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Abstract: COVID-19 offers ideal premises for bacteria to develop antimicrobial resistance. In this
study, we evaluated the presence of several antimicrobial resistance genes (ARG) in vancomycin-
resistant Enterococcus (VRE) isolated from rectal swabs from patients at a hospital in Cluj-Napoca,
Romania. Rectal swabs were cultivated on CHROMID® VRE (bioMérieux, Marcy—l’ Étoile, France)
and positive isolates were identified using MALDI-TOF Mass Spectrometry (Bruker Daltonics, Bre-
men, Germany) and further analyzed using the PCR technique for the presence of the following
ARGs: van A, van B, tet(M), tet(L), ermB, msrA, mefA, aac(6′)-Im, aph(2)-Ib, ant(4′)-Ia, sul1, sul2, sul3, and
NDM1. We isolated and identified 68 isolates of Enterococcus faecium and 11 isolates of Enterococcus
faecalis. The molecular analysis showed 66 isolates positive for the vanA gene and eight positive for
vanB. The most frequent association of ARG in VRE was vanA-tet(M)-ermB. There was no statistically
significant difference between Enterococcus faecium and Enterococcus faecalis regarding ARGs. Our
work proves that during the COVID-19 pandemic, highly resistant isolates of Enterococcus were
present in patients in the intensive care unit; thus, better healthcare policies should be implemented
for the management and control of these highly resistant isolates in the future.

Keywords: VRE; Enterococcus; resistance genes; vanA; vanB; COVID-19; Romania

1. Introduction

Enterococcus is genus of Gram-positive cocci, commensals of the human gastroin-
testinal tract. However, Enterococci can produce life-threatening opportunistic infections,
particularly nosocomial infections, due to their ability to acquire antimicrobial resistance
genes, notably vanA for resistance to glycopeptides. Over the past decades, interest in
the Enterococcus genus has spiked, with the most relevant species, Enterococcus faecium
and Enterococcus faecalis, being in the spotlight due to their antimicrobial resistance and
high adaptability features. Other species of the Enterococcus genus that harbor an intrinsic
resistance to glycopeptides, such as Enterococcus gallinarum and Enterococcus caseliflavus,
and even other rarer findings such as Enterococcus avium, Enterococcus durans, Enterococcus
raffinosus, and Enterococcus cecorum have been approached in several studies to examine
their involvement in human infections [1–3].
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Since its discovery, vancomycin-resistant Enterococcus faecium (VREfm) has been con-
sidered as a threat to human healthcare. The vancomycin resistance phenotype is induced
by several van operons, with vanA and vanB being the most common [4]. These operons are
involved in the alteration of the peptidoglycan, changing the final amino acid sequence with
either D-Alanine-D-Lactate (D-Ala-D-Lac) or D-Alanine-D-Serine (D-Ala-D-Ser) and thus
altering the affinity of the glycopeptides, followed by the alteration of the peptidoglycan
synthesis. Although in the past, the vanA gene was isolated almost everywhere worldwide,
with the vanB gene being frequent only in some regions such as Australia, recent studies
indicate a change in this pattern and thus the need for extensive research regarding these
genes worldwide for a better understanding of their distribution and clinical impact [5–8].

E. faecium is intrinsically resistant to a large variety of antibiotics, including amino-
glycosides and some beta-lactam antibiotics such as cephalosporins. Since vancomycin
was used as a last-resort antibiotic in infections with E. faecium for a long time, acquiring
vancomycin resistance genes narrows the treatment options to only a few alternatives
such as linezolid, tigecycline, or quinupristin/dalfopristin [2]. Recently, there were several
isolates of E. faecium reported as resistant even to linezolid. These findings show the high
risk VREfm poses to humans from treatment and public health perspectives [9–11].

Information regarding the circulating antimicrobial resistance genes in Eastern Europe
is scarce, and to promote better surveillance policies for VRE, knowing the existing resis-
tance patterns is essential [8,12]. With this study, we aim to provide information regarding
the circulating antimicrobial resistance genes in VRE isolates from hospitalized patients
during the fourth wave of COVID-19 in Cluj-Napoca, Romania. Due to the extraordinary
impact of the COVID-19 pandemic, we are facing a resurgence of multi-drug-resistant
(MDR) bacteria, and we must be prepared to tackle this issue appropriately [13].

2. Materials and Methods

Rectal swabs of patients admitted to Cluj County Emergency Hospital in the intensive
care unit between 1 January 2021 and 1 July 2021, during the COVID-19 pandemic, were
cultivated on CHROMID® VRE (bioMérieux, Marcy—l’ Étoile, France). Bacterial isolates
were obtained from hospital screening samples through routine clinical protocol and
patients’ identifiable information was already anonymized. The isolates were further
identified with MALDI-TOF Mass Spectrometry (Bruker Daltonics, Bremen, Germany).

To assess the presence of the antimicrobial resistance genes (ARGs), we used a di-
rect PCR technique. Bacterial isolates were incubated overnight on sheep blood agar
(bioMérieux, Marcy—l’ Étoile, France) and several colonies were then suspended in 100 mL
of sterile water, adjusted to a 0.5 McFarland concentration. DNA isolation was skipped,
and bacterial suspension was used as a template in PCR amplification [14,15]. The PCR
reaction mix contained 12.5 µL DreamTaq Green PCR master mix (2x) (Thermo Fisher
Scientific, Waltham, MA, USA), 10.25 µL nuclease-free water (Lonza, Basel, Switzerland),
25 pmol of each primer (Eurogentec, Liege, Belgium), and 2 µL bacterial suspension, for a
total volume of 25 µL. The PCR reactions were performed in the thermocycler Mastercycler
Nexus (Eppendorf AG, Hamburg, Germany). The combinations of primers are displayed
in Table 1 and the reaction conditions are shown in Table 2. As a negative control, we
used 2 µL of sterile water added to the PCR mixture, and as a positive control, we used
2 µL of the suspension with vanA-positive Enterococcus faecium ATCC 700221. The PCR
amplification was repeated twice.

The amplicons were separated on 1.5% agarose (Cleaver Scientific, Warwickshire, UK)
gel in 1× TBE buffer (Lonza, Basel, Switzerland) and stained with 0.5 µg/mL ethidium
bromide (Thermo Fischer Scientific, Waltham, MA, USA). The BDA Digital Compact System
and BioDocAnalyze Software (Analytik Jena, Germany) were used for data acquisition.
Data analysis was performed with IBM SPSS Statistics 26.0 using statistical tests, chi-square
or Fisher’s exact test, where appropriate.
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Table 1. Characteristics of the primers used for the antimicrobial resistance genes’ amplification and
the dimension of the amplicons (bp—base pairs).

Gene
Primer Pairs

Amplicon (bp)
Forward Reverse

vanA GCTATTCAGCTGTACT CAGCGGCCATCATACGG 781

vanB CGCCATATTCTCCCCGGATAG AAGCCCTCTGCATCCAAGCAC 647

tet(M) CCGTCTGAACTTTGCGGAAA CAACGGAAGCGGTGATACAG 627

tet(L) TATTCAAGGGGCTGGTGCAG CGGCAGTACTTAGCTGGTGA 545

ermB GAAAAGGTACTCAACCAAATA AGTAACGGTACTTAAATTGTTTAC 639

msrA AGGGAAAGGTCATTTTACTGC CCCTACCTATAACTAAACATT 343

mefA CATCGACGTATTGGGTGCTG CCGAAAGCCCCATTATTGCA 516

aac(6′)-Im GGCTGACAGATGACCGTGTTCTTG GTAGATATTGGCATACTACTCTGC 482

aph(2)-Ib CTGAACACAGCAGCGACTAC TTGTAATCGCCATGCACCAG 646

ant(4′)-Ia GTCAAAAACTGCTAACACAAG AATAATACTGCTAACGATAAT 135

sul1 AGGCATGATCTAACCCTCGG GGCCGATGAGATCAGACGTA 665

sul2 GACAGTTATCAACCCGCGAC GAAACAGACAGAAGCACCGG 380

sul3 GTGGGCGTTGTGGAAGAAAT AAAAGAAGCCCATACCCGGA 370

NDM-1 GGTTTGGCGATCTGGTTTTC CGGAATGGCTCATCACGATC 621

Table 2. PCR conditions used for each antimicrobial resistance gene tested.

Gene Initial Denaturation Steps (30 Cycles) Final Elongation

vanA, ermB

94 ◦C for 4 min

Denaturation at 94 ◦C for 1 min
Annealing at 51 ◦C for 45 s
Elongation at 72 ◦C for 45 s

72 ◦C for 8 min

ant(4′)-la, msrA
Denaturation at 94 ◦C for 1 min

Annealing at 53 ◦C for 45 s
Elongation at 72 ◦C for 45 s

aph(2)-lb, mefA, TetM, sul3
Denaturation at 94 ◦C for 1 min

Annealing at 55 ◦C for 45 s
Elongation at 72 ◦C for 45 s

TetL, sul1, sul2
Denaturation at 94 ◦C for 1 min

Annealing at 57 ◦C for 45 s
Elongation at 72 ◦C for 45 s

aac(6′)–Im, vanB
Denaturation at 94 ◦C for 1 min

Annealing at 61 ◦C for 45 s
Elongation at 72 ◦C for 45 s

3. Results

We included in this study 79 isolates of Enterococcus that were positive on CHROMID®

VRE (bioMérieux, Marcy—l’ Étoile, France), which were further identified as Enterococcus
faecalis (11 isolates) and Enterococcus faecium (68 isolates).

Regarding the resistance to glycopeptides, most of the isolates showed the vanA gene
(81.8% of E. faecalis and 83.8% of E. faecium). The vanB gene was found only in E. faecium
(11.8%). Other ARGs encoding resistance to different antibiotics were also studied, as
shown in Table 3. The most frequent ARG was ermB, present in 97.1% of E. faecium isolates
and in 81.8% of E. faecalis isolates. The electropherograms of vanA and vanB genes are
presented in Figures 1 and 2.
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Table 3. Number and percentage of E. faecalis and E. faecium isolates positive for the ARGs among the
total number of isolates tested.

Enterococcus Faecalis (n = 11) Enterococcus Faecium (n = 68) p

van A 9 (81.8%) 57 (83.8%) 1.000

van B 0 (0%) 8 (11.8%) 0.591

tet(M) 5 (45.5%) 38 (55.9%) 0.529

tet(L) 1 (9.1%) 5 (7.4%) 1.000

ermB 9 (81.8%) 66 (97.1%) 0.091

msrA 0 (0%) 2 (2.9%) 1.000

mefA 0 (0%) 1 (1.5%) 1.000

aac(6′)-Im / / N/A

aph(2)-Ib / / N/A

ant(4′)-Ia 2 (18.2%) 20 (29.41%) 0.718

sul1 / / N/A

sul2 / / N/A

sul3 / / N/A

NDM1 / / N/A

Figure 1. The vanA electrophoresis results of E. faecium isolates (NC = negative control, PC = positive
control, S = sample, bp = base pairs).

Figure 2. The vanB electrophoresis results of E. faecium isolates (S = sample, bp = base pairs).
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E. faecalis isolates showed different patterns of resistance to different classes of antibi-
otics (Table 4). The most frequent pattern was vanA-ermB (27.3%) encoding resistance to
vancomycin and macrolides; vanA-tetM-ermB (27.3%) encoding resistance to vancomycin,
tetracycline, and macrolides; followed by vanA-ermB-ant4la (18.2%) encoding resistance
to vancomycin, macrolides, and aminoglycosides. The other associations of antimicrobial
resistance genes found in E. faecalis are presented in Table 4.

Table 4. Number of E. faecalis isolates and percentage from all the included isolates for each
ARG combination.

Frequency Percentage

Resistance gene 1 9.1%

tetM-ermB 1 9.1%

vanA-tetM-tetL 1 9.1%

vanA-ermB-ant4la 2 18.2%

vanA-ermB 3 27.3%

vanA-tetM-ermB 3 27.3%

Total 11 100.0%

The most common associations of ARGs in E. faecium were vanA-tetM-ermB (29.4%),
vanA-ermB (17.6%), and vanA-ermB-ant4la (14.7%). Other associations are listed in Table 5.

Table 5. Number of E. faecium isolates and percentage from all the included isolates for each
ARG combination.

Frequency Percentage

Resistance gene 1 1.5%

tetM-ermB 1 1.5%

tetM-ermB-ant4la 1 1.5%

vanA-tetM-ermB-msrA 1 1.5%

vanA-tetM-ermB-msrA-ant4la 1 1.5%

vanA-tetM-tetL-ermB-ant4la 1 1.5%

vanA-tetM-tetL-ermB-mefA 1 1.5%

vanA-vanB-ermB 1 1.5%

vanA-vanB-tetM-ant4la 1 1.5%

ermB 2 2.9%

vanB-tetM-ermB 2 2.9%

vanA-tetM-tetL-ermB 3 4.4%

vanB-ermB 4 5.9%

vanA-tetM-ermB-ant4la 6 8.8%

vanA-ermB-ant4la 10 14.7%

vanA-ermB 12 17.6%

vanA-tetM-ermB 20 29.4%

Total 68 100.0%

The ARG associations identified in this study are presented briefly in Figure 3, which
shows that the most common associations of ARGs identified for each species also represent
three out of the four gene associations identified for both E. faecalis and E. faecium.
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Figure 3. Associations of antimicrobial resistance genes in E. faecium and E. faecalis.

4. Discussion

In the past few years, there has been a global effort to reduce the impact of antimicro-
bial resistance. However, since the beginning of the COVID-19 pandemic, the focus has
shifted to ways to decrease the complications and mortality of hospitalized patients that
burden medical systems worldwide [16–18]. Unfortunately, due to the extended duration
of the pandemic, several threats are emerging for human health. One of the most important
is the risk of acquisition of new antimicrobial resistance genes. There are several reasons
why this risk is certain, and Ukuhor et al. summarize some of the most relevant, including
the increased use of antibiotics associated with uncontrolled access to them, mainly in
developing countries [19]. Moreover, based on the lessons provided by past pandemics,
coinfections with different bacteria or fungi are expected. Moreover, several reports under-
line the impact of associated bacterial and fungal infections in past pandemics, and similar
effects are thus expected now [20,21]. The mortality and morbidity in these situations are
extremely high if the microorganisms are resistant to several antimicrobial drugs. One
bacterium constantly reported as an associated agent is Enterococcus faecium [22]. Rawson
et al. underline the importance of a comprehensive analysis of the circulating antimicrobial
resistance genes in countries facing the COVID-19 pandemic to install proper guidelines
designed for those regions in particular [17].

Vancomycin is a glycopeptide used to treat infections produced mostly by Gram-
positive bacteria. Its mechanism of action relies on binding to the terminal sequence
D-Ala-D-Ala of the peptidoglycan, therefore inhibiting the bacterial cell wall synthesis [14].
Resistance to vancomycin was reported in enterococci in the late 1980s and since then, it
has become a serious public health issue due to the life-threatening infections produced
by vancomycin-resistant enterococci. Resistance to vancomycin involves an alteration in
the terminal sequence of the peptidoglycan, changing the structure from D-Ala-D-Ala to
D-Ala-D-Lac (for vanA, vanB, vanD, and vanM) or D-Ala-D-Ser (for vanC, vanE, vanG, vanL,
and vanN). This mutation lowers the affinity of vancomycin to the binding site and thus
promotes a resistant phenotype [8,23,24].

Our study analyzed the vanA and vanB genes in E. faecalis and E. faecium. For E. faecalis,
vanA was the only one present, being positive in 9 out of 11 isolates. Similarly, vanA was
dominant in E. faecium, being present in 57 out of 68 isolates. We also found eight E. faecium
isolates that were positive for the vanB gene. These results are similar to the existing
literature showing that in Romania, circulating isolates of VREfm predominantly harbor
the vanA gene [12,25]. Statistically, no significant difference was determined between
E. faecalis and E. faecium regarding the vanA and vanB genes.
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Interestingly, two of these isolates were positive for both vanA and vanB genes. This ob-
servation was previously described in rare occasions with high clinical significance [26,27].
Unfortunately, we did not determine the phenotype expressed by this combination. Still,
this observation implies high genome mobility between the species in the hospital environ-
ment [28–30].

Another relevant observation is that there are two isolates of E. faecalis and five
isolates of E. faecium that were negative for both vanA and vanB genes. Based on the
existing literature, we hypothesize that this finding might be due to the existence of other
vancomycin resistance genes that we did not test for [24].

Regarding the resistance to tetracyclines, two mechanisms were tested in this study:
drug efflux mediated via the tet(L) gene and target protection mediated via the tet(M)
gene [8,31]. In E. faecalis isolates, tet(M) was the most frequent, being present in 5/11 isolates,
while tet(L) was present only in one strain. Similarly, E. faecium isolates were positive for
tet(M) in 38/68 isolates, while tet(L) was present in only 5/68 isolates. Although we can
conclude that tet(M) is the most frequent resistance gene in this population of Enterococci,
we did not observe any statistically significant difference between E. faecium and E. faecalis
regarding these two genes (p > 0.05).

It was previously shown by Molechan et al. that tet(M) is often associated with
ermB [32]. In our study, this association was present in four isolates of E. faecalis (three
associated also with the vanA gene) and 35 isolates of E. faecium. This association has
clinical relevance, with these isolates being resistant to a wider variety of antimicrobial
agents. However, due to the lack of multilocus sequence typing (MLS) or whole-genome
sequencing (WGS), we are not able to provide more extensive molecular epidemiology
information concerning these isolates.

Tigecycline is a new antibiotic from the class of tetracyclines, which is effective against
tet(M)- or tet(L)-positive isolates due to the low affinity for the efflux proteins and the
ribosomal protection mechanisms [24,33]. Thus, it is used in different types of infections
with Enterococcus, such as endocarditis and intra-abdominal infections [34]. Recently,
Fiedler et al. demonstrated that some isolates harboring both tet(M) and tet(L) genes are
resistant to tigecycline [35]. Our study shows one isolate of E. faecalis and five isolates
of E. faecium that display this genotype, being positive for both tet(M) and tet(L). The
presence of these associations in strains isolated from hospitals shows the importance
of molecular analysis of antimicrobial resistance genes to implement the best long-term
healthcare policies.

Resistance to macrolide–lincosamide–streptogramin antibiotics was evaluated by the
presence of mefA, msrA, and ermB genes. While mefA and msrA genes are responsible for
producing an active efflux pump mechanism, the ermB gene produces a methylase that
modifies the drug’s target [36–39]. In our study, only 9 out of 11 E. faecalis isolates were
positive for ermB. We also noticed the association of vanA and ermB genes in seven of those
nine isolates. This pairing was also described by Dziri et al. and Lopez et al. [40,41]. We
hypothesize that these associations, most described in E. faecium, were possible due to the
horizontal gene transfer. A total of 66 out of 68 isolates of E. faecium presented the ermB
gene, being the most prevalent ARG out of all that we tested. Moreover, the vanA-tetM-ermB
association was present in 20 isolates, and an additional 13 isolates presented the same
association in combination with other genes. These findings are in accordance with other
studies and usually describe highly resistant isolates of E. faecium [24,40,41]. In our study,
there was no statistically significant difference between E. faecalis and E. faecium concerning
the mefA, msrA, and ermB genes.

Enterococci are intrinsically resistant to aminoglycosides due to the poor penetration
through the bacterial cell wall. However, aminoglycosides proved to be useful in the clinical
setting in combination with active agents against the cell wall. Thus, resistance to aminogly-
cosides is the consequence of modifying enzymes that work against this synergistic benefit.
In our study, we evaluated the presence of three genes related to the aminoglycoside re-
sistance, namely, aac(6′)-Im, aph(2)-Ib, and ant(4′)-Ia. The first two genes are responsible
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for the synthesis of an acetyltransferase and a phosphotransferase, respectively, and they
provide resistance to most aminoglycosides (with the notable exception of streptomycin).
The ant(4′)-Ia gene encodes a nucleotidyltransferase responsible for resistance to strepto-
mycin [42–47]. In our study, none of the isolates tested presented the aac(6′)-Im or aph(2)-Ib
genes. On the other hand, ant(4′)-Ia was positive in 2 out of the 11 E. faecalis isolates and
in 20 out of 68 isolates of E. faecium. The association of vanA-ermB-ant(4′)-Ia was the most
frequent among the isolates positive for aminoglycoside resistance, being present in both
isolates of E. faecalis and in 10 out of the 20 isolates of E. faecium. This genotype is often
translated in a phenotype resistant to glycopeptides, macrolides, and aminoglycosides,
being difficult to treat in a clinical setting. No statistically significant difference between
E. faecalis and E. faecium regarding the ant(4′)-Ia gene was found in our study.

Usually, antimicrobial resistance genes are transferred horizontally through different
mobile genetic elements. More often, vanA operon is associated with a transposon (Tn),
Tn1546 [33]. For vanB, there are different Tns that facilitate the transfer of the gene, such as
Tn1547 and Tn1549 [8]. There are other possible gene associations that may use transposons
as means of dissemination, such as tet(M) and ermB, as previously stated [32]. All these
observations suggest a frequent horizontal transfer present in the intensive care unit of our
hospital that needs to be monitored and addressed according to the existing guidelines.

Intensive care units represent an environment of intense antibiotic pressure, which
provides ideal premises for acquiring different antimicrobial resistance genes via horizontal
or vertical transfer, described by Rehman et al. as the main routes of dissemination of resis-
tance [48]. For this reason, we also checked the presence of the sulfonamide resistance genes
(sul1, sul2, and sul3) and carbapenem resistance via the New Delhi metallo-beta-lactamase
gene (NDM-1) in vancomycin-resistant enterococci, despite their natural resistance to these
antibiotic classes. sul1, sul2, and sul3 are the only known genes that provide resistance to
sulfonamides by producing an alternative dihydropteroatesynthase [49–52]. The NDM-1
gene produces an enzyme capable of hydrolyzing the carbapenem antibiotics [53]. It was
first reported by Yong et al. in 2009 [54] and it quickly became a major public health issue.
Although it is usually harbored by Gram-negative Enterobacteriaceae, Walsh et al. describe
other possible environmental hosts for this gene, such as Kingella dentrificans or Sutonella
indologenes [55]. Even if highly unlikely, the presence of these genes in Gram-positive
bacteria has the potential to pose a new challenge in fighting antimicrobial resistance. In
our study, none of the isolated strains presented the sul1, sul2, sul3, or NDM1 gene.

Genotypic analyses of Enterococcus strains isolated from Romania are scarce. The
few articles that tackle the antimicrobial resistance profile of Enterococcus species usually
approach only the phenotype, and based on them, the resistance to glycopeptides seems
to be low [56–59]. However, regarding the genotype of the resistance to glycopeptides in
Romania, Ducu et al. found that the vanA gene was present in 19 out of 84 Enterococcus
isolates and the vanB gene was present in 10 out of 84 Enterococcus isolates [25]. Based on
that, we observe that before COVID-19, resistance to glycopeptides was relatively low, in
opposition to our study, which shows a higher presence of vanA and vanB genes alone
and in association with other ARGs in screening samples from ICU patients during the
COVID-19 pandemic. This suggests that in the post-COVID-19 era, we might experience
infections with highly resistant isolates of Enterococcus.

Regarding the limitations of our study, the most relevant is the relatively small number
of isolates collected in a short period from one facility only. Moreover, the lack of multilocus
sequence typing or whole-genome sequencing prevents a better understanding of the
epidemiology of these isolates.

On the other hand, the strengths of the study include the number of ARGs tested
and the efficient method of identification of the isolates, thus providing accurate and
comprehensive information regarding the circulating ARGs in VRE during the COVID-19
pandemic in Cluj-Napoca, Romania.
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5. Conclusions

Enterococcus faecalis and Enterococcus faecium are the main species of the genus Entero-
coccus, considered the most important in terms of antimicrobial resistance and potential
healthcare threats. The COVID-19 pandemic offers an unprecedented ground for develop-
ing highly resistant isolates considering the irresponsible use of antibiotics and the pressure
on the healthcare system.

Based on our analysis, in the first six months of 2021, during the COVID-19 pandemic
in Romania, the dominant species isolated from rectal screening was Enterococcus faecium.
These isolates harbored mostly the vanA gene, and the most prevalent association of
antimicrobial resistance genes was vanA-tet(M)-ermB. Although Enterococcus faecalis was
isolated less frequently, the clinical importance remains due to the high prevalence of the
vanA gene. Based on our analysis, the most frequently associated antimicrobial resistance
genes in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis are, in order,
ermB, tet(M), and ant(4′)-Ia.

To our knowledge, this paper provides the most extensive analysis of circulating
antimicrobial resistance genes in Enterococcus in Romania. According to our results, the
COVID-19 pandemic seems to produce a dangerous aftermath in terms of highly resistant
strains of Enterococcus that may be a threat in the near future.
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