appreciable seasonal changes
in PMMoV detection frequency or concentration among the months of autumn, winter and
summer, according to this study’s evaluation of potential seasonal fluctuation [136].

Asami et al. tracked the presence of PMMoV before and after treatment activities in
Bangkok, Thailand. The levels of PMMoV were found to be 102.88 ± 0.35, 102.39 ± 0.55
and 101.06 ± 0.53 GC/L, respectively, in raw water (canal water), post-coagulation sedi-
mentation (CS) and post rapid sand filtering (RSF) [179]. In this investigation, PMMoV was
discovered more frequently than any other viruses (i.e., NoVs, Aichi virus 1, enteric HAdV,
enterovirus, HPyVs). Sangsanont et al. investigated the prevalence of PMMoV in drinking
water samples in Hanoi, Vietnam, recording relative PMMoV concentrations ranging from
1.9 × 105 to 2.7 × 106 GC/L [178]. Shirasaki et al. examined the removal of PMMoV by
membrane filtration (MF) with and without coagulation, as well as by ultrafiltration (UF),
and compared it to that of other enteric viruses [183]. They discovered that the removal of
PMMoV for all filtration processes was highly correlated with the enteric viruses examined,
with comparable log10 reductions. Kato et al. investigated the efficiency of step-wise
removal of PMMoV in sampling campaigns at two full-scale drinking water treatment
plants in Japan, finding that reductions of PMMoV by coagulation sedimentation (plant A:
~2.38 log10; plant B ~2.62 log10), were significantly higher than reductions of turbidity and
indicator bacteria [180].

5.1.5. Persistence in the Aquatic Environment
PMMoV Occurrence in Freshwater Environments

Around the world, PMMoV has been detected in rivers, aquifers, irrigation systems,
and coastal and marine waters at high prevalence rates (Figure 4) and significant concentra-
tions (Figure 5). The influence of effluent, the rainy vs dry seasons, and the relationship
with other indicators of water quality and pollution have all been considered in regard
to the various circumstances surrounding PMMoV prevalence in these water types [184].
The PMMoV, torque teno virus, human adenoviruses, human picobirnaviruses and human
polyomaviruses were among the viruses that were detected in samples taken from the
Ruhr and Rhine rivers in Germany [152]. The study found that PMMoV was detected
in 100% (n = 108) of the analyzed samples while PMMoV concentrations were found in
the range of 3.0 × 103 to 1.1 × 106 gc/L. This range is in accordance with the range de-
scribed by Kuroda et al. for river water samples from Vietnam (n = 3), which ranged from
3.0 × 104 to 1.8 × 106 gc/L [150]. The samples for this study were collected from diverse
locations along river systems, including a site that collects wastewater from a separate
place, 500 m downstream from a wastewater treatment facility and upstream from an urban
area. The PMMoV prevalence in pond and irrigation waters was also assessed and recorded
as 91% and 100% at concentrations of up 1.2 × 105 gc/L and 1.0 × 104 gc/L, respectively.
Another study, conducted in 2017, examined irrigation waters from various sources uti-
lized to irrigate fresh food in the Kathmandu Valley [185]. Six groundwater samples and
35 samples of surface water were taken. Six rivers, two ponds, a canal and six groundwater
wells were sampled. Ninety-six percent of the samples from rivers (27/28), 100% of the
samples from canals (2/2), 60% of the samples from ponds (3/5) and 83% of the samples
from groundwater (5/6) tested positive for PMMoV. In groundwater samples taken from
controlled aquifer recharge locations in Colorado, California and Arizona in the United
States, Betancourt et al. concluded that PMMoV was more frequently found than human
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enteric viruses (HAdV, enterovirus and Aichi virus 1) [149]. Only 3/8 (37.5%) of groundwa-
ter samples from Vietnam in another investigation were positive for PMMoV. The third
sample exhibited a concentration of just 19 GC/L, while two of the samples could not be
quantified [150].
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Figure 4. PMMoV prevalence in various water sources [136,145,150,152,157,161,177–192]. WTTP-I:
wastewater treatment plant influents, WTTP-E: wastewater treatment plant effluents, UF: ultrafiltra-
tion treated wastewater, SW: surface water, RW: raw sewage water, OCE: ocean, GW: groundwater,
EST: estuarine water, DW: drinking water, CS: coagulation–sedimentation-treated wastewater, BOT:
bottled water, BAT: bathing water. Countries included New Zealand (NEZ), Egypt (EGY), United
States of America (USA), Japan (JAP), Italy (ITA), Vietnam (VIT), South Korea (SOK), Nepal (NEP),
Germany (GER), Costa Rica (COR) and Mexico (MEX).
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175,177,184,186,187,192–194]. WTP: wastewater treatment pond, Av. Conc. INF denotes aver-
age concentration of PMMoV in wastewater influents (including raw sewage (RS) and untreated
wastewater) expressed in log genome copies (GC)/L, EFF: wastewater effluents, SW: surface water,
GW: groundwater.

Because of the heterogeneity in occurrence and concentrations between places, it is
likely that the presence of PMMoV in groundwater strongly depends on the soil and aquifer
characteristics for a given area [44]. Another study examined the persistence of PMMoV
in effluent wastewater discharge in Arizona and Colorado and detected the presence of
torque teno virus, HAdV and HPyV in addition to PMMoV [149]. The viral concentrations
were investigated at 1, 3, 6, 10 and 21 days after inoculation. When compared to the other
viruses examined, PMMoV appeared to be the most stable over time, displaying just a
1.1 log10 reduction after 21 days at 25 ◦C as opposed to more significant declines for torque
teno virus (3.0 log10), HAdV (3.7 log10) and HPyV (4.2 log10). This study demonstrates the
high thermal stability of PMMoV virus particles [149].

PMMoV Occurrence in Marine Environment

The viral concentrations of PMMoV ranged from 4.09 × 105 to 6.00 × 107 GC/L in
marine water samples that tested positive (4/7) which were collected from the Gulf Stream
(USA). The presence of numerous microbial source tracking (MST) markers also linked
with the prevalence of PMMoV in coastal waters near Florida. Five coastal regions were
used to gather a total of 30 samples. PMMoV was positive in 60% (18/30) of the collected
samples. These samples’ concentrations ranged from below the quantifiable level to
8.73 × 105 GC/L [25].

Additionally, the Gulf of Nicoya’s coastal waters near Costa Rica were assessed.
Eight samples were taken for this investigation from four key areas in Costa Rica where
shellfish are produced. PMMoV and other MST markers were not found in any of the
coastal samples [174]. However, minimal concentrations of FIB and E. coli were detected,
suggesting that wastewater discharge in these locations has little effect. This is one of the
few studies that has been published that has not been able to find PMMoV in any samples
of environmental water. Only 33.3% (4/12) of the water samples, collected from southeast
Queensland, Australia, tested positive for PMMoV according to the study’s findings.
These samples had concentrations that ranged from 3.6 × 104 to 8.6 × 104 GC/L [176].
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Rosario et al. evaluated the durability of the PMMoV detectability and found that it was
still detectable by qPCR after 7 days of incubation. This led the researchers to estimate that
the half-life of PMMoV in saltwater at 31 to 33 ◦C is 1.54 days [144].

5.1.6. Global Distribution and Temporal Stability

In treated and untreated wastewater over a year, PMMoV and AiV displayed steady
titers [45]; however, peak AiV levels were found in Japanese wastewater in the winter and
spring [154]. Likewise, crAssphage, AdV and PyV did not exhibit any seasonal variations
in concentrations in river, seawater, and treated and untreated wastewater samples [54].
However, higher AdV concentrations were found in treated wastewater collected in Wales
throughout the summer compared to the winter and spring, which was most likely brought
on by dry conditions and a temporary rise in population brought on by summertime
tourist [195]. Additionally, in Norway during January through March, untreated wastew-
ater had greater AdV contents than during April through December [74]. In Egyptian
wastewater collected during the spring and summer, AdV prevalence was lower than
it was in the autumn and winter [196]. Similarly, AdVs were found in river water sam-
ples taken from Japan and Germany in the summer and autumn at low concentrations,
respectively [197,198], perhaps as a result of the dry weather. In contrast, PMMoV re-
vealed no seasonality in river water [144,153]. These results collectively imply that the
markers are detectable and measurable year-round, allowing for continual assessment of
wastewater contamination.

5.2. Suitability of PMMoV as a Viral Indicator of Human Fecal Pollution
5.2.1. Advantages of PMMoV as a Viral Indicator of Fecal Pollution

The remarkable benefit of PMMoV as a fecal indicator is that it can be more regularly
detected in quantifiable and higher concentrations without substantial seasonal changes
in environmental incidence than any human virus (Table 3) [31]. Consequently, PMMoV
can exist anywhere human enteric viruses do, and PMMoV qPCR results are a sensitive
biological marker for the detection of viral infections in a specific environmental water
sample [165]. The use of PMMoV as a fecal indicator can be expanded to other treatment
procedures such as membrane filtration, though more research is required to affirm whether
PMMoV reductions caused by various disinfection techniques are comparable to those
caused by enteric viruses in the latter case [150].

As a viral tracer of fecal pollution, PMMoV was found to have more advantages than
chemical markers [199]. This is partially due to the fact that PMMoV ought to behave
more like enteric viruses than chemical indicators [155]. According to Kuroda et al., the
effectiveness of PMMoV as a fecal indicator in surface water was demonstrated to be similar
to that of caffeine, a commonly used chemical marker for human feces contamination
in water bodies [150]. In particular, the quantity of PMMoV in untreated wastewater,
concentration dynamic range, persistence and ubiquity in surface water were comparable
to or greater than those of caffeine. Due to its great abundance, stability in aquatic habitats
and absence of seasonal fluctuations, PMMoV has the potential to be used as a microbial
source tracking (MST) marker [174]. In fact, PMMoV has gained significant attention as
a new MST technique and has been used as a viral marker in MST research examining
human fecal/sewage pollution in coastal waters [200].
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Table 3. Criteria for PMMoV as an ideal human fecal indicator.

Selection Criteria Applicability of PMMoV Reason Reference

Could be detected in all water types Applicable High prevalence in all types of water [144]

Simple methodology of testing Applicable Can be examined alongside the other viral
pathogens [150]

Comparatively more durable than
the most enteric pathogens Applicable Enduring compared to human enteric viruses [199]

The incidence of indicator is
associated with enteric viruses Applicable Greater frequency than the majority of enteric

pathogens [69]

There is a relation between the
indicator prevalence and the level

of fecal contamination.
Applicable However, it can be too persistent to detect new

contamination. [152]

No aquatic growth Applicable Without its host plant, there is no replication [201]
Member of the microflora of

warm-blooded animals Applicable Highly abundant in human feces [151]

5.2.2. Limitations of Utilizing PMMoV as a Viral Indicator of Fecal Pollution

Compared to human viruses, there are changes in morphology and surface charge. The
morphology of PMMoV (rod shaped) differs noticeably from that of human enteric viruses
(icosahedral shaped) [183]. Under some conditions, this may result in variations in the
way the environment behaves, removal/reduction rates during treatment operations and
recovery efficiency for virus concentration techniques [202]. It is necessary to conduct more
research to ascertain the contribution of each of these elements to the notable differences in
viral capture and removal behaviors between PMMoV and enteric viruses of interest [155].

Due to its unpredictable incidence and behavior when compared to human viruses,
PMMoV has been shown to have limitations as a viral indicator in a number of investi-
gations [203]. Due to the extremely low detection rates and concentrations of PMMoV
in groundwater, tap water and bottled water, as well as the fact that their occurrence
did not coincide with that of pharmaceuticals, personal care products or enteric viruses,
Kuroda et al. came to the conclusion that PMMoV is not suitable as a fecal indicator or tracer
in these sources of water [150]. Hamza et al. asserted that due to PMMoV’s exceptionally
high environmental stability, it may not be appropriate for identifying fresh fecal pollution
in water bodies, which is likely to be associated with infections [145]. Additionally, despite
the discovery of FIB, a research carried out in Bolivia revealed that PMMoV was not found
in any surface water samples [204]. However, a recent study reported PMMoV abundance
in surface water, with intact viral capsid [199]. Therefore, it was proposed that PMMoV
limitation could be solved relying on the detection of intact PMMoV virus particles and
that the absence of intact PMMoV could assure the viral safety of surface-water-dependent
tap water [199].

5.3. Application in Risk Assessment

In risk-based studies of human contact with ecosystems affected by wastewater, novel
indicator viruses like PMMoV offer substantial potential benefits [205]. The ability to
detect wastewater contamination in the environment and assess the ensuing risk to human
health is increased by greater representation of pathogenic viruses and high quantities in
wastewater [206]. A tool called the Quantitative Microbial Risk Assessment (QMRA) makes
it possible to estimate the risk to human health and the related uncertainty [207]. The most
precise technique to assess risk is to directly measure infectious pathogens; however, it may
not be possible to measure every pathogen in a given environment due to low concentration,
low prevalence or a variety of potential pathogen targets [208]. Using a ratio to calculate
pathogen concentrations based on indicator concentrations is one way to deal with issue.
This technique presupposes contamination from a single source (usually wastewater),
as well as identical pathogen and indicator fate and travel [209]. The present World
Health Organization advice to convert between FIB concentrations and viral pathogen
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concentrations is the foundation for this strategy [210]. In recent QMRAs, adenovirus
and PMMoV have been used as viral indicators to represent viral pathogens using a ratio
method [211]. This method was employed by Crank et al. using PMMoV in a QMRA that
demonstrated the potential to lower the existing US EPA Recreational Water Criteria of
around 32 illnesses per 1000 swimmers to approximately 1 ailment per 1000 swimmers
(based on fecal indicator bacteria detection limits) [211]. However, the fecal indicator to
pathogen ratio, which is typically only indicative of a fresh sewage contamination incident,
is a major drawback of this approach [212]. Since viral infections account for the majority of
gastrointestinal disorders, the WHO acknowledges the importance of a risk-based approach
in understanding and preventing human disease [213]. To go forward, better methodologies
for quantification and risk characterization are required [152].

5.4. Correlation with Other Fecal Indicators

Following fresh sewage pollution episodes, PMMoV correlates well with bacterial
fecal markers such as Bacteroides HF183 in sewage wastewaters, and E. coli and enterococci
in sewage waters [214]. In surface waters affected by sewage, PMMoV was present more
frequently and in higher concentrations than adenovirus, polyomavirus and norovirus.
In addition, in sewage-contaminated waters, PMMoV was of higher correlation to enteric
viruses than adenoviruses, enterovirus, Aichi virus and polyomavirus (Figure 6) [153]. The
PMMoV decrease levels during wastewater treatment (0.7–0.9 log10 reduction) were also
lower than those of other viruses, indicating resistance to wastewater treatment [145]. This
suggests that PMMoV would be more useful as a cautious indication of fecal contamination.
Compared to bacterial markers, PMMoV have a longer environmental persistence [205].
Adenovirus, polyomavirus and torque teno virus are among the other viral markers whose
decay is faster than that of PMMoV [54]. It is likely that changes in their genomes are what
account for the differential in crAssphage and PMMoV persistence (dsDNA vs. ssRNA,
respectively) [203].
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Figure 6. PMMoV correlation to a wide spectrum of water viral pathogens in both WWTPs as well as
rivers and oceans [25,152,176,180,186]. AS-WWTP: active sludge-based WWTP, STWW: secondary
treated wastewater, CS-WWTP: coagulation–sedimentation-based treatment plant, RSF-WWTP: rapid
sand filtration (RSF)-mediated WWTP, WWTP-OO: WWTP ocean outfall, BRS: Bagmati river stream,
HPyV: human polyomavirus, HEntV: refers to 8 human enteric viruses cumulatively, including
Aichi virus 1, enteroviruses, human cosaviruses, HAdVs, NoV GI and NoV GII, rotaviruses group A
and saliviruses.
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5.5. Removal in Wastewater and Wastewater Treatment Plant

In wastewater treatment facilities in Germany and the United States, qPCR measure-
ments of PMMoV reduction ranged from <1 to 3.7 log10 [155]. In Thailand, coagulation
and filtration were used to remove 1–2 log10 of contaminants from drinking water, while
reverse osmosis was used to remove PMMoV to levels below LOD [175].

Hamza et al. published the first study on PMMoV reduction efficacy by wastewater
treatment in 2011. In a wastewater treatment facility in Germany that used a traditional
activated sludge technique, this study revealed PMMoV reductions ranging from 1.7 to
3.7 log10 (n = 12) [152]. Consequently, Kitajima et al. demonstrated that the reduction
efficiencies of PMMoV by activated sludge and trickling filter were 0.76 ± 0.53 log10 (n = 12)
and 0.99± 0.64 log10 (n = 12), respectively [47]. In contrast, viral removal by two wastewater
treatment pond systems was investigated by Symonds et al. in Bolivia [175]. They found
that neither system showed any discernible decrease in PMMoV and enteric viruses (NoV
genogroup I [GI] and rotavirus). For additional wastewater treatment, Rachmadi et al.
evaluated the attenuation of PMMoV by two surface flow wetlands in Arizona, United
States, and found that there was little to no removal (≤1 log) [69]. Based on controlled
laboratory tests, they also looked at the durability of PMMoV qPCR signal in wetland
water and found that it was unaffected by a temperature range of 4 to 37 ◦C for 21 days.
Collectively, PMMoV is more enduring in wastewater reclamation systems than human
enteric viruses [54]. These findings are in line with a laboratory-scale investigation that
found no appreciable reduction in PMMoV over a 21-day period at temperatures ranging
from 4 to 37 ◦C. These findings highlight that PMMoV could be more stable in river water
than enteric viruses like HAdV [152]. This might be due to that PMMoV having a more
durable capsid structure than human enteric viruses [183]. Despite the fact that enteric
viruses have a round-shaped virion with a diameter of 30–90 nm while PMMoV has an
extremely stable rod-shaped virion with a length of more than 300 nm, PMMoV’s behavior
in the environment is not always comparable to that of enteric viruses [154]. However,
PMMoV appears to be useful as a conservative “viral tracer” in wastewater reclamation
systems because of its low average reduction rate [150] (Figure 7).
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Figure 7. Average log reduction (ALR) rate of PMMoV by different wastewater treatment approaches
in various countries [150,154,161,177,180,187,188,191]. UF: ultrafiltration, ST: secondary treatment,
SBR: sequential batch reactor, OZ: ozone treatment, CS: coagulation sedimentation, BTF: biological
trickling filter (Biotower), ASP: activated sludge process. *: refers to a different study conducted
in Japan [177].
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6. Conclusions

Disinfection treatment procedures must lower virus concentrations in wastewater
before direct water reuse or release into environmental waters in order to safeguard pub-
lic health as well as the microbial safety of drinking water. Because many pathogenic
viruses are found in concentrations that are too low to quantify and because human enteric
viruses that are dangerous to public health, like norovirus, lack culture-based methods
or are challenging to culture, it is frequently challenging to estimate the log reduction
of viruses achieved by a particular treatment technique. As a result, testing for viral re-
ductions frequently involves molecular techniques like quantitative reverse transcription
PCR. Unlike other viruses, PMMoV’s high concentrations in wastewater allow for the
quantification of virus gene copy removal at full-scale treatment plants, making it an ideal
virus process indicator to assess drinking water, wastewater and water reclamation treat-
ment technologies and facilities. Additionally, PMMoV decrease levels after wastewater
treatment and water treatment for drinking are often comparable to those of human enteric
viruses. In contrast to other viral indicators (bacteriophages MS2 and X174), PMMoV
gene copy removal more frequently has a significant, positive correlation with the gene
copy removal of human enteric viruses during the treatment of drinking water (at plants
with ozonation, coagulation–sedimentation, rapid sand filtration and biological activated
carbon treatments).

PMMoV is useful for quantifying virus reductions at smaller scales of innovative
water treatment technologies, such as point-of-use household drinking water treatment
systems, in addition to having practical applications for measuring virus reduction at
full-scale treatment facilities. The incorporation of culture-based analyses (which would
require plant growth chambers) and/or selective pretreatment for infectious particles
could improve future virus reduction analyses to evaluate treatment efficacy, as PMMoV is
currently quantified using molecular methods that cannot determine virus infectivity.
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