Latitudinal and Altitudinal Gradients of Riverine Landscapes in Andean Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Riverine Landscape Characterisation
2.3. Functional Process Zones Assessment
3. Results
3.1. Riverine Landscape and Functional Process Zones
3.2. Distribution and Compositions of Functional Process Zones in the Study Area
4. Discussion
4.1. Functional Process Zones of the Chilean Andean Rivers
4.2. Steep Valley and Downstream Slope Rivers
4.3. Sinuous Rivers
4.4. Braided Rivers
4.5. Contributions to River Classification and Its Relation with Fish Fauna Distribution
4.6. FPZs, Anthropic Alterations and River Basin Management
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Res. Appl. 2006, 22, 123–147. [Google Scholar] [CrossRef]
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The Riverine Ecosystem Synthesis. Towards Conceptual Cohesiveness in River Science; Aquatic Ecology Series, Ed.; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Dollar, E.; James, C.; Rogers, K.; Thoms, M. A framework for interdisciplinary understanding of rivers as ecosystems. Geomorphology 2007, 89, 147–162. [Google Scholar] [CrossRef]
- Delong, M.D.; Thoms, M.C. An Ecosystem Framework for River Science and Management. In River Science: Research and Management for the 21st Century; Gilvear, D.J., Greenwood, M.T., Thoms, M.C., Wood, P.J., Eds.; Wiley Blackwell: Chichester, UK, 2016; pp. 12–36. [Google Scholar]
- Thoms, M.; Parsons, M. Eco-Geomorphology: An Interdisciplinary Approach to River Science; International Association of Hydrological Sciences: Wallingford, UK, 2002; Volume 276, pp. 113–119. [Google Scholar]
- Elgueta, A.; Thoms, M.C.; Górski, K.; Díaz, G.; Habit, E.M. Functional process zones and their fish communities in temperate Andean river networks. River Res. Appl. 2019, 35, 1702–1711. [Google Scholar] [CrossRef]
- Maasri, A.; Pyron, M.; Arsenault, E.R.; Thorp, J.H.; Mendsaikhan, B.; Tromboni, F.; Minder, M.; Kenner, S.J.; Costello, J.; Chandra, S.; et al. Valley-scale hydrogeomorphology drives river fish assemblage variation in Mongolia. Ecol. Evol. 2021, 11, 6527–6535. [Google Scholar] [CrossRef]
- Thoms, M. An introduction to river science: Research and applications. In River Science: Research and Management for the 21st Century; Gilvear, D.J., Greenwood, M.T., Thoms, M.C., Wood, P.J., Eds.; Wiley Blackwell: Chichester, UK, 2016; pp. 1–11. [Google Scholar]
- Likens, G.E.; Walker, K.F.; Davies, P.E.; Brookes, J.; Olley, J.; Young, W.J.; Thoms, M.C.; Lake, P.S.; Gawne, B.; Davis, J.; et al. Ecosystem science: Toward a new paradigm for managing Australia’s inland aquatic ecosystems. Mar. Freshw. Res. 2009, 60, 271–279. [Google Scholar] [CrossRef]
- Elgueta, A.; Górski, K.; Thoms, M.; Fierro, P.; Toledo, B.; Manosalva, A.; Habit, E. Interplay of geomorphology and hydrology drives macroinvertebrate assemblage responses to hydropeaking. Sci. Total Environ. 2020, 768, 144262. [Google Scholar] [CrossRef]
- DeBoer, J.A.; Thoms, M.C.; Delong, M.D.; Parsons, M.E.; Casper, A.F. Heterogeneity of ecosystem function in an “Anthropocene” river system. Anthropocene 2020, 31, 1–11. [Google Scholar] [CrossRef]
- Van Looy, K.; Tonkin, J.D.; Floury, M.; Leigh, C.; Soininen, J.; Larsen, S.; Heino, J.; Poff, N.L.; Delong, M.; Jähnig, S.C.; et al. The three Rs of river ecosystem resilience: Resources, recruitment, and refugia. River Res. Appl. 2019, 35, 107–120. [Google Scholar] [CrossRef]
- Charrier, R.; Ramos, V.A.; Tapia, F.; Sagripanti, L. Tectono-stratigraphic evolution of the Andean Orogen between 31 and 37°S (Chile and Western Argentina). Geol. Soc. Lond. Spéc. Publ. 2014, 399, 13–61. [Google Scholar] [CrossRef]
- Habit, E.; García, A.; Díaz, G.; Arriagada, P.; Link, O.; Parra, O.; Thoms, M. River science and management issues in Chile: Hydropower development and native fish communities. River Res. Appl. 2018, 35, 489–499. [Google Scholar] [CrossRef]
- Niemeyer, H.; Hidrografía, C.P. Geografía de Chile; Instituto Geográfico Militar: Santiago, Chile, 1984. [Google Scholar]
- Martínez, F.; Manríquez, H.; Ojeda, A.; Olea, G.A. A Fractal Description of Fluvial Networks in Chile: A Geography Not as Crazy as Thought. 2021. Available online: https://www.preprints.org/manuscript/202112.0471/v1 (accessed on 22 August 2022).
- Martinez, F.; Ojeda, A.; Manríquez, H. Application of Fractal Theory to Describe the Morphological Complexity of Large Stream Networks in Chile. Water Resour. 2022, 49, 301–310. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Mendoza, P.A.; Boisier, J.P.; Addor, N.; Galleguillos, M.; Zambrano-Bigiarini, M.; Lara, A.; Puelma, C.; Cortes, G.; Garreaud, R.; et al. The CAMELS-CL dataset: Catchment attributes and meteorology for large sample studies—Chile dataset. Hydrol. Earth Syst. Sci. 2018, 22, 5817–5846. [Google Scholar] [CrossRef]
- Fuster, R.; Escobar, C.; Lillo, G.; de la Fuente, A. Construction of a typology system for rivers in Chile based on the European Water Framework Directive (WFD). Environ. Earth Sci. 2014, 73, 5255–5268. [Google Scholar] [CrossRef]
- Vila, I.; Fuentes, L.; Contreras, M. Peces límnicos de Chile. Bol. Mus. Nac. Hist. Nat. 1999, 48, 61–75. [Google Scholar]
- Peredo Parada, M.M.; Martinez-Capel, F.; Quevedo Tejada, D.I.; Hernández Mascarell, A.B. Implementation of an eco-hydrological classification in Chilean rivers. Gayana 2011, 75, 26–38. [Google Scholar] [CrossRef]
- INE. Synthesis of Results of the 2017 Census. Instituto Nacional de Estadística. Available online: https://www.censo2017.cl/descargas/home/sintesis-de-resultados-censo2017.pdf (accessed on 22 August 2022).
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South. American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Cañón, J.; Valdés, J.B. Multi-decadal 40-to 60-year cycles of precipitation variability in Chile (South America) and their relationship to the AMO and PDO signals. J. Hydrol. 2018, 556, 1153–1170. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Falvey, M.; Garreaud, R. Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J. Geophys. Res. Earth Surf. 2009, 114. [Google Scholar] [CrossRef]
- Escobar, F.; Aceituno, P. Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno. Bull. De L’institut Français D’études Andin. 1998, 27, 753–759. Available online: https://www.persee.fr/doc/bifea_0303-7495_1998_num_27_3_1328 (accessed on 22 August 2022).
- Montecinos, A.; Aceituno, P. Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. J. Clim. 2003, 16, 281–296. [Google Scholar] [CrossRef]
- Urrutia, R.B.; Lara, A.; Villalba, R.; Christie, D.A.; Le Quesne, C.; Cuq, A. Multicentury tree ring reconstruction of annual streamflow for the Maule River watershed in south central Chile. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R. Warm Winter Storms in Central Chile. J. Hydrometeorol. 2013, 14, 1515–1534. [Google Scholar] [CrossRef]
- Jordan, T.E.; Isacks, B.L.; Allmendinger, R.W.; Brewer, J.A.; Ramos, V.A.; Ando, C.J. Andean tectonics related to geometry of subducted Nazca plate. GSA Bull. 1983, 94, 341–361. [Google Scholar] [CrossRef]
- Bonilla, C.A.; Johnson, O.I. Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma 2012, 189–190, 116–123. [Google Scholar] [CrossRef]
- Link, O.; Habit, E. Requirements and boundary conditions for fish passes of non-sport fish species based on Chilean experiences. Rev. Environ. Sci. Bio/Technol. 2014, 14, 9–21. [Google Scholar] [CrossRef]
- Laborde, A.; Habit, E.; Link, O.; Kemp, P. Strategic methodology to set priorities for sustainable hydropower development in a biodiversity hotspot. Sci. Total Environ. 2020, 714, 136735. [Google Scholar] [CrossRef]
- Díaz, G.; Arriagada, P.; Górski, K.; Link, O.; Karelovic, B.; Gonzalez, J.; Habit, E. Fragmentation of Chilean Andean rivers: Expected effects of hydropower development. Rev. Chil. de Hist. Nat. 2019, 92, 1. [Google Scholar] [CrossRef]
- Arriagada, P.; Dieppois, B.; Sidibe, M.; Link, O. Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability. Energies 2019, 12, 2747. [Google Scholar] [CrossRef]
- Williams, B.S.; D’Amico, E.; Kastens, J.H.; Thorp, J.H.; Flotemersch, J.E.; Thoms, M.C. Automated riverine landscape characterization: GIS-based tools for watershed-scale research, assessment, and management. Environ. Monit. Assess. 2013, 185, 7485–7499. [Google Scholar] [CrossRef]
- Thoms, M.; Scown, M.; Flotemersch, J. Characterization of River Networks: A GIS Approach and Its Applications. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 899–913. [Google Scholar] [CrossRef]
- Sernageomin, S. Mapa Geológico de Chile: Versión Digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital. 2003, p. 4. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://www.ipgp.fr/~dechabal/Geol-millon.pdf (accessed on 22 August 2022).
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M.; Belletti, B.; Nardi, L.; Lastoria, B.; Golfieri, B. Guidebook for the Evaluation of Stream Morphological Conditions by the Morphological Quality Index (MQI). 2016. Available online: https://reformrivers.eu/guidebook-evaluation-stream-morphological-conditions-morphological-quality-index-mqi.html (accessed on 22 August 2022).
- Gower, J.C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 1971, 27, 857. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA); Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–15. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorleya, R.N.; Somerfield, P.J.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd ed.; PRIMER-E: Plymouth, UK, 2014; Available online: https://updates.primer-e.com/primer7/manuals/Methods_manual_v7.pdf (accessed on 22 August 2022).
- Maasri, A.; Thorp, J.H.; Kotlinski, N.; Kiesel, J.; Erdenee, B.; Jähnig, S.C. Variation in macroinvertebrate community structure of functional process zones along the river continuum: New elements for the interpretation of the river ecosystem synthesis. River Res. Appl. 2021, 37, 665–674. [Google Scholar] [CrossRef]
- Thoms, M.; Delong, M.; Flotemersch, J.; Collins, S. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA. Geomorphology 2017, 290, 277–287. [Google Scholar] [CrossRef]
- Alahuhta, J.; Ala-Hulkko, T.; Tukiainen, H.; Purola, L.; Akujärvi, A.; Lampinen, R.; Hjort, J. The role of geodiversity in providing ecosystem services at broad scales. Ecol. Indic. 2018, 91, 47–56. [Google Scholar] [CrossRef]
- Tukiainen, H.; Maliniemi, T.; Alahuhta, J.; Hjort, J.; Lindholm, M.; Salminen, H.; Vilmi, A.; Heino, J. Quantifying alpha, beta and gamma geodiversity. Prog. Phys. Geogr. Earth Environ. 2022, 1–12. [Google Scholar] [CrossRef]
- Burnett, M.R.; August, P.V.; Brown, J.H., Jr.; Killingbeck, K.T. The Influence of Geomorphological Heterogeneity on Biodiversity I. A Patch-Scale Perspective. Conserv. Biol. 1998, 12, 363–370. [Google Scholar] [CrossRef]
- Harris-Pascal, D. Fluvial Geomorphology of the Bió-Bió Basin. 2014: ENVS 6312. p. 24. Available online: https://www.academia.edu/11802085/Geomorphology_and_microcatchment_management_of_the_Bio_Bio_Basin_Chile (accessed on 22 August 2022).
- Wohl, E. Geomorphic context in rivers. Prog. Phys. Geogr. Earth Environ. 2018, 42, 841–857. [Google Scholar] [CrossRef]
- Ulloa, H.; Iroumé, A.; Picco, L.; Vergara, G.; Sitzia, T.; Mao, L.; Mazzorana, B. Do the morphological characteristics of Chilean gravel-bed rivers exhibit latitudinal patterns? J. S. Am. Earth Sci. 2020, 99, 102522. [Google Scholar] [CrossRef]
- Bañales-Seguel, C.; Salazar, A.; Mao, L. Hydro-morphological characteristics and recent changes of a nearly pristine river system in Chilean Patagonia: The Exploradores river network. J. S. Am. Earth Sci. 2019, 98, 102444. [Google Scholar] [CrossRef]
- Martínez, F.; Madrid, H. Sinuosidad y Dimensión Fractal de Cauces Chilenos. Tecnol. Y Cienc. Del Agua 2019, 13, 172–224. [Google Scholar] [CrossRef]
- Candel, J.H.J.; Makaske, B.; Kijm, N.; Kleinhans, M.G.; Storms, J.E.A.; Wallinga, J. Self-constraining of low-energy rivers explains low channel mobility and tortuous planforms. Depos. Rec. 2020, 6, 648–669. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Corenblit, D.; García de Jalón, D.; González del Tánago, M.; Grabowski, R.C.; O’Hare, M.T.; Szewczyk, M. A Conceptual Model of Vegetation-hydrogeomorphology Interactions within River Corridors. River Res. Appl. 2015, 32, 142–163. [Google Scholar] [CrossRef]
- Andreoli, A.; Mao, L.; Iroume, A.; Arumi, J.L.; Nardini, A.; Pizarro, R.; Caamaño, D.; Meier, C.; Link, O. The need for a hydromorphological approach to Chilean river management. Rev. Chil. Hist. Nat. 2012, 85, 339–343. [Google Scholar] [CrossRef]
- Abell, R.; Thieme, M.L.; Revenga, C.; Bryer, M.; Kottelat, M.; Bogutskaya, N.; Coad, B.; Mandrak, N.; Balderas, S.C.; Bussing, W.; et al. Freshwater Ecoregions of the World: A New Map of Biogeographic Units for Freshwater Biodiversity Conservation. BioScience 2008, 58, 403–414. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquatic Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Dyer, B. Revisión sistemática y biogeográfica de los peces dulceacuícola de Chile. Estud. Oceanol. 2000, 19, 77–98. [Google Scholar]
- Downs, P.W.; Piégay, H. Catchment-scale cumulative impact of human activities on river channels in the late Anthropocene: Implications, limitations, prospect. Geomorphology 2019, 338, 88–104. [Google Scholar] [CrossRef]
- Maaß, A.-L.; Schüttrumpf, H.; Lehmkuhl, F. Human impact on fluvial systems in Europe with special regard to today’s river restorations. Environ. Sci. Eur. 2021, 33, 1–13. [Google Scholar] [CrossRef]
- Pacheco, F.; Rojas, O.; Hernández, E.; Caamaño, D. Effects on Fluvial Geomorphology and Vegetation Cover following Hydroelectric Power Plant Operation: A Case Study in the Maule River (Chile). Water 2022, 14, 1673. [Google Scholar] [CrossRef]
- Alcayaga, H.; Palma, S.; Caamaño, D.; Mao, L.; Soto-Alvarez, M. Detecting and quantifying hydromorphology changes in a chilean river after 50 years of dam operation. J. S. Am. Earth Sci. 2019, 93, 253–266. [Google Scholar] [CrossRef]
- Arróspide, F.; Mao, L.; Escauriaza, C. Morphological evolution of the Maipo River in central Chile: Influence of instream gravel mining. Geomorphology 2018, 306, 182–197. [Google Scholar] [CrossRef]
Basin | Latitude (° ′) | Longitude (° ′) | Area (km2) | Maximum Altitude (m) | Predominant Climate | Flow Regime * | PPMA (mm) | QMA (m3/s) | Fragmentation Index ** |
---|---|---|---|---|---|---|---|---|---|
Maipo | 32°55′–34°18′ S | 69°48′–71°38′ W | 15,273 | 6546 | Csa-Csb | Snowmelt | 650 | 134 | 0.393 |
Rapel | 33°54′–35°00′ S | 70°01′–71°51′ W | 13,766 | 5138 | Csa-Csb | Snowmelt-rain | 882 | 169 | 0.463 |
Mataquito | 34°48′–35°38′ S | 70°24′–72°11′ W | 6332 | 4058 | Csb | Snowmelt-rain | 1373 | 113 | 0.080 |
Maule | 35°06′–36°35′ S | 70°21′–72°27′ W | 21,052 | 3931 | Csb | Snowmelt-rain | 1400 | 495 | 0.361 |
Itata | 36°12′–37°20′ S | 71°02′–72°52′ W | 11,326 | 3178 | Csb | Snowmelt-rain | 1764 | 331 | 0.044 |
Biobío | 36°52′–38°54′ S | 70°50′–73°12′ W | 24,369 | 3487 | Csb | Rain | 1873 | 971 | 0.436 |
Imperial | 37°49′–38°58′ S | 71°27′–73°30′ W | 12,668 | 3066 | Csb-Cfb | Rain | 2056 | 264 | 0.002 |
Toltén | 38°36′–39°38′ S | 71°24′–73°14′ W | 8448 | 3710 | Cfb | Rain | 2062 | 540 | 0.016 |
Valdivia | 39°18′–40°12′ S | 71°36′–73°24′ W | 10,244 | 2824 | Cfb | Rain | 2592 | 546 | 0.021 |
Bueno | 39°54′–41°17′ S | 71°40′–73°43′ W | 15,366 | 2410 | Cfb | Rain | 2861 | 394 | 0.025 |
Puelo | 41°21′–42°09′ S | 71°46′–72°22′ W | 3094 | 3343 | Cfb | Snowmelt-rain | 2389 | 629 | 0.001 |
Scale | Variable | Unit | Abbreviation | Data Source |
---|---|---|---|---|
Basin | Elevation | M | ELE | 12.5 m DEM CIREN |
Dominant Geology | DL | GEO | Chile geological map 1:1,000,000 | |
Mean annual precipitation | Mm | PRE | WorldClim Rainfall Raster | |
Valley | Valley floor width | M | VFW | Floodplain Shapefile |
Valley width | M | VW | Valley Shapefile | |
Ratio of valley width to valley floor width | M | RAT | Floodplain and valley Shapefiles | |
Right valley slope | degrees | RVS | Slope Raster | |
Left valley slope | degrees | LVS | Slope Raster | |
Downstream valley slope | degrees | DVS | Slope Raster | |
Channel | Channel belt width | M | CBW | Channel Shapefile |
Channel belt wavelength | M | CBL | Channel Shapefile | |
Channel belt sinuosity | DL | CBS | Channel Shapefile River network Shapefile | |
Channel River sinuosity | DL | RCS | River network Shapefile Valley Shapefile | |
Channel planform | DL | PLN | Satellite images | |
Number of channels | - | NC | Satellite images | |
Confinement | DL | CO | Floodplain and channel Shapefiles |
Common Characteristics at 60% Similarity | Number | FPZ Name | FPZ Abbreviation | Geomorphological Characterization |
---|---|---|---|---|
Steep valley and downstream slope rivers | 1 | Andean High Altitude FPZ | AHA | High altitude rivers (>1000 m.a.s.l.), narrow channel in volcano-sedimentary sequences. |
2 | Andean Steep Downstream Slope FPZ | ASDS | Steep downstream slope rivers, narrow channel in intrusive rock. | |
Sinuous rivers | 3 | Sinuous Single-channel FPZ | SSC | Sinuous rivers with single channel. |
4 | Sinuous Multi-channel FPZ | SMC | Sinuous rivers with multiple channels. | |
5 | Sinuous Metamorphic Rock FPZ | SMR | Highly sinuous rivers at low elevations in metamorphic rock. | |
Braided rivers | 6 | Braided Gentle Downstream Slope FPZ | BGDS | Braided gentle downstream slope with wide channel and valley. |
7 | Braided Intrusive Rock FPZ | BIR | Braided rivers with wide channel and valley in intrusive rocks. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habit, E.; Zurita, A.; Díaz, G.; Manosalva, A.; Arriagada, P.; Link, O.; Górski, K. Latitudinal and Altitudinal Gradients of Riverine Landscapes in Andean Rivers. Water 2022, 14, 2614. https://doi.org/10.3390/w14172614
Habit E, Zurita A, Díaz G, Manosalva A, Arriagada P, Link O, Górski K. Latitudinal and Altitudinal Gradients of Riverine Landscapes in Andean Rivers. Water. 2022; 14(17):2614. https://doi.org/10.3390/w14172614
Chicago/Turabian StyleHabit, Evelyn, Alejandra Zurita, Gustavo Díaz, Aliro Manosalva, Pedro Arriagada, Oscar Link, and Konrad Górski. 2022. "Latitudinal and Altitudinal Gradients of Riverine Landscapes in Andean Rivers" Water 14, no. 17: 2614. https://doi.org/10.3390/w14172614