Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = MDF substrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1582 KB  
Article
Effects of MDF Substrate Surface Coating Process on UV Inkjet Print Quality
by Ruijuan Sang, Shuqi Yang and Zhenxian Fan
Coatings 2023, 13(5), 970; https://doi.org/10.3390/coatings13050970 - 22 May 2023
Cited by 10 | Viewed by 2475
Abstract
The structural properties and whiteness of the substrate surface markedly effect printing quality and are closely related to the primer coating processes. Herein, four different roller coating schemes were applied on MDF surfaces to change their structural properties and color, and the whiteness, [...] Read more.
The structural properties and whiteness of the substrate surface markedly effect printing quality and are closely related to the primer coating processes. Herein, four different roller coating schemes were applied on MDF surfaces to change their structural properties and color, and the whiteness, gloss, and roughness properties of the substrate surfaces were characterized for UV inkjet printing. Data analysis was conducted to explore the effects of these variables on the color reproduction, relative contrast, and printing gloss of the MDF substrates. The results showed that, according to CMYK, L*a*b* values and spectral reflectance data, the finishing of the MDF substrate with a 40 g/m2 layer of transparent primer combined with three layers of white primer at 20 g/m2 per roll coating layer had the best color reproduction effect for UV inkjet printing. Regarding the effects of relative contrast, the correlation with whiteness and glossiness was significant, while the correlation with glossiness was minor. The inkjet printing gloss value was positively correlated with substrate primer surface whiteness, while it was negatively correlated with roughness. When the surface whiteness of the substrate was relatively high, the roughness was lower and the printing effects were glossier. We sought to optimize the printing effects of all aspects of the MDF substrate by primer coating. The results of this work provide a feasible application method to improve printing quality and enhance the added value of low-quality boards, as well as to further expand the application of UV inkjet printing in the wood decoration market. Full article
Show Figures

Figure 1

13 pages, 3220 KB  
Article
Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations
by Ying Li and Xizhen Ge
Int. J. Mol. Sci. 2023, 24(1), 356; https://doi.org/10.3390/ijms24010356 - 26 Dec 2022
Cited by 5 | Viewed by 2277
Abstract
Multidrug resistance poses a major challenge to antibiotic therapy. A principal cause of antibiotic resistance is through active export by efflux pumps embedded in the bacterial membrane. Major facilitator superfamily (MFS) efflux pumps constitute a major group of transporters, which are often related [...] Read more.
Multidrug resistance poses a major challenge to antibiotic therapy. A principal cause of antibiotic resistance is through active export by efflux pumps embedded in the bacterial membrane. Major facilitator superfamily (MFS) efflux pumps constitute a major group of transporters, which are often related to quinolone resistance in clinical settings. Although a rocker-switch model is proposed for description of their conformational transitions, detailed changes in this process remain poorly understood. Here we used MdfA from E. coli as a representative MFS efflux pump to investigate factors that can affect its conformational transition in silico. Molecular dynamics (MD) simulations of MdfA’s inward and outward conformations revealed an intermediate state between these two conformations. By comparison of the subtle differences between the intermediate state and the average state, we indicated that conformational transition from outward to inward was initiated by protonation of the periplasmic side. Subsequently, hydrophilic interaction of the periplasmic side with water was promoted and the regional structure of helix 1 was altered to favor this process. As the hydrophobic interaction between MdfA and membrane was also increased, energy was concentrated and stored for the opposite transition. In parallel, salt bridges at the cytoplasmic side were altered to lower probabilities to facilitate the entrance of substrate. In summary, we described the total and local changes during MdfA’s conformational transition, providing insights for the development of potential inhibitors. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

30 pages, 51131 KB  
Article
Development of Ultrafine–Grained and Nanostructured Bioinert Alloys Based on Titanium, Zirconium and Niobium and Their Microstructure, Mechanical and Biological Properties
by Yurii Sharkeev, Anna Eroshenko, Elena Legostaeva, Zhanna Kovalevskaya, Olga Belyavskaya, Margarita Khimich, Matthias Epple, Oleg Prymak, Viktoriya Sokolova, Qifang Zhu, Zeming Sun and Hongju Zhang
Metals 2022, 12(7), 1136; https://doi.org/10.3390/met12071136 - 2 Jul 2022
Cited by 21 | Viewed by 2914
Abstract
For this paper, studies of the microstructure as well as the mechanical and biological properties of bioinert titanium, zirconium, and niobium alloys in their nanostructured (NS) and ultrafine-grained (UFG) states have been completed. The NS and UFG states were formed by a combined [...] Read more.
For this paper, studies of the microstructure as well as the mechanical and biological properties of bioinert titanium, zirconium, and niobium alloys in their nanostructured (NS) and ultrafine-grained (UFG) states have been completed. The NS and UFG states were formed by a combined two-step method of severe plastic deformation (SPD), first with multidirectional forging (MDF) or pressing into a symmetrical channel (PSC) at a given temperature regime, and then subsequent multi-pass groove rolling (MPGR) at room temperature, with pre-recrystallization annealing. Annealing increased the plasticity of the alloys in the NS and UFG states without changing the grain size. The UFG structure, with an average size of structural elements of no more than 0.3 μm, was formed as a result of applying two-step SPD and annealing. This structure presented significant improvement in the mechanical characteristics of the alloys, in comparison with the alloys in the coarse-grained (CG) or small-grained (SG) states. At the same time, although the formation of the UFG structure leads to a significant increase in the yield strength and tensile strength of the alloys, their elastic modulus did not change. In terms of biocompatibility, the cultivation of MG-63 osteosarcoma cells on the polished and sandblasted substrates demonstrated high cell viability after 10 days and good cell adhesion to the surface. Full article
(This article belongs to the Special Issue Thermomechanical Treatment of Metals and Alloys)
Show Figures

Figure 1

24 pages, 3111 KB  
Article
Waste Rose Flower and Lavender Straw Biomass—An Innovative Lignocellulose Feedstock for Mycelium Bio-Materials Development Using Newly Isolated Ganoderma resinaceum GA1M
by Galena Angelova, Mariya Brazkova, Petya Stefanova, Denica Blazheva, Veselin Vladev, Nadejda Petkova, Anton Slavov, Petko Denev, Daniela Karashanova, Roumiana Zaharieva, Atanas Enev and Albert Krastanov
J. Fungi 2021, 7(10), 866; https://doi.org/10.3390/jof7100866 - 15 Oct 2021
Cited by 29 | Viewed by 5235
Abstract
In this study, for the first time, the potential of rose flowers and lavender straw waste biomass was studied as feeding lignocellulose substrates for the cultivation of newly isolated in Bulgaria Ganoderma resinaceum GA1M with the objective of obtaining mycelium-based bio [...] Read more.
In this study, for the first time, the potential of rose flowers and lavender straw waste biomass was studied as feeding lignocellulose substrates for the cultivation of newly isolated in Bulgaria Ganoderma resinaceum GA1M with the objective of obtaining mycelium-based bio-composites. The chemical characterization and Fourier Transform Infrared (FTIR) spectroscopy established that the proximate composition of steam distilled lavender straw (SDLS) and hexane extracted rose flowers (HERF) was a serious prerequisite supporting the self-growth of mycelium bio-materials with improved antibacterial and aromatic properties. The basic physico-mechanical properties of the developed bio-composites were determined. The apparent density of the mycelium HERF-based bio-composites (462 kg/m3) was higher than that of the SDLS-based bio-composite (347 kg/m3) and both were much denser than expanded polystyren (EPS), lighter than medium-density fiber board (MDF) and oriented strand board (OSB) and similar to hempcrete. The preliminary testing of their compressive behavior revealed that the compressive resistance of SDLS-based bio-composite was 718 kPa, while for HERF-based bio-composite it was 1029 kPa and both values are similar to the compressive strength of hempcrete with similar apparent density. Water absorbance analysis showed, that both mycelium HERF- and SDLS-based bio-composites were hydrophilic and further investigations are needed to limit the hydrophilicity of the lignocellulose fibers, to tune the density and to improve compressive resistance. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application)
Show Figures

Figure 1

20 pages, 1867 KB  
Article
Influence of Compost from Post-Consumer Wood on Development, Nutrition State of Plants, Microbiological and Biochemical Parameters of Substrates in Zonal Pelargonium (Pelargonium zonale)
by Anita Schroeter-Zakrzewska, Agnieszka Wolna-Maruwka, Tomasz Kleiber, Hanna Wróblewska and Katarzyna Głuchowska
Agronomy 2021, 11(5), 994; https://doi.org/10.3390/agronomy11050994 - 17 May 2021
Cited by 5 | Viewed by 2771
Abstract
The purpose of this study was to assess the possibility of using compost made from post-consumer wood in zonal pelargonium (Pelargonium zonale) cv. ‘Tex Mex’ cultivation. The influence of compost on the plant’s development and nutritional state, as well as the [...] Read more.
The purpose of this study was to assess the possibility of using compost made from post-consumer wood in zonal pelargonium (Pelargonium zonale) cv. ‘Tex Mex’ cultivation. The influence of compost on the plant’s development and nutritional state, as well as the microbiological and enzymatic activity of the substrate was examined. Two variants of compost marked with the following letters: OPA and OPB were used. Both variants consisted of post-consumer wood waste (OP) (70% of weight) mixed with powdery waste from processing MDF boards (6%), mature compost from fiberboard waste (19%), high peat (4%), water and a biological inoculum “Activit Las”. Thirty kilograms of urea in two portions per prism were added to the OPA variant while ammonium nitrate (1.5 kg per prism), magnesium sulphate (0.4 kg per prism), potassium phosphate (0.8kg per prism) and calcium phosphate (0.9 kg per prism) were added to the OPB variant. The plants were cultivated into pots 12 cm in diameter and a capacity of 659 dm3 in the substrates consisting of peat with the addition of compost at different volume ratios. It was found that the medium type had a significant influence on the growth and flowering of the zonal pelargonium. The type of compost used was the determinant for microbiological total counts and activity. The chemical composition of the substrates significantly modified the plants’ nutritional state in terms of macro- and microelements. In summary, the study demonstrated that good quality ornamental plants can be successfully grown in peat substrate containing 25% or 50% of post-consumer wood compost. Full article
Show Figures

Figure 1

13 pages, 4224 KB  
Article
Polymer-Cement Composites Glazing by Concentrated Solar Energy
by Liana Sanda Baltes, Silvia Patachia, Ozgur Ekincioglu, Hulusi Ozkul, Catalin Croitoru, Corneliu Munteanu, Bogdan Istrate and Mircea Horia Tierean
Coatings 2021, 11(3), 350; https://doi.org/10.3390/coatings11030350 - 18 Mar 2021
Cited by 2 | Viewed by 3983
Abstract
Macro defect free (MDF) cements are polymer-cement composites characterized by high biaxial flexural strength compared to traditional concrete, having as a drawback a low water resistance. Glazing these composite materials with an inorganic enamel containing TiO2 nano-particles has led to a high [...] Read more.
Macro defect free (MDF) cements are polymer-cement composites characterized by high biaxial flexural strength compared to traditional concrete, having as a drawback a low water resistance. Glazing these composite materials with an inorganic enamel containing TiO2 nano-particles has led to a high water-stable material with advanced photocatalytic properties. Classic glazing by thermal treatment of samples, at 1050 °C, requires energy consumption and long-time performing. The purpose of this paper is to test the use of solar radiation as a source of energy in the glazing process. A vertical axis solar furnace has been used, from PROMES-CNRS Solar Laboratory, Font-Romeu Odeillo, France, and it has been observed that a uniform appearance of the glaze coating has been achieved; it shows high scratch resistance, meaning a good hardness and adhesion to the substrate. The obtained film was also characterized by SEM, EDS and XRD, aiming to evidence the coat morphology, the TiO2 distribution and its crystallinity alteration, when compared to the samples obtained by classic thermal treatment. The conclusion of the paper is that using solar radiation in the MDF cement glazing process is a promising approach for obtaining multifunctional materials. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

9 pages, 4448 KB  
Article
Effect of Veneer Initial Moisture Content on the Performance of Polyethylene Film Reinforced Decorative Veneer
by Lu Fang, Jian Zeng, Xinhao Zhang and Dan Wang
Forests 2021, 12(1), 102; https://doi.org/10.3390/f12010102 - 18 Jan 2021
Cited by 12 | Viewed by 3013
Abstract
The flexible modification of decorative veneer by plastic film is an effective method to broaden its applications. In order to understand the effect of initial veneer moisture content on the performance of plastic film reinforced decorative veneer, Fraxinus mandshurica veneers with different initial [...] Read more.
The flexible modification of decorative veneer by plastic film is an effective method to broaden its applications. In order to understand the effect of initial veneer moisture content on the performance of plastic film reinforced decorative veneer, Fraxinus mandshurica veneers with different initial moisture contents were composited with polyethylene film. The overlaying performance of the decorative veneer and its interface morphology with MDF substrate were evaluated. The results showed that when the initial moisture content increased from 10% to 50%, the cavity proportion of PE film reinforced decorative veneer increased from 7.23% to 18.48%, while all of the minimum steel rod diameters remained at 7.6 mm. When the initial moisture content fluctuated between 10% and 20%, the optimum surface bonding strength (1 MPa) and immersion peel strength (0 mm) of the decorative veneer could be obtained. The strength of the decorative veneer significantly decreased when the initial moisture content was more than 20%, which was caused by the cavities and the poor interfacial bonding. The veneer surface was easy to crack under low moisture content conditions. Based on the overall performance and the cost of decorative wood-based panels, initial veneer moisture content was suggested to be 15% to 20%. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

12 pages, 5378 KB  
Article
Digital 3D Wood Texture: UV-Curable Inkjet Printing on Board Surface
by Ruijuan Sang, Adam John Manley, Zhihui Wu and Xinhao Feng
Coatings 2020, 10(12), 1144; https://doi.org/10.3390/coatings10121144 - 24 Nov 2020
Cited by 26 | Viewed by 8465
Abstract
Natural wood textures are appreciated in most forest products industries for their appealing visual characteristics including grain and color, but also their fine surface tactile sensation. The following presents an ultraviolet (UV)-curable inkjet technology printing 3D wood texture on wood-based substrate by image [...] Read more.
Natural wood textures are appreciated in most forest products industries for their appealing visual characteristics including grain and color, but also their fine surface tactile sensation. The following presents an ultraviolet (UV)-curable inkjet technology printing 3D wood texture on wood-based substrate by image processing and surface treatment. The UV printing was created from scanned digital images of a real wood surface and processed in graphics software. The images were converted to grayscale graphics by selecting color range and setting the parameter of fuzziness. The grayscale images were printed as 3D texture height simulation on the substrates and coated by printing the color images as texture mapping. Based on these wood texture digital images, the marquetry art is also considered in the images processing design to increase the artistry of the printed materials. The medium-density fiberboard (MDF) coated printing marquetry surface replicate realistic natural 3D wood texture surface layers on wood-based panels and imitated the effect of handcrafted wood art works. This study proves that printing 3D texture surface material is creative and valuable with ecologically friendly, low-consumption UV-curable inkjet technology and provides a feasible and scalable approach in flooring/furniture/decorative architectural panels. Full article
Show Figures

Graphical abstract

11 pages, 8227 KB  
Article
Pre-Treatment of Furniture Waste for Smokeless Charcoal Production
by Paweł Kazimierski, Paulina Hercel, Katarzyna Januszewicz and Dariusz Kardaś
Materials 2020, 13(14), 3188; https://doi.org/10.3390/ma13143188 - 17 Jul 2020
Cited by 20 | Viewed by 3772
Abstract
The aim of this study was to assess the possibility of using furniture waste for smokeless fuel production using the pyrolysis process. Four types of wood-based wastes were used in the pyrolysis process: pine sawdust (PS), chipboard (CB), medium-density fiberboard (MDF), and oriented [...] Read more.
The aim of this study was to assess the possibility of using furniture waste for smokeless fuel production using the pyrolysis process. Four types of wood-based wastes were used in the pyrolysis process: pine sawdust (PS), chipboard (CB), medium-density fiberboard (MDF), and oriented strand board (OSB). Additionally, the slow and fast types of pyrolysis were compared, where the heating rates were 15 °C/min and 100 °C/min, respectively. Chemical analyses of the raw materials and the pyrolysis product yields are presented. A significant calorific value rise was observed for the solid pyrolysis products (from approximately 17.5 MJ/kg for raw materials up to approximately 29 MJ/kg for slow pyrolysis products and 31 MJ/kg for fast pyrolysis products). A higher carbon content of char was observed in raw materials (from approximately 48% for raw materials up to approximately 75% for slow pyrolysis products and approximately 82% for fast pyrolysis products) than after the pyrolysis process. This work presents the possibility of utilizing waste furniture material that is mostly composed of wood, but is not commonly used as a substrate for conversion into low-emission fuel. The results prove that the proposed solution produced char characterized by the appropriate properties to be classified as smokeless coal. Full article
(This article belongs to the Special Issue Carbon Materials Applied for Biomass Conversion)
Show Figures

Figure 1

15 pages, 4911 KB  
Article
Sound Absorption of Sustainable Polymer Nanofibrous Thin Membranes Bonded to a Bulk Porous Material
by Tomáš Ulrich and Jorge P. Arenas
Sustainability 2020, 12(6), 2361; https://doi.org/10.3390/su12062361 - 18 Mar 2020
Cited by 49 | Viewed by 5299
Abstract
In this paper, the standardized characterization of nanofibrous membranes used to coat three porous bulk acoustical materials (melamine foam, a polyester textile, and an MDF perforated panel) is presented. The membranes were manufactured from recyclable Polyamide 6 (PA6) and water-soluble polyvinyl alcohol (PVA) [...] Read more.
In this paper, the standardized characterization of nanofibrous membranes used to coat three porous bulk acoustical materials (melamine foam, a polyester textile, and an MDF perforated panel) is presented. The membranes were manufactured from recyclable Polyamide 6 (PA6) and water-soluble polyvinyl alcohol (PVA) using the needleless electrospinning technique. This resulted in very thin membranes that had high porosity and very high airflow resistivity. The membranes were collected in a high-permeability nonwoven substrate. Measured results in both an impedance tube and a reverberation room showed significant improvements in the sound absorption performance of the bulk materials after incorporating the nanofibrous layer. The application of the membranes on the surface of a traditional air-backed perforated panel also improved the sound absorption, exhibiting a broad peak of sound absorption in the low-frequency range. This was particularly true when the membrane area weight was increased. It is concluded that these materials, manufactured as described in this paper, can be alternatives to glass, mineral, and ceramic fibrous materials, which have high carbon footprints. Full article
(This article belongs to the Special Issue Sustainable Acoustic Materials)
Show Figures

Figure 1

10 pages, 2851 KB  
Article
Atmospheric Pressure Plasma Coating of Wood and MDF with Polyester Powder
by Robert Köhler, Philipp Sauerbier, Holger Militz and Wolfgang Viöl
Coatings 2017, 7(10), 171; https://doi.org/10.3390/coatings7100171 - 17 Oct 2017
Cited by 27 | Viewed by 7389
Abstract
In this study, polyester powder based on iso- and teraphthalic acid was deposited with an atmospheric plasma jet. The powder was fed into the effluent plasma zone and deposited on European beech wood (Fagus sylvatica L.), Grand fir (Abies grandis Lindl.) [...] Read more.
In this study, polyester powder based on iso- and teraphthalic acid was deposited with an atmospheric plasma jet. The powder was fed into the effluent plasma zone and deposited on European beech wood (Fagus sylvatica L.), Grand fir (Abies grandis Lindl.) and medium density fiberboard (MDF). The substrates were annealed subsequent to the coating process. To exclude decomposition of the polyester layers by the plasma treatment, the surface chemistry of the layers has been examined by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) and compared with the polyester powder reference. Furthermore, topographical investigations were carried out using laser scanning microscopy (LSM). Adhesive strength of the layers was evaluated by dolly test and gloss measurements with a goniophotometer. The deposited layers showed no chemical changes compared to the reference. The adhesive strength of the layer met practical requirements of >1 MPa. It was demonstrated that the deposition of a macroscopic layer is possible without a pretreatment or the usage of additives. Therefore this coating process by atmospheric pressure plasma for wood and wood based materials could represent an environmental-friendly alternative to conventional coating methods. Full article
(This article belongs to the Special Issue Wood Coatings)
Show Figures

Figure 1

Back to TopTop