Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = MALDI-IMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3868 KiB  
Article
Enhancing Galantamine Distribution in Rat Brain Using Microplasma-Assisted Nose-to-Brain Drug Delivery
by Abubakar Hamza Sadiq, Md Jahangir Alam, Farhana Begum, Mahedi Hasan, Jaroslav Kristof, Md. Al Mamun, Md. Maniruzzaman, Kosuke Shimizu, Takanori Kanazawa, Tomoaki Kahyo, Mitsutoshi Setou and Kazuo Shimizu
Int. J. Mol. Sci. 2025, 26(4), 1710; https://doi.org/10.3390/ijms26041710 - 17 Feb 2025
Cited by 1 | Viewed by 1079
Abstract
Nose-to-brain (N2B) drug delivery is a promising technique for the treatment of brain diseases. It allows a drug to enter the brain without passing through the blood–brain barrier. However, the nasal cavity and nasal mucosa can restrict the amount of drug absorbed. Recent [...] Read more.
Nose-to-brain (N2B) drug delivery is a promising technique for the treatment of brain diseases. It allows a drug to enter the brain without passing through the blood–brain barrier. However, the nasal cavity and nasal mucosa can restrict the amount of drug absorbed. Recent studies of non-thermal plasma (NTP) have shown improvement in in vitro drug delivery to cells and tissues. However, whether NTP treatments can enhance the in vivo delivery of drugs for neurodegenerative disease like Alzheimer’s disease (AD) into the brain via the N2B technique remains unclear. The drug used in this study was galantamine hydrobromide. Galantamine is used to treat patients with mild to moderate AD. Based on the principle of NTP, a type of dielectric barrier discharge (DBD) plasma, which we called spiral DBD microplasma, was designed. It was inserted into the nose of a rat to a depth of 2 mm. The spiral DBD microplasma was driven by a sinusoidal voltage for 4 min, followed by the immediate administration of galantamine. The effect of the microplasma treatment on the distribution of galantamine in the brain was evaluated using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). The results showed a high distribution of galantamine in the left and right brain hemispheres of the rat treated with plasma discharge compared to a control treated without plasma discharge. The spiral DBD microplasma is a novel contribution to DBD plasma designs. In addition, this technique for drug delivery has also created a novel approach with potential for becoming a non-invasive method of enhancing drug distribution in the brain for the treatment of neurological disorders. Full article
(This article belongs to the Special Issue Synthetic Polymers in Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 4389 KiB  
Article
Biospeciation of Oxidovanadium(IV) Imidazolyl–Carboxylate Complexes and Their Action on Glucose-Stimulated Insulin Secretion in Pancreatic Cells
by Vital Ugirinema, Frank Odei-Addo, Carminita L. Frost and Zenixole R. Tshentu
Molecules 2024, 29(3), 724; https://doi.org/10.3390/molecules29030724 - 4 Feb 2024
Cited by 1 | Viewed by 2055
Abstract
The reaction of the vanadyl ion (VO2+) with imidazole-4-carboxylic acid (Im4COOH), imidazole-2-carboxylic acid (Im2COOH) and methylimidazole-2-carboxylic acid (MeIm2COOH), respectively, in the presence of small bioligands (bL) [oxalate (Ox), lactate (Lact), citrate (Cit) and phosphate (Phos)] and high-molecular-weight (HMW) human serum proteins [...] Read more.
The reaction of the vanadyl ion (VO2+) with imidazole-4-carboxylic acid (Im4COOH), imidazole-2-carboxylic acid (Im2COOH) and methylimidazole-2-carboxylic acid (MeIm2COOH), respectively, in the presence of small bioligands (bL) [oxalate (Ox), lactate (Lact), citrate (Cit) and phosphate (Phos)] and high-molecular-weight (HMW) human serum proteins [albumin (HSA) and transferrin (hTf)] were studied in aqueous solution using potentiometric acid–base titrations. The species distribution diagrams for the high-molecular-mass (HMM) proteins with oxidovanadium(IV) under physiological pH were dominated by VO(HMM)2, VOL(HMM) for unsubstituted ligands (L = Im4COO and Im2COO). However, for the N-substituted MeIm2COOH, the species distribution diagrams under physiological pH were dominated by VOL2, VO(HMM)2 and VO2L2(HMM). These species were further confirmed by LC-MS, MALDI-TOF-MS and EPR studies. The glucose-stimulated insulin secretion (GSIS) action of the complexes was investigated using INS-1E cells at a 1 µM concentration, which was established through cytotoxicity studies via the MTT assay. The neutral complexes, especially VO(MeIm2COO)2, showed promising results in the stimulation of insulin secretion than the cationic [VO(MeIm2CH2OH)2]2+ complex and the vanadium salt. Oxidovanadium(IV) complexes reduced insulin stimulation significantly under normoglycaemic levels but showed positive effects on insulin secretion under hyperglycaemic conditions (33.3 mM glucose media). The islets exposed to oxidovanadium(IV) complexes under hyperglycaemic conditions displayed a significant increase in the stimulatory index with 1.19, 1.75, 1.53, 1.85, 2.20 and 1.29 observed for the positive control (sulfonylurea:gliclazide), VOSO4, VO(Im4COO)2, VO(Im2COO)2, VO(MeIm2COO)2 and VO(MeIm2CH2OH)22+, respectively. This observation showed a potential further effect of vanadium complexes towards type 2 diabetes and has been demonstrated for the first time in this study. Full article
(This article belongs to the Special Issue Advances in Vanadium Complexes)
Show Figures

Figure 1

34 pages, 4213 KiB  
Review
Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers
by Maria Roxana Biricioiu, Mirela Sarbu, Raluca Ica, Željka Vukelić, Svjetlana Kalanj-Bognar and Alina D. Zamfir
Int. J. Mol. Sci. 2024, 25(2), 1335; https://doi.org/10.3390/ijms25021335 - 22 Jan 2024
Cited by 4 | Viewed by 3004
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) [...] Read more.
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biology in Romania)
Show Figures

Figure 1

60 pages, 1335 KiB  
Review
Assessing Glycosphingolipid Profiles in Human Health and Disease Using Non-Imaging MALDI Mass Spectrometry
by Cristina Ramona Novaconi, Robert Onulov, Alina Florina Serb, Eugen Sisu, Nicolae Dinca, Mihai-Cosmin Pascariu and Marius Georgescu
Appl. Sci. 2023, 13(17), 9922; https://doi.org/10.3390/app13179922 - 1 Sep 2023
Cited by 1 | Viewed by 2522
Abstract
Glycosphingolipids (GSLs) are a glycolipid subtype which plays vital roles in numerous biological processes, cell–cell interactions, as well as oncogenesis and ontogenesis. They are ubiquitous molecules found mostly in cell membranes. Abnormal expression of GSLs as well as altered molecular structure have been [...] Read more.
Glycosphingolipids (GSLs) are a glycolipid subtype which plays vital roles in numerous biological processes, cell–cell interactions, as well as oncogenesis and ontogenesis. They are ubiquitous molecules found mostly in cell membranes. Abnormal expression of GSLs as well as altered molecular structure have been linked with progression of cancer and metastasis and are involved in the pathophysiology of neurodegenerative, autoimmune, and infectious diseases as well as inherited enzyme defects—glycosphingolipidoses. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) plays a leading role in analyzing and characterizing different GSLs, and thus can help to distinguish altered GSL patterns. This review offers insights into the benefits and limitations when using MALDI MS in this field of lipidomic research, with an emphasis on which are the optimal matrices in analyzing GSLs from different tissues (normal and pathological) as well as highlighting GSLs’ particular profiles in various cell cultures, and normal and pathological human tissues obtained by MALDI non-imaging MS (non-IMS). These findings can have implications in further understanding the role of altered GSL expression in various pathological conditions and could be a target for future therapies. Full article
Show Figures

Figure 1

20 pages, 4132 KiB  
Article
Tubulin Polyglutamylation by TTLL1 and TTLL7 Regulate Glutamate Concentration in the Mice Brain
by Yashuang Ping, Kenji Ohata, Kenji Kikushima, Takumi Sakamoto, Ariful Islam, Lili Xu, Hengsen Zhang, Bin Chen, Jing Yan, Fumihiro Eto, Chiho Nakane, Keizo Takao, Tsuyoshi Miyakawa, Katsuya Kabashima, Miho Watanabe, Tomoaki Kahyo, Ikuko Yao, Atsuo Fukuda, Koji Ikegami, Yoshiyuki Konishi and Mitsutoshi Setouadd Show full author list remove Hide full author list
Biomolecules 2023, 13(5), 784; https://doi.org/10.3390/biom13050784 - 1 May 2023
Cited by 3 | Viewed by 3809
Abstract
As an important neurotransmitter, glutamate acts in over 90% of excitatory synapses in the human brain. Its metabolic pathway is complicated, and the glutamate pool in neurons has not been fully elucidated. Tubulin polyglutamylation in the brain is mainly mediated by two tubulin [...] Read more.
As an important neurotransmitter, glutamate acts in over 90% of excitatory synapses in the human brain. Its metabolic pathway is complicated, and the glutamate pool in neurons has not been fully elucidated. Tubulin polyglutamylation in the brain is mainly mediated by two tubulin tyrosine ligase-like (TTLL) proteins, TTLL1 and TTLL7, which have been indicated to be important for neuronal polarity. In this study, we constructed pure lines of Ttll1 and Ttll7 knockout mice. Ttll knockout mice showed several abnormal behaviors. Matrix-assisted laser desorption/ionization (MALDI) Imaging mass spectrometry (IMS) analyses of these brains showed increases in glutamate, suggesting that tubulin polyglutamylation by these TTLLs acts as a pool of glutamate in neurons and modulates some other amino acids related to glutamate. Full article
(This article belongs to the Special Issue Glutamate and Glutamate Receptors in Health and Diseases)
Show Figures

Figure 1

21 pages, 3304 KiB  
Article
Tissue Microarray Lipidomic Imaging Mass Spectrometry Method: Application to the Study of Alcohol-Related White Matter Neurodegeneration
by Isabel Gameiro-Ros, Lelia Noble, Ming Tong, Emine B. Yalcin and Suzanne M. de la Monte
Appl. Biosci. 2023, 2(2), 173-193; https://doi.org/10.3390/applbiosci2020013 - 4 Apr 2023
Cited by 2 | Viewed by 3013
Abstract
Central nervous system (CNS) white matter pathologies accompany many diseases across the lifespan, yet their biochemical bases, mechanisms, and consequences have remained poorly understood due to the complexity of myelin lipid-based research. However, recent advances in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) have [...] Read more.
Central nervous system (CNS) white matter pathologies accompany many diseases across the lifespan, yet their biochemical bases, mechanisms, and consequences have remained poorly understood due to the complexity of myelin lipid-based research. However, recent advances in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS) have minimized or eliminated many technical challenges that previously limited progress in CNS disease-based lipidomic research. MALDI-IMS can be used for lipid identification, semi-quantification, and the refined interpretation of histopathology. The present work illustrates the use of tissue micro-arrays (TMAs) for MALDI-IMS analysis of frontal lobe white matter biochemical lipidomic pathology in an experimental rat model of chronic ethanol feeding. The use of TMAs combines workload efficiency with the robustness and uniformity of data acquisition. The methods described for generating TMAs enable simultaneous comparisons of lipid profiles across multiple samples under identical conditions. With the methods described, we demonstrate significant reductions in phosphatidylinositol and increases in phosphatidylcholine in the frontal white matter of chronic ethanol-fed rats. Together with the use of a novel rapid peak alignment protocol, this approach facilitates reliable inter- and intra-group comparisons of MALDI-IMS data from experimental models and could be extended to human disease states, including using archival specimens. Full article
(This article belongs to the Special Issue Feature Papers for the Inaugural Issue of Applied Biosciences)
Show Figures

Figure 1

35 pages, 26794 KiB  
Article
Studies on the Genus Pyrenopolyporus (Hypoxylaceae) in Thailand Using a Polyphasic Taxonomic Approach
by Sarunyou Wongkanoun, Boonchuai Chainuwong, Noppol Kobmoo, Sittiruk Roytrakul, Sayanh Somrithipol, Jennifer Luangsa-ard, Esteban Charria-Girón, Prasert Srikitikulchai and Marc Stadler
J. Fungi 2023, 9(4), 429; https://doi.org/10.3390/jof9040429 - 30 Mar 2023
Cited by 6 | Viewed by 4641
Abstract
Over the past two decades, hypoxylaceous specimens were collected from several sites in Thailand. In this study, we examined their affinity to the genus Pyrenopolyporus using macroscopic and microscopic morphological characters, dereplication of their stromatal secondary metabolites using ultrahigh performance liquid chromatography coupled [...] Read more.
Over the past two decades, hypoxylaceous specimens were collected from several sites in Thailand. In this study, we examined their affinity to the genus Pyrenopolyporus using macroscopic and microscopic morphological characters, dereplication of their stromatal secondary metabolites using ultrahigh performance liquid chromatography coupled to diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS), and molecular phylogenetic analyses. We describe and illustrate five novel species and a new record for the country, present multi-locus phylogenetic analyses that show the distinction between the proposed species, and provide proteomic profiles of the fungi using matrix associated laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) for the first time. Based on our findings, this strategy is useful as a complementary tool to distinguish species between Daldinia and Pyrenopolyporus in a consistent way with the phylogenetic analysis. Full article
(This article belongs to the Special Issue Phylogeny and Taxonomy of Ascomycete Fungi)
Show Figures

Graphical abstract

25 pages, 1660 KiB  
Review
Metabolomics-Based Mechanistic Insights into Revealing the Adverse Effects of Pesticides on Plants: An Interactive Review
by Mohammad Shahid, Udai B. Singh and Mohammad Saghir Khan
Metabolites 2023, 13(2), 246; https://doi.org/10.3390/metabo13020246 - 8 Feb 2023
Cited by 25 | Viewed by 4052
Abstract
In plant biology, metabolomics is often used to quantitatively assess small molecules, metabolites, and their intermediates in plants. Metabolomics has frequently been applied to detect metabolic alterations in plants exposed to various biotic and abiotic stresses, including pesticides. The widespread use of pesticides [...] Read more.
In plant biology, metabolomics is often used to quantitatively assess small molecules, metabolites, and their intermediates in plants. Metabolomics has frequently been applied to detect metabolic alterations in plants exposed to various biotic and abiotic stresses, including pesticides. The widespread use of pesticides and agrochemicals in intensive crop production systems is a serious threat to the functionality and sustainability of agroecosystems. Pesticide accumulation in soil may disrupt soil–plant relationships, thereby posing a pollution risk to agricultural output. Application of metabolomic techniques in the assessment of the biological consequences of pesticides at the molecular level has emerged as a crucial technique in exposome investigations. State-of-the-art metabolomic approaches such as GC–MS, LC–MS/MS UHPLC, UPLC–IMS–QToF, GC/EI/MS, MALDI-TOF MS, and 1H-HR-MAS NMR, etc., investigating the harmful effects of agricultural pesticides have been reviewed. This updated review seeks to outline the key uses of metabolomics related to the evaluation of the toxicological impacts of pesticides on agronomically important crops in exposome assays as well as bench-scale studies. Overall, this review describes the potential uses of metabolomics as a method for evaluating the safety of agricultural chemicals for regulatory applications. Additionally, the most recent developments in metabolomic tools applied to pesticide toxicology and also the difficulties in utilizing this approach are discussed. Full article
Show Figures

Graphical abstract

14 pages, 50391 KiB  
Article
Space and Time Coherent Mapping for Subcellular Resolution of Imaging Mass Spectrometry
by Jun Aoki, Masako Isokawa and Michisato Toyoda
Cells 2022, 11(21), 3382; https://doi.org/10.3390/cells11213382 - 26 Oct 2022
Cited by 4 | Viewed by 2323
Abstract
Space and time coherent mapping (STCM) is a technology developed in our laboratory for improved matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) imaging mass spectrometry (IMS). STCM excels in high spatial resolutions, which probe-based scanning methods cannot attain in conventional MALDI [...] Read more.
Space and time coherent mapping (STCM) is a technology developed in our laboratory for improved matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) imaging mass spectrometry (IMS). STCM excels in high spatial resolutions, which probe-based scanning methods cannot attain in conventional MALDI IMS. By replacing a scanning probe with a large field laser beam, focusing ion optics, and position-sensitive detectors, STCM tracks the entire flight trajectories of individual ions throughout the ionization process and visualizes the ionization site on the sample surface with a subcellular scale of precision and a substantially short acquisition time. Results obtained in thinly sectioned leech segmental ganglia and epididymis demonstrate that STCM IMS is highly suited for (1) imaging bioactive lipid messengers such as endocannabinoids and the mediators of neuronal activities in situ with spatial resolution sufficient to detail subcellular localization, (2) integrating resultant images in mass spectrometry to optically defined cell anatomy, and (3) assembling a stack of ion maps derived from mass spectra for cluster analysis. We propose that STCM IMS is the choice over a probe-based scanning mass spectrometer for high-resolution single-cell molecular imaging. Full article
Show Figures

Figure 1

14 pages, 2383 KiB  
Article
Blood Culture Headspace Gas Analysis Enables Early Detection of Escherichia coli Bacteremia in an Animal Model of Sepsis
by Maximilian Euler, Thorsten Perl, Isabell Eickel, Anna Dudakova, Esther Maguilla Rosado, Carolin Drees, Wolfgang Vautz, Johannes Wieditz, Konrad Meissner and Nils Kunze-Szikszay
Antibiotics 2022, 11(8), 992; https://doi.org/10.3390/antibiotics11080992 - 23 Jul 2022
Cited by 8 | Viewed by 2664
Abstract
(1) Background: Automated blood culture headspace analysis for the detection of volatile organic compounds of microbial origin (mVOC) could be a non-invasive method for bedside rapid pathogen identification. We investigated whether analyzing the gaseous headspace of blood culture (BC) bottles through gas chromatography-ion [...] Read more.
(1) Background: Automated blood culture headspace analysis for the detection of volatile organic compounds of microbial origin (mVOC) could be a non-invasive method for bedside rapid pathogen identification. We investigated whether analyzing the gaseous headspace of blood culture (BC) bottles through gas chromatography-ion mobility spectrometry (GC-IMS) enables differentiation of infected and non-infected; (2) Methods: BC were gained out of a rabbit model, with sepsis induced by intravenous administration of E. coli (EC group; n = 6) and control group (n = 6) receiving sterile LB medium intravenously. After 10 h, a pair of blood cultures was obtained and incubated for 36 h. The headspace from aerobic and anaerobic BC was sampled every two hours using an autosampler and analyzed using a GC-IMS device. MALDI-TOF MS was performed to confirm or exclude microbial growth in BCs; (3) Results: Signal intensities (SI) of 113 mVOC peak regions were statistically analyzed. In 24 regions, the SI trends differed between the groups and were considered to be useful for differentiation. The principal component analysis showed differentiation between EC and control group after 6 h, with 62.2% of the data variance described by the principal components 1 and 2. Single peak regions, for example peak region P_15, show significant SI differences after 6 h in the anaerobic environment (p < 0.001) and after 8 h in the aerobic environment (p < 0.001); (4) Conclusions: The results are promising and warrant further evaluation in studies with an extended microbial panel and indications concerning its transferability to human samples. Full article
Show Figures

Figure 1

15 pages, 2140 KiB  
Article
Rapid Determination of RNA Modifications in Consensus Motifs by Nuclease Protection with Ion-Tagged Oligonucleotide Probes and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry
by Madeline E. Melzer, Jonathan V. Sweedler and Kevin D. Clark
Genes 2022, 13(6), 1008; https://doi.org/10.3390/genes13061008 - 2 Jun 2022
Cited by 3 | Viewed by 2581
Abstract
The reversible and substoichiometric modification of RNA has recently emerged as an additional layer of translational regulation in normal biological function and disease. Modifications are often enzymatically deposited in and removed from short (~5 nt) consensus motif sequences to carefully control the translational [...] Read more.
The reversible and substoichiometric modification of RNA has recently emerged as an additional layer of translational regulation in normal biological function and disease. Modifications are often enzymatically deposited in and removed from short (~5 nt) consensus motif sequences to carefully control the translational output of the cell. Although characterization of modification occupancy at consensus motifs can be accomplished using RNA sequencing methods, these approaches are generally time-consuming and do not directly detect post-transcriptional modifications. Here, we present a nuclease protection assay coupled with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to rapidly characterize modifications in consensus motifs, such as GGACU, which frequently harbor N6-methyladenosine (m6A). While conventional nuclease protection methods rely on long (~30 nt) oligonucleotide probes that preclude the global assessment of consensus motif modification stoichiometry, we investigated a series of ion-tagged oligonucleotide (ITO) probes and found that a benzylimidazolium-functionalized ITO (ABzIM-ITO) conferred significantly improved nuclease resistance for GGACU targets. After optimizing the conditions of the nuclease protection assay, we applied the ITO and MALDI-MS-based method for determining the stoichiometry of GG(m6A)CU and GGACU in RNA mixtures. Overall, the ITO-based nuclease protection and MALDI-MS method constitutes a rapid and promising approach for determining modification stoichiometries of consensus motifs. Full article
(This article belongs to the Special Issue Regulation of Gene Expression: RNA Modification of Genes)
Show Figures

Graphical abstract

12 pages, 909 KiB  
Article
Descriptive Analysis of Circulating Antimicrobial Resistance Genes in Vancomycin-Resistant Enterococcus (VRE) during the COVID-19 Pandemic
by Dan Alexandru Toc, Anca Livia Butiuc-Keul, Dumitrana Iordache, Alexandru Botan, Razvan Marian Mihaila, Carmen Anca Costache, Ioana Alina Colosi, Claudia Chiorean, Dan Stefan Neagoe, Liana Gheorghiu and Lia Monica Junie
Biomedicines 2022, 10(5), 1122; https://doi.org/10.3390/biomedicines10051122 - 12 May 2022
Cited by 17 | Viewed by 3870
Abstract
COVID-19 offers ideal premises for bacteria to develop antimicrobial resistance. In this study, we evaluated the presence of several antimicrobial resistance genes (ARG) in vancomycin-resistant Enterococcus (VRE) isolated from rectal swabs from patients at a hospital in Cluj-Napoca, Romania. Rectal swabs were cultivated [...] Read more.
COVID-19 offers ideal premises for bacteria to develop antimicrobial resistance. In this study, we evaluated the presence of several antimicrobial resistance genes (ARG) in vancomycin-resistant Enterococcus (VRE) isolated from rectal swabs from patients at a hospital in Cluj-Napoca, Romania. Rectal swabs were cultivated on CHROMID® VRE (bioMérieux, Marcy—l’ Étoile, France) and positive isolates were identified using MALDI-TOF Mass Spectrometry (Bruker Daltonics, Bremen, Germany) and further analyzed using the PCR technique for the presence of the following ARGs: van A, van B, tet(M), tet(L), ermB, msrA, mefA, aac(6′)-Im, aph(2)-Ib, ant(4′)-Ia, sul1, sul2, sul3, and NDM1. We isolated and identified 68 isolates of Enterococcus faecium and 11 isolates of Enterococcus faecalis. The molecular analysis showed 66 isolates positive for the vanA gene and eight positive for vanB. The most frequent association of ARG in VRE was vanA-tet(M)-ermB. There was no statistically significant difference between Enterococcus faecium and Enterococcus faecalis regarding ARGs. Our work proves that during the COVID-19 pandemic, highly resistant isolates of Enterococcus were present in patients in the intensive care unit; thus, better healthcare policies should be implemented for the management and control of these highly resistant isolates in the future. Full article
(This article belongs to the Special Issue Microbial Ecology in Health and Disease 2.0)
Show Figures

Figure 1

12 pages, 43085 KiB  
Article
Mapping the Lipids of Skin Sebaceous Glands and Hair Follicles by High Spatial Resolution MALDI Imaging Mass Spectrometry
by Fang Xie, Mark Reid Groseclose, Sara Tortorella, Gabriele Cruciani and Stephen Castellino
Pharmaceuticals 2022, 15(4), 411; https://doi.org/10.3390/ph15040411 - 28 Mar 2022
Cited by 6 | Viewed by 4774
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a technology that utilizes the high sensitivity and specificity of mass spectrometry, combined with a high spatial resolution to characterize the molecular species present in skin tissue. In this article, we use MALDI IMS [...] Read more.
Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a technology that utilizes the high sensitivity and specificity of mass spectrometry, combined with a high spatial resolution to characterize the molecular species present in skin tissue. In this article, we use MALDI IMS to map specific lipids characteristic of two important skin appendages in minipig skin: the sebaceous glands and hair follicles. A set of specific lipid markers linked to the synthesis of sebum, stages of sebum production, and the secretion of sebum for two different sebaceous gland subzones, the peripheral and central necrotic, were identified. Furthermore, biochemical pathway analysis of the identified markers provides potential drug-targeting strategies to reduce sebum overproduction in pathological conditions. In addition, specific lipid markers characteristic of the different layers in the hair follicle bulge area, including the outer root sheath, the inner root sheath, and the medulla that are associated with the growth cycles of the hair, were determined. This research highlights the ability of MALDI IMS to link a molecular distribution not only to the morphological features in skin tissue but to the physiological state as well. Thus, this platform can provide a basis for the investigation of biochemical pathways as well as the mechanisms of disease and pharmacology in the skin, which will ultimately be critical for drug discovery and the development of dermatology-related illnesses. Full article
(This article belongs to the Special Issue Mass Spectrometry Imaging in Pharmaceutical Research)
Show Figures

Graphical abstract

22 pages, 3870 KiB  
Article
Polyunsaturated Fatty Acid-Enriched Lipid Fingerprint of Glioblastoma Proliferative Regions Is Differentially Regulated According to Glioblastoma Molecular Subtype
by Albert Maimó-Barceló, Lucía Martín-Saiz, José A. Fernández, Karim Pérez-Romero, Santiago Garfias-Arjona, Mónica Lara-Almúnia, Javier Piérola-Lopetegui, Joan Bestard-Escalas and Gwendolyn Barceló-Coblijn
Int. J. Mol. Sci. 2022, 23(6), 2949; https://doi.org/10.3390/ijms23062949 - 9 Mar 2022
Cited by 15 | Viewed by 4094
Abstract
Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ’s effects on [...] Read more.
Glioblastoma (GBM) represents one of the deadliest tumors owing to a lack of effective treatments. The adverse outcomes are worsened by high rates of treatment discontinuation, caused by the severe side effects of temozolomide (TMZ), the reference treatment. Therefore, understanding TMZ’s effects on GBM and healthy brain tissue could reveal new approaches to address chemotherapy side effects. In this context, we have previously demonstrated the membrane lipidome is highly cell type-specific and very sensitive to pathophysiological states. However, little remains known as to how membrane lipids participate in GBM onset and progression. Hence, we employed an ex vivo model to assess the impact of TMZ treatment on healthy and GBM lipidome, which was established through imaging mass spectrometry techniques. This approach revealed that bioactive lipid metabolic hubs (phosphatidylinositol and phosphatidylethanolamine plasmalogen species) were altered in healthy brain tissue treated with TMZ. To better understand these changes, we interrogated RNA expression and DNA methylation datasets of the Cancer Genome Atlas database. The results enabled GBM subtypes and patient survival to be linked with the expression of enzymes accounting for the observed lipidome, thus proving that exploring the lipid changes could reveal promising therapeutic approaches for GBM, and ways to ameliorate TMZ side effects. Full article
Show Figures

Figure 1

13 pages, 2646 KiB  
Article
Important Requirements for the Selection of Internal Standards during the Development of Desorption/Ionization Assays for Drug Quantification in Biological Matrices—A Practical Example
by Margaux Fresnais, Seda Karabulut, Yasmin Abou Zeed, Johannes Ungermann, Julia Benzel, Kristian W. Pajtler, Stefan M. Pfister, Walter E. Haefeli, Jürgen Burhenne and Rémi Longuespée
Molecules 2022, 27(3), 690; https://doi.org/10.3390/molecules27030690 - 21 Jan 2022
Cited by 2 | Viewed by 2707
Abstract
Desorption/ionization mass spectrometry (DI-MS) approaches allow for the rapid quantification of drugs in biological matrices using assays that can be validated according to regulatory guidelines. However, specific adaptations must be applied to create reliable quantification methods, depending on the approach and instrumentation used. [...] Read more.
Desorption/ionization mass spectrometry (DI-MS) approaches allow for the rapid quantification of drugs in biological matrices using assays that can be validated according to regulatory guidelines. However, specific adaptations must be applied to create reliable quantification methods, depending on the approach and instrumentation used. In the present article, we demonstrate the importance of the molecular weight, the fragmentation pattern, and the purity of the internal standard for the development of matrix-assisted laser desorption/ionization (MALDI)-ion mobility (IM)-tandem MS and MS/MS methods. We present preliminary results of method development for the quantification of selinexor in microdialysis fluids with a stable isotopically labeled internal standard. In addition, we discuss the selection of internal standards for MALDI-MS assays using different instrumentations. Full article
(This article belongs to the Special Issue Novel Matrices for MALDI Mass Spectrometry)
Show Figures

Figure 1

Back to TopTop