Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Maipo River Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8690 KiB  
Article
Challenges and Potential of Remote Sensing for Assessing Salmonella Risk in Water Sources: Evidence from Chile
by Rayana Santos Araujo Palharini, Makarena Sofia Gonzalez Reyes, Felipe Ferreira Monteiro, Lourdes Milagros Mendoza Villavicencio, Aiko D. Adell, Magaly Toro, Andrea I. Moreno-Switt and Eduardo A. Undurraga
Microorganisms 2025, 13(7), 1539; https://doi.org/10.3390/microorganisms13071539 - 30 Jun 2025
Viewed by 336
Abstract
Waterborne illnesses, including those caused by Salmonella, are an increasing public health challenge, particularly in developing countries. Potential sources of salmonellosis include fruits and vegetables irrigated/treated with surface water, leading to human infections. Salmonella causes millions of gastroenteritis cases annually, but early [...] Read more.
Waterborne illnesses, including those caused by Salmonella, are an increasing public health challenge, particularly in developing countries. Potential sources of salmonellosis include fruits and vegetables irrigated/treated with surface water, leading to human infections. Salmonella causes millions of gastroenteritis cases annually, but early detection through routine water quality surveillance is time-consuming, requires specialized equipment, and faces limitations, such as coverage gaps, delayed data, and poor accessibility. Climate change-driven extreme events such as floods and droughts further exacerbate variability in water quality. In this context, remote sensing offers an efficient and cost-effective alternative for environmental monitoring. This study evaluated the potential of Sentinel-2 satellite imagery to predict Salmonella occurrence in the Maipo and Mapocho river basins (Chile) by integrating spectral, microbiological, climatic, and land use variables. A total of 1851 water samples collected between 2019 and 2023, including 704 positive samples for Salmonella, were used to develop a predictive model. Predicting Salmonella in surface waters using remote sensing is challenging for several reasons. Satellite sensors capture environmental proxies (e.g., vegetation cover, surface moisture, and turbidity) but not pathogens. Our goal was to identify proxies that reliably correlate with Salmonella. Twelve spectral indices (e.g., NDVI, NDWI, and MNDWI) were used as predictors to develop a predictive model for the presence of the pathogen, which achieved 59.2% accuracy. By spatially interpolating the occurrences, it was possible to identify areas with the greatest potential for Salmonella presence. NDWI and AWEI were most strongly correlated with Salmonella presence in high-humidity areas, and spatial interpolation identified the higher-risk zones. These findings reveal the challenges of using remote sensing to identify environmental conditions conducive to the presence of pathogens in surface waters. This study highlights the methodological challenges that must be addressed to make satellite-based surveillance an accessible and effective public health tool. By integrating satellite data with environmental and microbiological analyses, this approach can potentially strengthen low-cost, proactive environmental monitoring for public health decision-making in the context of climate change. Full article
(This article belongs to the Special Issue Advances in Research on Waterborne Pathogens)
Show Figures

Figure 1

23 pages, 3934 KiB  
Article
River Resilience: Assessment Using Empirical Fish Assemblage Traits
by Paulina Vega, Konrad Górski and Evelyn Habit
Water 2025, 17(12), 1749; https://doi.org/10.3390/w17121749 - 10 Jun 2025
Viewed by 839
Abstract
The Andean river basins of central–southern Chile face multiple anthropogenic disturbances, including water extraction, hydropower, mining, and industrial discharges, which affect their ability to adapt to new disturbances. Disturbance intensity forms a gradient from high (Maipo, Rapel, Biobío, Maule) through medium (Mataquito, Itata) [...] Read more.
The Andean river basins of central–southern Chile face multiple anthropogenic disturbances, including water extraction, hydropower, mining, and industrial discharges, which affect their ability to adapt to new disturbances. Disturbance intensity forms a gradient from high (Maipo, Rapel, Biobío, Maule) through medium (Mataquito, Itata) to low (Imperial, Toltén). This study evaluated resilience in these eight river basins based on fish assemblages, using taxonomic and functional trait indices within the framework of the three Rs of resilience: resources, recruitment, and refugia. Taxonomic indices captured changes in species richness, abundance, diversity, evenness, and beta diversity, while functional traits reflected the fish species characteristics promoting resilience. Statistical tests revealed significant differences in resilience indices among basins. Recruitment was the most impacted resilience mechanism, with beta diversity revealing effects from river fragmentation in the Maipo, Rapel, and Biobío basins. The resources mechanism was also affected, primarily by land-use changes and water pollution, leading to low species richness in the Maipo, Rapel, Mataquito, and Maule river basins. Interestingly, basins with medium disturbance levels showed high resilience, indicating adaptive responses to moderate impacts. This study emphasizes the importance of multiple indicators to assess ecosystem resilience and calls for integrated strategies to address the complex challenges impacting freshwater biodiversity. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

28 pages, 9658 KiB  
Article
Assessment of Low-Flow Trends in Four Rivers of Chile: A Statistical Approach
by Fatima Daide, Natalia Julio, Petros Gaganis, Ourania Tzoraki, Hernán Alcayaga, Cleo M. Gaganis and Ricardo Figueroa
Water 2025, 17(6), 791; https://doi.org/10.3390/w17060791 - 10 Mar 2025
Viewed by 1041
Abstract
Understanding and analyzing low river flows are some of key tasks of effective water management, particularly in Chile’s Mediterranean regions, where irregular rainfall distribution leads to drought and water scarcity. This study aims to assess low-flow trends in the four major Chilean river [...] Read more.
Understanding and analyzing low river flows are some of key tasks of effective water management, particularly in Chile’s Mediterranean regions, where irregular rainfall distribution leads to drought and water scarcity. This study aims to assess low-flow trends in the four major Chilean river basins (Maipo, Rapel, Maule, and Biobío) by calculating three key hydrological indices: the mean annual minimum and maximum flows (MAM), the base flow index (BFI), and the standardized precipitation index (SPI), using data from 18 hydrometric stations. The indicators of hydrologic alteration (IHA) tool was applied to calculate the MAM and BFI to assess flow variability and groundwater contributions. The SPI was calculated to examine hydrological drought conditions and evaluate how these conditions affect river flow behavior, correlating reduced low river flows with precipitation trends at the beginning of the dry season. Statistical analysis was conducted through the ordinary least squares (OLS) test for normally distributed data, and non-parametric tests, including the Mann–Kendall test, as well as Sen’s slope estimation, for data not meeting normality requirements. The results, presented both analytically and graphically, reveal trends in river flow indices and variations across the river basins, identifying critical areas of reduced flow that may require enhanced water management strategies. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 8322 KiB  
Article
At Which Overpass Time Do ECOSTRESS Observations Best Align with Crop Health and Water Rights?
by Benjamin D. Goffin, Carlos Calvo Cortés-Monroy, Fernando Neira-Román, Diya D. Gupta and Venkataraman Lakshmi
Remote Sens. 2024, 16(17), 3174; https://doi.org/10.3390/rs16173174 - 28 Aug 2024
Cited by 1 | Viewed by 1523
Abstract
Agroecosystems are facing the adverse effects of climate change. This study explored how the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) can give new insight into irrigation allocation and plant health. Leveraging the global coverage and 70-m spatial resolution of the [...] Read more.
Agroecosystems are facing the adverse effects of climate change. This study explored how the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) can give new insight into irrigation allocation and plant health. Leveraging the global coverage and 70-m spatial resolution of the Evaporative Stress Index (ESI) from ECOSTRESS, we processed over 200 overpasses and examined patterns over 3 growing seasons across the Maipo River Basin of Central Chile, which faces exacerbated water stress. We found that ECOSTRESS ESI varies substantially based on the overpass time, with ESI values being systematically higher in the morning and lower in the afternoon. We also compared variations in ESI against spatial patterns in the environment. To that end, we analyzed the vegetation greenness sensed from Landsat 8 and compiled the referential irrigation allocation from Chilean water regulators. Consistently, we found stronger correlations between these variables and ESI in the morning time (than in the afternoon). Based on our findings, we discussed new insights and potential applications of ECOSTRESS ESI in support of improved agricultural monitoring and sustainable water management. Full article
Show Figures

Figure 1

18 pages, 3486 KiB  
Article
Latitudinal and Altitudinal Gradients of Riverine Landscapes in Andean Rivers
by Evelyn Habit, Alejandra Zurita, Gustavo Díaz, Aliro Manosalva, Pedro Arriagada, Oscar Link and Konrad Górski
Water 2022, 14(17), 2614; https://doi.org/10.3390/w14172614 - 25 Aug 2022
Cited by 11 | Viewed by 3286
Abstract
Exact knowledge of the physical structures of different river sections that govern their ecological structure and function is essential for the efficient conservation and management of riverine ecosystems. Eleven Andean river basins (Maipo, Rapel, Mataquito, Maule, Itata, Biobío, Toltén, Valdivia, Bueno and Puelo) [...] Read more.
Exact knowledge of the physical structures of different river sections that govern their ecological structure and function is essential for the efficient conservation and management of riverine ecosystems. Eleven Andean river basins (Maipo, Rapel, Mataquito, Maule, Itata, Biobío, Toltén, Valdivia, Bueno and Puelo) comprise large scale latitudinal and altitudinal gradients and accommodate 71% of the Chilean population that strongly depend on their ecosystem services. Here, based on 16 hydrogeomorphic variables (on basin, valley and channel scales), we assessed the riverine landscapes (Functional Process Zones; FPZs) of these river basins using a top-down multivariate statistical approach. Two steep valley and downstream slope FPZs, three sinuous FPZs and two braided FPZs emerged in 8906 river sections. The proportion of the occurrence of FPZs was characterised by a clear latitudinal pattern which is strongly related to the proportions of each river basin within the large morphostructural units of Chile. As such, the proportion of each river basin within the Andes Cordillera, Central Valley and Coastal Cordillera is a strong driver of the fluvial geomorphology and, thus, of the FPZs’ arrangement in each river network. FPZ classification captured geomorphic diversity that coincided with the latitudinal and altitudinal gradients of Chilean Andean river basins strongly related to the hydrological characteristics of the assessed river basins and large scale spatial distribution of fish fauna endemism. As such, the identified large geomorphic units (FPZs) that are strongly tied up with hydrology and ecology hierarchies of riverine landscape provide robust operational tools that can be instrumental for river ecosystem monitoring and management at a basin scale. Full article
(This article belongs to the Topic Remote Sensing in Water Resources Management Models)
Show Figures

Figure 1

19 pages, 3515 KiB  
Article
Exploring the Fingerprints of Past Rain-on-Snow Events in a Central Andean Mountain Range Basin Using Satellite Imagery
by D. Ocampo Melgar and F.J. Meza
Remote Sens. 2020, 12(24), 4173; https://doi.org/10.3390/rs12244173 - 20 Dec 2020
Cited by 8 | Viewed by 3642
Abstract
Rain-on-snow (ROS) events can alter nival regimes and increase snowmelt, peak river flow, and reduce water storage. However, detection of ROS events is challenging and only the most intense and obvious cases are identified. Rain is known to reduce snow cover and decrease [...] Read more.
Rain-on-snow (ROS) events can alter nival regimes and increase snowmelt, peak river flow, and reduce water storage. However, detection of ROS events is challenging and only the most intense and obvious cases are identified. Rain is known to reduce snow cover and decrease near-infrared reflectance due to increased grain size. This study explored the fingerprints of ROS events on mountain snowpack with a simple typology that classifies changes in snow reflectance using fifteen years of MODIS imagery, reanalysis, and surface hydrometeorological data. The Maipo River Basin, with strong nival regime and a steep topography, in the western Andean mountain range was selected as a case study. Statistical analysis showed two distinct and opposite responses in the near infrared reflectance distribution of snow-covered pixels after precipitation, consistent with the typology for rain or snow events. For the probable ROS events, the daily maximum and minimum temperature increased in the days preceding the event and subsequently decreased, in some cases followed by a less consistent response in river flow. Although much remains to be studied, this approach can be used to expand historical records and improve modelling and detection schemes. Full article
Show Figures

Figure 1

19 pages, 5722 KiB  
Article
60 Years of Glacier Elevation and Mass Changes in the Maipo River Basin, Central Andes of Chile
by David Farías-Barahona, Álvaro Ayala, Claudio Bravo, Sebastián Vivero, Thorsten Seehaus, Saurabh Vijay, Marius Schaefer, Franco Buglio, Gino Casassa and Matthias H. Braun
Remote Sens. 2020, 12(10), 1658; https://doi.org/10.3390/rs12101658 - 21 May 2020
Cited by 28 | Viewed by 7910
Abstract
Glaciers in the central Andes of Chile are fundamental freshwater sources for ecosystems and communities. Overall, glaciers in this region have shown continuous recession and down-wasting, but long-term glacier mass balance studies providing precise estimates of these changes are scarce. Here, we present [...] Read more.
Glaciers in the central Andes of Chile are fundamental freshwater sources for ecosystems and communities. Overall, glaciers in this region have shown continuous recession and down-wasting, but long-term glacier mass balance studies providing precise estimates of these changes are scarce. Here, we present the first long-term (1955–2013/2015), region-specific glacier elevation and mass change estimates for the Maipo River Basin, from which the densely populated metropolitan region of Chile obtains most of its freshwater supply. We calculated glacier elevation and mass changes using historical topographic maps, Shuttle Radar Topography Mission (SRTM), TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X), and airborne Light Detection and Ranging (LiDAR) digital elevation models. The results indicated a mean regional glacier mass balance of −0.12 ± 0.06 m w.e.a−1, with a total mass loss of 2.43 ± 0.26 Gt for the Maipo River Basin between 1955–2013. The most negative glacier mass balance was the Olivares sub-basin, with a mean value of −0.29 ± 0.07 m w.e.a−1. We observed spatially heterogeneous glacier elevation and mass changes between 1955 and 2000, and more negative values between 2000 and 2013, with an acceleration in ice thinning rates starting in 2010, which coincides with the severe drought. Our results provide key information to improve glaciological and hydrological projections in a region where water resources are under pressure. Full article
(This article belongs to the Special Issue Cryospheric Remote Sensing III)
Show Figures

Figure 1

21 pages, 6650 KiB  
Article
Drought Propagation in Semi-Arid River Basins in Latin America: Lessons from Mexico to the Southern Cone
by Melanie Oertel, Francisco Javier Meza, Jorge Gironás, Christopher A. Scott, Facundo Rojas and Nicolás Pineda-Pablos
Water 2018, 10(11), 1564; https://doi.org/10.3390/w10111564 - 2 Nov 2018
Cited by 32 | Viewed by 6781
Abstract
Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation [...] Read more.
Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries. Full article
(This article belongs to the Special Issue Monitoring and Predicting Soil Moisture and Drought Conditions)
Show Figures

Figure 1

Back to TopTop