Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Mg-doped zinc oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9960 KiB  
Article
Lanthanum Recovery from Aqueous Solutions by Adsorption onto Silica Xerogel with Iron Oxide and Zinc Oxide
by Ionuţ Bălescu, Mihaela Ciopec, Adina Negrea, Nicoleta Sorina Nemeş, Cătălin Ianăşi, Orsina Verdes, Mariana Suba, Paula Svera, Bogdan Pascu, Petru Negrea and Alina Ramona Buzatu
Gels 2025, 11(5), 314; https://doi.org/10.3390/gels11050314 - 23 Apr 2025
Viewed by 642
Abstract
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and [...] Read more.
From the lanthanide group, part of the rare earth elements (REEs), lanthanum is one of the most important elements given its application potential. Although it does not have severe toxicity to the environment, its increased usage in advanced technologies and medical fields and scarce natural reserves point to the necessity also of recovering lanthanum from diluted solutions. Among the multiple methods for separation and purification, adsorption has been recognized as one of the most promising because of its simplicity, high efficiency, and large-scale availability. In this study, a xerogel based on silicon and iron oxides doped with zinc oxide and polymer (SiO2@Fe2O3@ZnO) (SFZ), obtained by the sol–gel method, was considered as an adsorbent material. Micrography indicates the existence of particles with irregular geometric shapes and sizes between 16 μm and 45 μm. Atomic force microscopy (AFM) reveals the presence of dimples on the top of the material. The specific surface area of the material, calculated by the Brunauer–Emmet–Teller (BET) method, indicates a value of 53 m2/g, with C constant at a value of 48. In addition, the Point of Zero Charge (pHpZc) of the material was determined to be 6.7. To establish the specific parameters of the La(III) adsorption process, static studies were performed. Based on experimental data, kinetic, thermodynamic, and equilibrium studies, the mechanism of the adsorption process was established. The maximum adsorption capacity was 6.7 mg/g, at a solid/liquid ratio = 0.1 g:25 mL, 4 < pH < 6, 298 K, after a contact time of 90 min. From a thermodynamic point of view, the adsorption process is spontaneous, endothermic, and occurs at the adsorbent–adsorbate interface. The Sips model is the most suitable for describing the observed adsorption process, indicating a complex interaction between La(III) ions and the adsorbent material. The material can be reused as an adsorbent material, having a regeneration capacity of more than 90% after the first cycle of regeneration. The material was reused 3 times with considerable efficiency. Full article
Show Figures

Graphical abstract

12 pages, 3261 KiB  
Article
High-Efficiency Biodiesel Production Using ZnO-Modified Starfish-Based Catalysts
by Jeyoung Ha, Sungho Lee and Oi Lun Li
Catalysts 2025, 15(4), 372; https://doi.org/10.3390/catal15040372 - 11 Apr 2025
Cited by 1 | Viewed by 577
Abstract
This study introduces a novel approach to biodiesel production by repurposing starfish, an abundant marine waste, as a sustainable catalyst material. Starfish, primarily composed of Ca-Mg carbonate, were calcined to produce calcium oxide (CaO) and magnesium oxide (MgO), which were subsequently doped with [...] Read more.
This study introduces a novel approach to biodiesel production by repurposing starfish, an abundant marine waste, as a sustainable catalyst material. Starfish, primarily composed of Ca-Mg carbonate, were calcined to produce calcium oxide (CaO) and magnesium oxide (MgO), which were subsequently doped with varying zinc loadings through hydrothermal treatment. This innovative use of marine waste not only addresses environmental concerns but also provides a cost-effective catalyst source. Among the tested compositions, the catalyst doped with 10 wt% Zn achieved the highest biodiesel yield of 96.6%, outperforming both lower and higher Zn loadings. Zinc incorporation significantly improved the catalyst’s surface area, pore volume, and active site density, as confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET) surface analysis. These enhancements facilitated a biodiesel yield of 96.6% within 10 h, a substantial increase compared to the undoped catalyst (86.5%) under identical conditions. Reusability tests further confirmed the catalyst’s high activity over three consecutive cycles, with yields of 96.6%, 94.2%, and 86.5%, respectively, while SEM-EDS analysis demonstrated effective Zn retention after repeated use. This study demonstrates a pioneering strategy for transforming marine waste into a high-performance catalyst, paving the way for sustainable biodiesel production. Full article
(This article belongs to the Special Issue State of the Art of Catalytical Technology in Korea, 2nd Edition)
Show Figures

Figure 1

13 pages, 2577 KiB  
Article
Photocatalytic Degradation of Ciprofloxacin by GO/ZnO/Ag Composite Materials
by Haonan Chi, Pan Cao, Qi Shi, Chaoyu Song, Yuguang Lv and Tai Peng
Nanomaterials 2025, 15(5), 383; https://doi.org/10.3390/nano15050383 - 1 Mar 2025
Cited by 4 | Viewed by 1358
Abstract
This study synthesized graphene oxide (GO)/zinc oxide (ZnO)/silver (Ag) composite materials and investigated their photocatalytic degradation performance for ciprofloxacin (CIP) under visible light irradiation. GO/ZnO/Ag composites with different ratios were prepared via an impregnation and chemical reduction method and characterized using X-ray diffraction [...] Read more.
This study synthesized graphene oxide (GO)/zinc oxide (ZnO)/silver (Ag) composite materials and investigated their photocatalytic degradation performance for ciprofloxacin (CIP) under visible light irradiation. GO/ZnO/Ag composites with different ratios were prepared via an impregnation and chemical reduction method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that under optimal conditions (20 mg/L CIP concentration, 15 mg catalyst dosage, GO/ZnO-3%/Ag-doping ratio, and pH 5), the GO/ZnO/Ag composite exhibited the highest photocatalytic activity, achieving a maximum degradation rate of 82.13%. This catalyst effectively degraded ciprofloxacin under light irradiation, showing promising potential for water purification applications. Full article
Show Figures

Graphical abstract

14 pages, 3545 KiB  
Article
XPS and NEXAFS Characterization of Mg/Zn and Mn Codoped Bismuth Tantalate Pyrochlores
by Nadezhda A. Zhuk, Boris A. Makeev, Aleksandra V. Koroleva, Aleksey M. Lebedev, Olga V. Petrova, Sergey V. Nekipelov and Viktor N. Sivkov
Inorganics 2024, 12(3), 74; https://doi.org/10.3390/inorganics12030074 - 29 Feb 2024
Cited by 5 | Viewed by 2228
Abstract
Two series of the bismuth tantalate pyrochlore samples, codoped with Mg,Mn and Zn,Mn, were synthesized via solid-phase reaction. It was established that the Bi2Mg(Zn)xMn1−xTa2O9.5−Δ (x = 0.3; 0.5; 0.7) samples contain the main phase [...] Read more.
Two series of the bismuth tantalate pyrochlore samples, codoped with Mg,Mn and Zn,Mn, were synthesized via solid-phase reaction. It was established that the Bi2Mg(Zn)xMn1−xTa2O9.5−Δ (x = 0.3; 0.5; 0.7) samples contain the main phase of cubic pyrochlore (sp. gr. Fd-3m) and an admixture of triclinic BiTaO4 (sp. gr. P-1). In both sets, the amount of BiTaO4 is proportional to the amount of manganese doping, however, zinc-containing samples have a higher level of impurities than magnesium-containing ones. The unit cell parameter of the Zn,Mn codoped bismuth tantalate phase increases with an increasing content of zinc ions in the samples from 10.4895(5) (x = 0.3) to 10.5325(5) Å (x = 0.7). The unit cell parameter of Mg,Mn codoped bismuth tantalate pyrochlores increases uniformly with an increasing index x(Mg) from 10.4970(8) at x = 0.3 to 10.5248(8) Å at x = 0.7, according to the Vegard rule. The NEXAFS and XPS data showed that the ions were found to have oxidation states of Bi(+3), Ta(+5), Zn(+2) and Mg(+2). In the Ta 4f XPS spectrum of both series of samples, a low energy shift of the absorption band characteristic of tantalum ions with an effective charge of (+5-δ) was observed. The XPS spectra of Bi4f7/2 and Bi4f5/2 also show a shift of bands towards lower energies which is attributed to the presence of some low-charge ions of transition elements in the bismuth position. The NEXAFS spectroscopy data showed that manganese ions in both series of samples have predominantly 2+ and 3+ oxidation states. XPS data indicate that in zinc-containing preparations the proportion of oxidized manganese ions is higher than in magnesium-containing ones. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

13 pages, 3941 KiB  
Article
Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles
by Arshad Khan, Soheir E. Mohamed, Tayseer I. Al-Naggar, Hasan B. Albargi, Jari S. Algethami and Ayman M. Abdalla
Inorganics 2024, 12(2), 53; https://doi.org/10.3390/inorganics12020053 - 4 Feb 2024
Cited by 3 | Viewed by 2342
Abstract
Zinc oxide (ZnO) nanoparticles were synthesized hydrothermally using zinc acetate dihydrate and sodium thiosulfate pentahydrate precursors. The synthesized powders were sintered in air at 600 °C for different durations with a Cl-doping concentration of 25 mg/g. The optimal sintering time was found to [...] Read more.
Zinc oxide (ZnO) nanoparticles were synthesized hydrothermally using zinc acetate dihydrate and sodium thiosulfate pentahydrate precursors. The synthesized powders were sintered in air at 600 °C for different durations with a Cl-doping concentration of 25 mg/g. The optimal sintering time was found to be 5 h, resulting in the successful formation of the ZnO phase with small particle sizes of around 90 nm, nominal atomic fractions of Zn and O (~50%, ~50%), and increased luminescence intensity. The ideal concentration of Cl was discovered to be 25 mg/g of ZnO, which resulted in the highest luminescence intensity. The ZnO luminescence characteristics were observed in emission bands peaking at approximately 503 nm attributed to the transition from oxygen vacancies. A considerable improvement in the emission intensity was observed with increased Cl doping concentration, up to eight orders of magnitude, compared to pristine ZnO nanoparticles. However, the luminescence intensity decreased in samples with higher concentrations of Cl doping due to concentration quenching. These preliminary outcomes suggest that Cl-doped ZnO nanoparticles could be used for radiation detector development for radon monitoring and other related applications. Full article
Show Figures

Figure 1

12 pages, 2951 KiB  
Article
Highly Transparent Red Organic Light-Emitting Diodes with AZO/Ag/AZO Multilayer Electrode
by Dongwoon Lee, Min Seok Song, Yong Hyeok Seo, Won Woo Lee, Young Woo Kim, Minseong Park, Ye Ji Shin, Sang Jik Kwon, Yongmin Jeon and Eou-Sik Cho
Micromachines 2024, 15(1), 146; https://doi.org/10.3390/mi15010146 - 18 Jan 2024
Cited by 7 | Viewed by 2200
Abstract
Free-form factor optoelectronics is becoming more important for various applications. Specifically, flexible and transparent optoelectronics offers the potential to be adopted in wearable devices in displays, solar cells, or biomedical applications. However, current transparent electrodes are limited in conductivity and flexibility. This study [...] Read more.
Free-form factor optoelectronics is becoming more important for various applications. Specifically, flexible and transparent optoelectronics offers the potential to be adopted in wearable devices in displays, solar cells, or biomedical applications. However, current transparent electrodes are limited in conductivity and flexibility. This study aims to address these challenges and explore potential solutions. For the next-generation transparent conductive electrode, Al-doped zinc oxide (AZO) and silver (AZO/Ag/AZO) deposited by in-line magnetron sputtering without thermal treatment was investigated, and this transparent electrode was used as a transparent organic light-emitting diode (OLED) anode to maximize the transparency characteristics. The experiment and simulation involved adjusting the thickness of Ag and AZO and OLED structure to enhance the transmittance and device performance. The AZO/Ag/AZO with Ag of 12 nm and AZO of 32 nm thickness achieved the results of the highest figure of merit (FOM) (Φ550 = 4.65 mΩ−1) and lowest roughness. The full structure of transparent OLED (TrOLED) with AZO/Ag/AZO anode and Mg:Ag cathode reached 64.84% transmittance at 550 nm, and 300 cd/m2 at about 4 V. The results demonstrate the feasibility of adopting flexible substrates, such as PET, without the need for thermal treatment. This research provides valuable insights into the development of transparent and flexible electronic devices. Full article
(This article belongs to the Special Issue Organic Semiconductors and Devices)
Show Figures

Graphical abstract

27 pages, 3869 KiB  
Review
Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade
by Mariuca Gartner, Hermine Stroescu, Daiana Mitrea and Madalina Nicolescu
Molecules 2023, 28(12), 4674; https://doi.org/10.3390/molecules28124674 - 9 Jun 2023
Cited by 36 | Viewed by 6785
Abstract
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding [...] Read more.
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding polymers in the oxide systems for piezoelectricity enhancement. We mainly followed the results of studies of the last ten years through chemical routes, especially by sol-gel and hydrothermal synthesis. Zinc is an essential element that has a special importance for developing multifunctional materials with various applications. ZnO can be used for the deposition of thin films or for obtaining mixed layers by combining ZnO with other oxides (ZnO-SnO2, ZnO-CuO). Also, composite films can be achieved by mixing ZnO with polymers. It can be doped with metals (Li, Na, Mg, Al) or non-metals (B, N, P). Zn is easily incorporated in a matrix and therefore it can be used as a dopant for other oxidic materials, such as: ITO, CuO, BiFeO3, and NiO. ZnO can be very useful as a seed layer, for good adherence of the main layer to the substrate, generating nucleation sites for nanowires growth. Thanks to its interesting properties, ZnO is a material with multiple applications in various fields: sensing technology, piezoelectric devices, transparent conductive oxides, solar cells, and photoluminescence applications. Its versatility is the main message of this review. Full article
Show Figures

Figure 1

22 pages, 3941 KiB  
Article
Surface Functionalization of Bioactive Hybrid Adsorbents for Enhanced Adsorption of Organic Dyes
by Yasser M. Riyad, Taha M. Elmorsi, Mohd Gulfam Alam and Bernd Abel
Int. J. Environ. Res. Public Health 2023, 20(9), 5750; https://doi.org/10.3390/ijerph20095750 - 8 May 2023
Cited by 5 | Viewed by 2422
Abstract
In this study, a valuable adsorbent was functionalized using commercial ZnO and a mango seed extract (MS-Ext) as a green approach for synthesis. Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray analysis spectraconfirmed the presence of bioactive phenolic compounds [...] Read more.
In this study, a valuable adsorbent was functionalized using commercial ZnO and a mango seed extract (MS-Ext) as a green approach for synthesis. Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray analysis spectraconfirmed the presence of bioactive phenolic compounds and Cu2+ ions on the surface of ZnO. Functionalized Cu-doped ZnO/MS-Ext exhibits high efficacy in acidic, neutral, and alkaline medium, as indicated by 98.3% and 93.7% removal of methylene blue (MB) and crystal violet (CV) dyes, respectively. Cu-doped ZnO/MS-Ext has a zeta potential significantly lower than pristine zinc oxide (p-ZnO), which results in enhanced adsorption of cationic MB and CV dyes. In binary systems, both MB and CV were significantly removed in acidic and alkaline media, with 92% and 87% being removed for CV in acidic and alkaline media, respectively. In contrast, the removal efficiency of methyl orange dye (MO) was 16.4%, 6.6% and 11.2% for p-ZnO, ZnO/Ext and Cu-doped ZnO/Ext, respectively. In general, the adsorption kinetics of MB on Cu-doped ZnO/MS-Ext follow this order: linear pseudo-second-order (PSO) > nonlinear pseudo-second-order (PSO) > nonlinear Elovich model > linear Elovich model. The Langmuir isotherm represents the adsorption process and indicates that MB, CV, and MO are chemisorbed onto the surface of the adsorbent at localized active centers of the MS-extract functional groups. In a binary system consisting of MB and CV, the maximum adsorption capacity (qm) was 72.49 mg/g and 46.61 mg/g, respectively. The adsorption mechanism is governed by electrostatic attraction and repulsion, coordination bonds, and π–π interactions between cationic and anionic dyes upon Cu-doped ZnO/Ext surfaces. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Graphical abstract

17 pages, 5536 KiB  
Article
Device Simulation of Highly Stable and 29% Efficient FA0.75MA0.25Sn0.95Ge0.05I3-Based Perovskite Solar Cell
by Hussein Sabbah and Zaher Abdel Baki
Nanomaterials 2023, 13(9), 1537; https://doi.org/10.3390/nano13091537 - 3 May 2023
Cited by 10 | Viewed by 2412
Abstract
A new type of perovskite solar cell based on mixed tin and germanium has the potential to achieve good power conversion efficiency and extreme air stability. However, improving its efficiency is crucial for practical application in solar cells. This paper presents a quantitative [...] Read more.
A new type of perovskite solar cell based on mixed tin and germanium has the potential to achieve good power conversion efficiency and extreme air stability. However, improving its efficiency is crucial for practical application in solar cells. This paper presents a quantitative analysis of lead-free FA0.75MA0.25Sn0.95Ge0.05I3 using a solar cell capacitance simulator to optimize its structure. Various electron transport layer materials were thoroughly investigated to enhance efficiency. The study considered the impact of energy level alignment between the absorber and electron transport layer interface, thickness and doping concentration of the electron transport layer, thickness and defect density of the absorber, and the rear metal work function. The optimized structures included poly (3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOT:PSS) as the hole transport layer and either zinc oxide (ZnO) or zinc magnesium oxide (Zn0.7Mg0.3O) as the electron transport layer. The power conversion efficiency obtained was 29%, which was over three times higher than the initial structure. Performing numerical simulations on FA0.75MA0.25Sn0.95Ge0.05I3 can significantly enhance the likelihood of its commercialization. The optimized values resulting from the conducted parametric study are as follows: a short-circuit current density of 30.13 mA·cm−2), an open-circuit voltage of 1.08 V, a fill factor of 86.56%, and a power conversion efficiency of 28.31% for the intended solar cell. Full article
Show Figures

Figure 1

20 pages, 17737 KiB  
Article
Proteolytically Resistant Bioactive Peptide-Grafted Sr/Mg-Doped Hardystonite Foams: Comparison of Two Covalent Functionalization Strategies
by Annj Zamuner, Elena Zeni, Hamada Elsayed, Michele Di Foggia, Paola Taddei, Antonella Pasquato, Lucy Di Silvio, Enrico Bernardo, Paola Brun and Monica Dettin
Biomimetics 2023, 8(2), 185; https://doi.org/10.3390/biomimetics8020185 - 29 Apr 2023
Cited by 2 | Viewed by 2183
Abstract
Hardystonite-based (HT) bioceramic foams were easily obtained via thermal treatment of silicone resins and reactive oxide fillers in air. By using a commercial silicone, incorporating strontium oxide and magnesium oxide precursors (as well as CaO and ZnO), and treating it at 1100 °C, [...] Read more.
Hardystonite-based (HT) bioceramic foams were easily obtained via thermal treatment of silicone resins and reactive oxide fillers in air. By using a commercial silicone, incorporating strontium oxide and magnesium oxide precursors (as well as CaO and ZnO), and treating it at 1100 °C, a complex solid solution (Ca1.4Sr0.6Zn0.85Mg0.15Si2O7) that has superior biocompatibility and bioactivity properties compared to pure hardystonite (Ca2ZnSi2O7) can be obtained. Proteolytic-resistant adhesive peptide mapped on vitronectin (D2HVP), was selectively grafted to Sr/Mg-doped HT foams using two different strategies. Unfortunately, the first method (via protected peptide) was unsuitable for acid-sensitive materials such as Sr/Mg-doped HT, resulting in the release of cytotoxic levels of Zinc over time, with consequent negative cellular response. To overcome this unexpected result, a novel functionalization strategy requiring aqueous solution and mild conditions was designed. Sr/Mg-doped HT functionalized with this second strategy (via aldehyde peptide) showed a dramatic increase in human osteoblast proliferation at 6 days compared to only silanized or non-functionalized samples. Furthermore, we demonstrated that the functionalization treatment does not induce any cytotoxicity. Functionalized foams enhanced mRNA-specific transcript levels coding IBSP, VTN, RUNX2, and SPP1 at 2 days post-seeding. In conclusion, the second functionalization strategy proved to be appropriate for this specific biomaterial and was effective at enhancing the material’s bioactivity. Full article
Show Figures

Figure 1

16 pages, 4164 KiB  
Article
Ni0.6Zn0.4O Synthesised via a Solid-State Method for Promoting Hydrogen Sorption from MgH2
by Noratiqah Sazelee, Muhamad Faiz Md Din and Mohammad Ismail
Materials 2023, 16(6), 2176; https://doi.org/10.3390/ma16062176 - 8 Mar 2023
Cited by 7 | Viewed by 2078
Abstract
Magnesium hydrides (MgH2) have drawn a lot of interest as a promising hydrogen storage material option due to their good reversibility and high hydrogen storage capacity (7.60 wt.%). However, the high hydrogen desorption temperature (more than 400 °C) and slow sorption [...] Read more.
Magnesium hydrides (MgH2) have drawn a lot of interest as a promising hydrogen storage material option due to their good reversibility and high hydrogen storage capacity (7.60 wt.%). However, the high hydrogen desorption temperature (more than 400 °C) and slow sorption kinetics of MgH2 are the main obstacles to its practical use. In this research, nickel zinc oxide (Ni0.6Zn0.4O) was synthesized via the solid-state method and doped into MgH2 to overcome the drawbacks of MgH2. The onset desorption temperature of the MgH2–10 wt.% Ni0.6Zn0.4O sample was reduced to 285 °C, 133 °C, and 56 °C lower than that of pure MgH2 and milled MgH2, respectively. Furthermore, at 250 °C, the MgH2–10 wt.% Ni0.6Zn0.4O sample could absorb 6.50 wt.% of H2 and desorbed 2.20 wt.% of H2 at 300 °C within 1 h. With the addition of 10 wt.% of Ni0.6Zn0.4O, the activation energy of MgH2 dropped from 133 kJ/mol to 97 kJ/mol. The morphology of the samples also demonstrated that the particle size is smaller compared with undoped samples. It is believed that in situ forms of NiO, ZnO, and MgO had good catalytic effects on MgH2, significantly reducing the activation energy and onset desorption temperature while improving the sorption kinetics of MgH2. Full article
(This article belongs to the Special Issue Advance Materials for Hydrogen Storage)
Show Figures

Figure 1

15 pages, 6144 KiB  
Article
Structural, Optical, and Renewable Energy-Assisted Photocatalytic Dye Degradation Studies of ZnO, CuZnO, and CoZnO Nanostructures for Wastewater Treatment
by Awais Khalid, Pervaiz Ahmad, Roomia Memon, Lamyaa F. Gado, Mayeen Uddin Khandaker, Hanadi A. Almukhlifi, Yosra Modafer, Najma Bashir, Otman Abida, Fahdah Ayed Alshammari and Abdelmajid Timoumi
Separations 2023, 10(3), 184; https://doi.org/10.3390/separations10030184 - 8 Mar 2023
Cited by 25 | Viewed by 3190
Abstract
Renewable energy can be harnessed from wastewater, whether from municipalities or industries, but this potential is often ignored. The world generates over 900 km3 of wastewater annually, which is typically treated through energy-consuming processes, despite its potential for energy production. Environmental pollution [...] Read more.
Renewable energy can be harnessed from wastewater, whether from municipalities or industries, but this potential is often ignored. The world generates over 900 km3 of wastewater annually, which is typically treated through energy-consuming processes, despite its potential for energy production. Environmental pollution is a most important and serious issue for all and their adulterations to the aquatic system are very toxic in very low concentrations. Photocatalysis is a prominent approach to eliminating risky elements from the environment. The present study developed Zinc oxide (ZnO), Copper-doped Zinc oxide (CuZnO), and Cobalt-doped Zinc oxide (CoZnO) nanostructures (NSs) by facile hydrothermal route. The crystalline and structural stability of the synthesized nanostructures were evident from XRD and FESEM analysis. Metal, and oxygen bond and their interaction on the surfaces and their valency were explored from XPS spectra. Optical orientations and electron movements were revealed from UV-Visible analysis. After 100 min exposure time with 1 g of catalyst concentration 60%, 70%, and 89% of dye degraded, for dye concentration (5 mg/L to 50 mg/L), the huge variation observed (70% to 22%), (80% to 16%), (94% to 10%). The highest photodegradation rate (55%, 75%, 90%) was observed on pH~12 using ZnO, CoZnO, and CuZnO respectively. Photodegradation of methylene blue confirmed the largest surface area, rate of recombination, photo-excited charge carriers, photo-sensitivity range, and radical generations of ZnO, CuZnO, and CoZnO. The present study, therefore, suggested that CuZnO would be preferred to produce nanomaterials for industrial wastewater treatment like methylene. Full article
Show Figures

Figure 1

14 pages, 6231 KiB  
Article
Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu2ZnSnS4 Kesterite Thin Films Prepared by Electrochemical Deposition for Photovoltaic Applications
by Elmoiz Merghni Mkawi, Yas Al-Hadeethi, Bassim Arkook and Elena Bekyarova
Materials 2023, 16(4), 1659; https://doi.org/10.3390/ma16041659 - 16 Feb 2023
Cited by 2 | Viewed by 2156
Abstract
Kesterite Cu2ZnSnS4 (CZTS) thin films using various 1,8-diiodooctane (DIO) polymer additive concentrations were fabricated by the electrochemical deposition method. The optical, electrical, morphological, and structural properties of the CZTS thin films synthesized using different concentrations of 5 mg/mL, 10 mg/mL, [...] Read more.
Kesterite Cu2ZnSnS4 (CZTS) thin films using various 1,8-diiodooctane (DIO) polymer additive concentrations were fabricated by the electrochemical deposition method. The optical, electrical, morphological, and structural properties of the CZTS thin films synthesized using different concentrations of 5 mg/mL, 10 mg/mL, 15 mg/mL, and 20 mg/mL were investigated using different techniques. Cyclic voltammetry exhibited three cathodic peaks at −0.15 V, −0.54 V, and −0.73 V, corresponding to the reduction of Cu2+, Sn2+, Sn2+, and Zn2+ metal ions, respectively. The analysis of the X-ray diffraction (XRD) pattern indicated the formation of the pure kesterite crystal structure, and the Raman spectra showed pure CZTS with the A1 mode of vibration. Field emission scanning electron microscopy (FE-SEM) indicated that the films are well grown, with compact, crack-free, and uniform deposition and a grain size of approximately 4 µm. For sample DIO-20 mg/mL, the elemental composition of the CZTS thin film was modified to Cu:Zn:Sn: and S = 24.2:13.3:12.3:50.2, which indicates a zinc-rich and copper-poor composition. The X-ray photoelectron spectroscopy (XPS) results confirmed the existence of Cu, Sn, Zn, and S elements and revealed the element oxidation states. The electrochemical deposition synthesis increased the absorption of the CZTS film to more than 104 cm−1 with a band gap between 1.62 eV and 1.51 eV. Finally, the photovoltaic properties of glass/CZTS/CdS/n-ZnO/aluminum-doped zinc oxide (AZO)/Ag solar cells were investigated. The best-performing photovoltaic device, with a DIO concentration of 20 mg/mL, had a short-circuit current density of 16.44 mA/cm2, an open-circuit voltage of 0.465 V, and a fill factor of 64.3%, providing a conversion efficiency of 4.82%. Full article
Show Figures

Figure 1

9 pages, 4944 KiB  
Communication
A Study of High-Sensitivity Electro-Resistance Type Pre-Annealing ZnO-Doped CsPbBr3 Perovskite Acetone Sensors
by Lung-Chien Chen, An-Ni Sung and Kun-Yi Lee
Sensors 2023, 23(4), 2164; https://doi.org/10.3390/s23042164 - 14 Feb 2023
Cited by 3 | Viewed by 2093
Abstract
In this work, acetone gas sensors were fabricated using pre-annealing metal oxide zinc oxide (pa-ZnO)-doped perovskite cesium lead bromide (CsPbBr3). The ZnO nanopowder, before it was doped into CsPbBr3 solution, was first put into a furnace to anneal at different [...] Read more.
In this work, acetone gas sensors were fabricated using pre-annealing metal oxide zinc oxide (pa-ZnO)-doped perovskite cesium lead bromide (CsPbBr3). The ZnO nanopowder, before it was doped into CsPbBr3 solution, was first put into a furnace to anneal at different temperatures, and formed the pa-ZnO. The properties of pa-ZnO were different from ZnO. The optimized doping conditions were 2 mg of pa-ZnO nanopowder and pre-annealing at 300 °C. Under these conditions, the highest sensitivity (gas signal current-to-air background current ratio) of the ZnO-doped CsPbBr3 perovskite acetone sensor was 1726. In addition, for the limit test, 100 ppm was the limit of detection of the ZnO-doped CsPbBr3 perovskite acetone sensor and the sensitivity was 101. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

11 pages, 2151 KiB  
Article
Synthesis and Characterization of
by Farzaneh Sabbagh, Nadia Mahmoudi Khatir and Khadijeh Kiarostami
Polymers 2023, 15(2), 272; https://doi.org/10.3390/polym15020272 - 5 Jan 2023
Cited by 21 | Viewed by 2991
Abstract
In the current study, nanocomposites were prepared by combining k-carrageenan, polyvinyl alcohol (PVA), and doped nanoparticles (Magnesium oxide) MgO, (Magnesium Zinc oxide) MgZnO 1%, MgZnO 3%, and MgZnO 5%. The nanoparticles were synthesized by a sol–gel method and mixed with a mixture [...] Read more.
In the current study, nanocomposites were prepared by combining k-carrageenan, polyvinyl alcohol (PVA), and doped nanoparticles (Magnesium oxide) MgO, (Magnesium Zinc oxide) MgZnO 1%, MgZnO 3%, and MgZnO 5%. The nanoparticles were synthesized by a sol–gel method and mixed with a mixture of k-carrageenan/PVA (Ca/PVA) in various ratios. The structure of the composites was analyzed using thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The Ca/PVA mixture was then mixed with nanoparticles and loaded with active ingredient, catechin. Scanning electron microscope (SEM) and texture analysis were performed to analyze the nanocomposites. Entrapment efficiency (EE%) and drug release studies confirmed that k-carrageenan/PVA/MgZnO 5% had the highest EE% at 81.58% and a drug release of 75.21% ± 0.94. The EE% of k-carrageenan/PVA/MgO was 55.21% and its drug release was 45%. This indicates that ZnO plays an effective role in the structure and performance of Ca/PVA composites. The SEM images of MgO composites show smoother surfaces compared to MgZnO composites. This may be one of the reasons for the increased EE% and drug release of MgZnO composites. The addition of ZnO to the composite structure can lead to the appearance of pores on the surface of the composite, increasing entrapment and drug release. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop