Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Mammalian orthoreovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3197 KiB  
Article
Genome Characterization of Mammalian Orthoreovirus and Porcine Epidemic Diarrhea Virus Isolated from the Same Fattening Pig
by Xiaoxuan Li, Jiakai Zhao, Jingjie Li, Yangzong Xiri, Zhixiang Liu, Qin Zhao and Yani Sun
Animals 2025, 15(2), 156; https://doi.org/10.3390/ani15020156 - 9 Jan 2025
Viewed by 1187
Abstract
In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine [...] Read more.
In 2020, severe diarrhea occurred in four-month-old fattening pigs from nine farms in Shandong Province, China. Fecal samples were collected from diseased pigs and tested by PCR for the presence of mammalian orthoreovirus (MRV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), porcine rotavirus A (PoRVA), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKV), and pseudorabies virus (PRV). The viral RNA of MRV and PEDV was detected in the fecal samples. The genome sequences of MRV and PEDV were successfully amplified from the same fecal sample. Genomic and phylogenetic analysis showed that the MRV isolate named MRV2-SD/2020 belongs to serotype 2 MRV (MRV2) and may originate from the reassortment of human and porcine MRVs. Compared with other MRV2 strains, there were four other unique amino acid mutations (L274I, F302L, V347I, and T440M) in the receptor binding region. For the PEDV isolate named PEDV-SD/2020, the nearly complete genome was amplified from the positive fecal samples. Phylogenetic analysis showed that it was classified into the G2a genotype. Compared with CV777 and other PEDV variant strains, its spike (S) protein exhibited two unique mutations (S663T and L966M). This study first reports the co-infection of PEDV and MRV2 in the pigs and provides a new direction for the prevention and control of the diarrhea diseases. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

11 pages, 2752 KiB  
Article
Detection of Dengue Virus 1 and Mammalian Orthoreovirus 3, with Novel Reassortments, in a South African Family Returning from Thailand, 2017
by Petrus Jansen van Vuren, Rhys H. Parry and Janusz T. Pawęska
Viruses 2024, 16(8), 1274; https://doi.org/10.3390/v16081274 - 9 Aug 2024
Cited by 1 | Viewed by 1444
Abstract
In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all [...] Read more.
In July 2017, a family of three members, a 46-year-old male, a 45-year-old female and their 8-year-old daughter, returned to South Africa from Thailand. They presented symptoms consistent with mosquito-borne diseases, including fever, headache, severe body aches and nausea. Mosquito bites in all family members suggested recent exposure to arthropod-borne viruses. Dengue virus 1 (Genus Orthoflavivirus) was isolated (isolate no. SA397) from the serum of the 45-year-old female via intracerebral injection in neonatal mice and subsequent passage in VeroE6 cells. Phylogenetic analysis of this strain indicated close genetic identity with cosmopolitan genotype 1 DENV1 strains from Southeast Asia, assigned to major lineage K, minor lineage 1 (DENV1I_K.1), such as GZ8H (99.92%) collected in November 2018 from China, and DV1I-TM19-74 isolate (99.72%) identified in Bangkok, Thailand, in 2019. Serum samples from the 46-year-old male yielded a virus isolate that could not be confirmed as DENV1, prompting unbiased metagenomic sequencing for virus identification and characterization. Illumina sequencing identified multiple segments of a mammalian orthoreovirus (MRV), designated as Human/SA395/SA/2017. Genomic and phylogenetic analyses classified Human/SA395/SA/2017 as MRV-3 and assigned a tentative genotype, MRV-3d, based on the S1 segment. Genomic analyses suggested that Human/SA395/SA/2017 may have originated from reassortments of segments among swine, bat, and human MRVs. The closest identity of the viral attachment protein σ1 (S1) was related to a human isolate identified from Tahiti, French Polynesia, in 1960. This indicates ongoing circulation and co-circulation of Southeast Asian and Polynesian strains, but detailed knowledge is hampered by the limited availability of genomic surveillance. This case represents the rare concurrent detection of two distinct viruses with different transmission routes in the same family with similar clinical presentations. It highlights the complexity of diagnosing diseases with similar sequelae in travelers returning from tropical areas. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

10 pages, 777 KiB  
Article
First Specific Detection of Mammalian Orthoreovirus from Goats Using TaqMan Real-Time RT-PCR Technology
by Li Mao, Xia Li, Xuhang Cai, Wenliang Li, Jizong Li, Shanshan Yang, Junjun Zhai, Sizhu Suolang and Bin Li
Vet. Sci. 2024, 11(4), 141; https://doi.org/10.3390/vetsci11040141 - 22 Mar 2024
Cited by 4 | Viewed by 2247
Abstract
Mammalian orthoreovirus (MRV) infections are ubiquitous in multiple mammalian species including humans, and mainly causes gastroenteritis and respiratory disease. In this study, we developed a rapid and sensitive TaqMan qRT-PCR method for MRV detection based on the primers and probe designed within the [...] Read more.
Mammalian orthoreovirus (MRV) infections are ubiquitous in multiple mammalian species including humans, and mainly causes gastroenteritis and respiratory disease. In this study, we developed a rapid and sensitive TaqMan qRT-PCR method for MRV detection based on the primers and probe designed within the conserved L1 gene. The qRT-PCR assay was evaluated for its sensitivity, specificity, efficiency and reproducibility. It was found that the detection sensitivity was equivalent to 10 DNA copies/μL, and the standard curves had a linear correlation of R2 = 0.998 with an amplification efficiency of 99.6%. The inter- and intra-assay coefficients of variation (CV%) were in the range of 0.29% to 2.16% and 1.60% to 3.60%, respectively. The primer sets specifically amplified their respective MRV segments and had the highest detection sensitivities of 100.25 TCID50/mL with amplification efficiencies of 99.5% (R2 = 0.999). qRT-PCR was used for MRV detection from samples of sheep, goats, and calves from four regions in China, and the overall MRV prevalence was 8.2% (35/429), whereas 17/429 (4.0%) were detected by RT-PCR and 14/429 (3.3%) by virus isolation. The qRT-PCR assay showed significantly higher sensitivity than RT-PCR and virus isolation. Results from an epidemiological survey indicated that the positive rate of MRV in rectal swabs from sheep and goats tested in Shaanxi, Jiangsu, and Xinjiang were 9/80 (11.3%), 12/93 (12.9%) and 14/128 (10.9%), respectively. In goats and sheep, MRV prevalence was obviously associated with season and age, with a high positive rate of more than 8% during September to April and approximately 13% in small ruminant animals under two months of age. This is the first instance of MRV infection in sheep and goats in China, thus broadening our knowledge of MRV hosts. Consequently, primer optimization for qRT-PCR should not only prioritize amplification efficiency and specificity, but also sensitivity. This assay will contribute to more accurate and rapid MRV monitoring by epidemiological investigation, viral load, and vaccination efficacy. Full article
Show Figures

Figure 1

13 pages, 5956 KiB  
Article
Cytocidal Effect of Irradiation on Gastric Cancer Cells Infected with a Recombinant Mammalian Orthoreovirus Expressing a Membrane-Targeted KillerRed
by Yoshinori Shirasaka, Kentaro Yamada, Tsuyoshi Etoh, Kazuko Noguchi, Takumi Hasegawa, Katsuhiro Ogawa, Takeshi Kobayashi, Akira Nishizono and Masafumi Inomata
Pharmaceuticals 2024, 17(1), 79; https://doi.org/10.3390/ph17010079 - 8 Jan 2024
Cited by 2 | Viewed by 2320
Abstract
The outcomes of unresectable gastric cancer (GC) are unfavorable even with chemotherapy; therefore, a new treatment modality is required. The combination of an oncolytic virus and photodynamic therapy can be one of the promising modalities to overcome this. Mammalian orthoreovirus (MRV) is an [...] Read more.
The outcomes of unresectable gastric cancer (GC) are unfavorable even with chemotherapy; therefore, a new treatment modality is required. The combination of an oncolytic virus and photodynamic therapy can be one of the promising modalities to overcome this. Mammalian orthoreovirus (MRV) is an oncolytic virus that has been used in clinical trials for several cancers. In this study, we developed and evaluated a recombinant MRV strain type 3 Dearing (T3D) that expresses membrane-targeting KillerRed (KRmem), a phototoxic fluorescent protein that produces cytotoxic reactive oxygen species upon light irradiation. KRmem was fused in-frame to the 3′ end of the σ2 viral gene in the S2 segment using a 2A peptide linker, enabling the expression of multiple proteins from a single transcript. RNA electrophoresis, Western blotting, and immunofluorescence analyses confirmed functional insertion of KRmem into the recombinant virus. The growth activity of the recombinant virus was comparable to that of the wild-type MRV in a cultured cell line. The recombinant virus infected two GC cell lines (MKN45P and MKN7), and a significant cytocidal effect was observed in MKN45P cells infected with the recombinant virus after light irradiation. Thus, recombinant MRV-expressing KRmem has the potential to serve as a novel treatment tool for GC. Full article
(This article belongs to the Special Issue Oncolytic Viruses: New Cancer Immunotherapy Drugs)
Show Figures

Figure 1

17 pages, 2906 KiB  
Article
Reovirus μ2 Protein Impairs Translation to Reduce U5 snRNP Protein Levels
by Simon Boudreault, Carole-Anne Martineau, Laurence Faucher-Giguère, Sherif Abou-Elela, Guy Lemay and Martin Bisaillon
Int. J. Mol. Sci. 2023, 24(1), 727; https://doi.org/10.3390/ijms24010727 - 31 Dec 2022
Cited by 2 | Viewed by 2500
Abstract
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family that infects a large range of mammals, including humans. Recently, studies have shown that MRV alters cellular alternative splicing (AS) during viral infection. The structural protein μ2 appears to be the [...] Read more.
Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family that infects a large range of mammals, including humans. Recently, studies have shown that MRV alters cellular alternative splicing (AS) during viral infection. The structural protein μ2 appears to be the main determinant of these AS modifications by decreasing the levels of U5 core components EFTUD2, PRPF8, and SNRNP200 during infection. In the present study, we investigated the mechanism by which μ2 exerts this effect on the U5 components. Our results revealed that μ2 has no impact on steady-state mRNA levels, RNA export, and protein stability of these U5 snRNP proteins. However, polysome profiling and metabolic labeling of newly synthesized proteins revealed that μ2 exerts an inhibitory effect on global translation. Moreover, we showed that μ2 mutants unable to accumulate in the nucleus retain most of the ability to reduce PRPF8 protein levels, indicating that the effect of μ2 on U5 snRNP components mainly occurs in the cytoplasm. Finally, co-expression experiments demonstrated that μ2 suppresses the expression of U5 snRNP proteins in a dose-dependent manner, and that the expression of specific U5 snRNP core components have different sensitivities to μ2’s presence. Altogether, these results suggest a novel mechanism by which the μ2 protein reduces the levels of U5 core components through translation inhibition, allowing this viral protein to alter cellular AS during infection. Full article
(This article belongs to the Special Issue Protein Structure and Function in Microorganisms)
Show Figures

Figure 1

13 pages, 4434 KiB  
Article
Detection and Characterization of a Reassortant Mammalian Orthoreovirus Isolated from Bats in Xinjiang, China
by Xiaomin Yan, Jinliang Sheng, Chang Zhang, Nan Li, Le Yi, Zihan Zhao, Ye Feng, Changchun Tu and Biao He
Viruses 2022, 14(9), 1897; https://doi.org/10.3390/v14091897 - 27 Aug 2022
Cited by 11 | Viewed by 2336
Abstract
Mammalian orthoreoviruses (MRVs) are increasingly reported to cause various diseases in humans and other animals, with many possibly originating from bats, highlighting the urgent need to investigate the diversity of bat-borne MRVs (BtMRVs). Here, we report the detection and characterization of a [...] Read more.
Mammalian orthoreoviruses (MRVs) are increasingly reported to cause various diseases in humans and other animals, with many possibly originating from bats, highlighting the urgent need to investigate the diversity of bat-borne MRVs (BtMRVs). Here, we report the detection and characterization of a reassortant MRV that was isolated from a bat colony in Xinjiang, China. The BtMRV showed a wide host and organ tropism and can efficiently propagate the cell lines of different animals. It caused mild damage in the lungs of the experimentally inoculated suckling mice and was able to replicate in multiple organs for up to three weeks post-inoculation. Complete genome analyses showed that the virus was closely related to MRVs in a wide range of animals. An intricate reassortment network was revealed between the BtMRV and MRVs of human, deer, cattle, civet and other bat species. Specifically, we found a bat-specific clade of segment M1 that provides a gene source for the reassortment of human MRVs. These data provide important insights to understand the diversity of MRVs and their natural circulation between bats, humans, and other animals. Further investigation and surveillance of MRV in bats and other animals are needed to control and prevent potential MRV-related diseases. Full article
(This article belongs to the Special Issue Bat-Borne Viruses Research)
Show Figures

Figure 1

41 pages, 10877 KiB  
Review
Update on Potentially Zoonotic Viruses of European Bats
by Claudia Kohl, Andreas Nitsche and Andreas Kurth
Vaccines 2021, 9(7), 690; https://doi.org/10.3390/vaccines9070690 - 23 Jun 2021
Cited by 23 | Viewed by 5357
Abstract
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published [...] Read more.
Bats have been increasingly gaining attention as potential reservoir hosts of some of the most virulent viruses known. Numerous review articles summarize bats as potential reservoir hosts of human-pathogenic zoonotic viruses. For European bats, just one review article is available that we published in 2014. The present review provides an update on the earlier article and summarizes the most important viruses found in European bats and their possible implications for Public Health. We identify the research gaps and recommend monitoring of these viruses. Full article
(This article belongs to the Special Issue Research in Bat-Borne Zoonotic Viruses)
Show Figures

Figure 1

23 pages, 12145 KiB  
Article
Reovirus Low-Density Particles Package Cellular RNA
by Timothy W. Thoner, Xiang Ye, John Karijolich and Kristen M. Ogden
Viruses 2021, 13(6), 1096; https://doi.org/10.3390/v13061096 - 8 Jun 2021
Cited by 2 | Viewed by 3259
Abstract
Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, [...] Read more.
Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, reovirus generates genome-containing virions and “genomeless” top component particles. Whether reovirus virions or top component particles package host RNA is unknown. To gain insight into reovirus packaging potential and mechanisms, we employed next-generation RNA-sequencing to define the RNA content of enriched reovirus particles. Reovirus virions exclusively packaged viral double-stranded RNA. In contrast, reovirus top component particles contained similar proportions but reduced amounts of viral double-stranded RNA and were selectively enriched for numerous host RNA species, especially short, non-polyadenylated transcripts. Host RNA selection was not dependent on RNA abundance in the cell, and specifically enriched host RNAs varied for two reovirus strains and were not selected solely by the viral RNA polymerase. Collectively, these findings indicate that genome packaging into reovirus virions is exquisitely selective, while incorporation of host RNAs into top component particles is differentially selective and may contribute to or result from inefficient viral RNA packaging. Full article
(This article belongs to the Special Issue Reoviruses)
Show Figures

Figure 1

11 pages, 1264 KiB  
Communication
Enteric Viral Infections among Domesticated South American Camelids: First Detection of Mammalian Orthoreovirus in Camelids
by Dayana Castilla, Victor Escobar, Sergio Ynga, Luis Llanco, Alberto Manchego, César Lázaro, Dennis Navarro, Norma Santos and Miguel Rojas
Animals 2021, 11(5), 1455; https://doi.org/10.3390/ani11051455 - 19 May 2021
Cited by 10 | Viewed by 3801
Abstract
Enteric infections are a major cause of neonatal death in South American camelids (SACs). The aim of this study was to determine the prevalence of enteric viral pathogens among alpacas and llamas in Canchis, Cuzco, located in the southern Peruvian highland. Fecal samples [...] Read more.
Enteric infections are a major cause of neonatal death in South American camelids (SACs). The aim of this study was to determine the prevalence of enteric viral pathogens among alpacas and llamas in Canchis, Cuzco, located in the southern Peruvian highland. Fecal samples were obtained from 80 neonatal alpacas and llamas and tested for coronavirus (CoV), mammalian orthoreovirus (MRV), and rotavirus A (RVA) by RT-PCR. Of the 80 fecal samples analyzed, 76 (95%) were positive for at least one of the viruses tested. Overall, the frequencies of positive samples were 94.1% and 100% among alpacas and llamas, respectively. Of the positive samples, 33 (43.4%) were monoinfected, while 43 (56.6%) had coinfections with two (83.7%) or three (16.3%) viruses. CoV was the most commonly detected virus (87.5%) followed by MRV (50%). RVA was detected only in coinfections. To our knowledge, this is the first description of MRV circulation in SACs or camelids anywhere. These data show that multiple viruses circulate widely among young alpaca and llama crias within the studied areas. These infections can potentially reduce livestock productivity, which translates into serious economic losses for rural communities, directly impacting their livelihoods. Full article
(This article belongs to the Special Issue Animal Viruses in the Pandemic Era)
Show Figures

Figure 1

17 pages, 916 KiB  
Review
The Paradoxes of Viral mRNA Translation during Mammalian Orthoreovirus Infection
by Yingying Guo and John S. L. Parker
Viruses 2021, 13(2), 275; https://doi.org/10.3390/v13020275 - 11 Feb 2021
Cited by 6 | Viewed by 4211
Abstract
De novo viral protein synthesis following entry into host cells is essential for viral replication. As a consequence, viruses have evolved mechanisms to engage the host translational machinery while at the same time avoiding or counteracting host defenses that act to repress translation. [...] Read more.
De novo viral protein synthesis following entry into host cells is essential for viral replication. As a consequence, viruses have evolved mechanisms to engage the host translational machinery while at the same time avoiding or counteracting host defenses that act to repress translation. Mammalian orthoreoviruses are dsRNA-containing viruses whose mRNAs were used as models for early investigations into the mechanisms that underpin the recognition and engagement of eukaryotic mRNAs by host cell ribosomes. However, there remain many unanswered questions and paradoxes regarding translation of reoviral mRNAs in the context of infection. This review summarizes the current state of knowledge about reovirus translation, identifies key unanswered questions, and proposes possible pathways toward a better understanding of reovirus translation. Full article
(This article belongs to the Special Issue Reoviruses)
Show Figures

Figure 1

11 pages, 271 KiB  
Article
Mammalian Orthoreovirus (MRV) Is Widespread in Wild Ungulates of Northern Italy
by Sara Arnaboldi, Francesco Righi, Virginia Filipello, Tiziana Trogu, Davide Lelli, Alessandro Bianchi, Silvia Bonardi, Enrico Pavoni, Barbara Bertasi and Antonio Lavazza
Viruses 2021, 13(2), 238; https://doi.org/10.3390/v13020238 - 3 Feb 2021
Cited by 7 | Viewed by 2714
Abstract
Mammalian orthoreoviruses (MRVs) are emerging infectious agents that may affect wild animals. MRVs are usually associated with asymptomatic or mild respiratory and enteric infections. However, severe clinical manifestations have been occasionally reported in human and animal hosts. An insight into their circulation is [...] Read more.
Mammalian orthoreoviruses (MRVs) are emerging infectious agents that may affect wild animals. MRVs are usually associated with asymptomatic or mild respiratory and enteric infections. However, severe clinical manifestations have been occasionally reported in human and animal hosts. An insight into their circulation is essential to minimize the risk of diffusion to farmed animals and possibly to humans. The aim of this study was to investigate the presence of likely zoonotic MRVs in wild ungulates. Liver samples were collected from wild boar, red deer, roe deer, and chamois. Samples originated from two areas (Sondrio and Parma provinces) in Northern Italy with different environmental characteristics. MRV detection was carried out by PCR; confirmation by sequencing and typing for MRV type 3, which has been frequently associated with disease in pigs, were carried out for positive samples. MRV prevalence was as high as 45.3% in wild boars and 40.6% in red deer in the Sondrio area, with lower prevalence in the Parma area (15.4% in wild boars). Our findings shed light on MRV occurrence and distribution in some wild species and posed the issue of their possible role as reservoir. Full article
(This article belongs to the Special Issue Reoviruses)
18 pages, 1359 KiB  
Review
Reovirus and the Host Integrated Stress Response: On the Frontlines of the Battle to Survive
by Luke D. Bussiere and Cathy L. Miller
Viruses 2021, 13(2), 200; https://doi.org/10.3390/v13020200 - 28 Jan 2021
Cited by 6 | Viewed by 3831
Abstract
Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the [...] Read more.
Cells are continually exposed to stressful events, which are overcome by the activation of a number of genetic pathways. The integrated stress response (ISR) is a large component of the overall cellular response to stress, which ultimately functions through the phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF2α) to inhibit the energy-taxing process of translation. This response is instrumental in the inhibition of viral infection and contributes to evolution in viruses. Mammalian orthoreovirus (MRV), an oncolytic virus that has shown promise in over 30 phase I–III clinical trials, has been shown to induce multiple arms within the ISR pathway, but it successfully evades, modulates, or subverts each cellular attempt to inhibit viral translation. MRV has not yet received Food and Drug Administration (FDA) approval for general use in the clinic; therefore, researchers continue to study virus interactions with host cells to identify circumstances where MRV effectiveness in tumor killing can be improved. In this review, we will discuss the ISR, MRV modulation of the ISR, and discuss ways in which MRV interaction with the ISR may increase the effectiveness of cancer therapeutics whose modes of action are altered by the ISR. Full article
(This article belongs to the Special Issue Reoviruses)
Show Figures

Figure 1

9 pages, 8237 KiB  
Review
Control of Capsid Transformations during Reovirus Entry
by Stephanie L. Gummersheimer, Anthony J. Snyder and Pranav Danthi
Viruses 2021, 13(2), 153; https://doi.org/10.3390/v13020153 - 21 Jan 2021
Cited by 10 | Viewed by 3890
Abstract
Mammalian orthoreovirus (reovirus), a dsRNA virus with a multilayered capsid, serves as a model system for studying the entry of similar viruses. The outermost layer of this capsid undergoes processing to generate a metastable intermediate. The metastable particle undergoes further remodeling to generate [...] Read more.
Mammalian orthoreovirus (reovirus), a dsRNA virus with a multilayered capsid, serves as a model system for studying the entry of similar viruses. The outermost layer of this capsid undergoes processing to generate a metastable intermediate. The metastable particle undergoes further remodeling to generate an entry-capable form that delivers the genome-containing inner capsid, or core, into the cytoplasm. In this review, we highlight capsid proteins and the intricacies of their interactions that control the stability of the capsid and consequently impact capsid structural changes that are prerequisites for entry. We also discuss a novel proviral role of host membranes in promoting capsid conformational transitions. Current knowledge gaps in the field that are ripe for future investigation are also outlined. Full article
(This article belongs to the Special Issue Reoviruses)
Show Figures

Figure 1

10 pages, 609 KiB  
Review
Recognition of Reovirus RNAs by the Innate Immune System
by Andrew T. Abad and Pranav Danthi
Viruses 2020, 12(6), 667; https://doi.org/10.3390/v12060667 - 20 Jun 2020
Cited by 23 | Viewed by 5301
Abstract
Mammalian orthoreovirus (reovirus) is a dsRNA virus, which has long been used as a model system to study host–virus interactions. One of the earliest interactions during virus infection is the detection of the viral genomic material, and the consequent induction of an interferon [...] Read more.
Mammalian orthoreovirus (reovirus) is a dsRNA virus, which has long been used as a model system to study host–virus interactions. One of the earliest interactions during virus infection is the detection of the viral genomic material, and the consequent induction of an interferon (IFN) based antiviral response. Similar to the replication of related dsRNA viruses, the genomic material of reovirus is thought to remain protected by viral structural proteins throughout infection. Thus, how innate immune sensor proteins gain access to the viral genomic material, is incompletely understood. This review summarizes currently known information about the innate immune recognition of the reovirus genomic material. Using this information, we propose hypotheses about host detection of reovirus. Full article
(This article belongs to the Special Issue Reoviruses)
Show Figures

Figure 1

19 pages, 4031 KiB  
Article
Mammalian orthoreovirus Infection is Enhanced in Cells Pre-Treated with Sodium Arsenite
by Michael M. Lutz, Megan P. Worth, Meleana M. Hinchman, John S.L. Parker and Emily D. Ledgerwood
Viruses 2019, 11(6), 563; https://doi.org/10.3390/v11060563 - 18 Jun 2019
Cited by 8 | Viewed by 5250
Abstract
Following reovirus infection, cells activate stress responses that repress canonical translation as a mechanism to limit progeny virion production. Work by others suggests that these stress responses, which are part of the integrated stress response (ISR), may benefit rather than repress reovirus replication. [...] Read more.
Following reovirus infection, cells activate stress responses that repress canonical translation as a mechanism to limit progeny virion production. Work by others suggests that these stress responses, which are part of the integrated stress response (ISR), may benefit rather than repress reovirus replication. Here, we report that compared to untreated cells, treating cells with sodium arsenite (SA) to activate the ISR prior to infection enhanced viral protein expression, percent infectivity, and viral titer. SA-mediated enhancement was not strain-specific, but was cell-type specific. While SA pre-treatment of cells offered the greatest enhancement, treatment within the first 4 h of infection increased the percent of cells infected. SA activates the heme-regulated eIF2α (HRI) kinase, which phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α) to induce stress granule (SG) formation. Heat shock (HS), another activator of HRI, also induced eIF2α phosphorylation and SGs in cells. However, HS had no effect on percent infectivity or viral yield but did enhance viral protein expression. These data suggest that SA pre-treatment perturbs the cell in a way that is beneficial for reovirus and that this enhancement is independent of SG induction. Understanding how to manipulate the cellular stress responses during infection to enhance replication could help to maximize the oncolytic potential of reovirus. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

Back to TopTop