Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = MAD2L2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2938 KB  
Article
Integrative Bioinformatics and Experimental Validation Establish CCNB1 as a Potential Biomarker for Diagnosis and Prognosis in Colorectal Cancer
by Yao Zou, Quan Zou and Zhen Li
Curr. Issues Mol. Biol. 2025, 47(12), 1026; https://doi.org/10.3390/cimb47121026 - 9 Dec 2025
Viewed by 518
Abstract
Colorectal cancer (CRC) is a prevalent and lethal malignancy worldwide. Despite extensive research, core genes for diagnosis and prognosis in CRC remain to be fully elucidated. This study aims to identify novel gene biomarkers for CRC diagnosis and prognosis based on the GEO [...] Read more.
Colorectal cancer (CRC) is a prevalent and lethal malignancy worldwide. Despite extensive research, core genes for diagnosis and prognosis in CRC remain to be fully elucidated. This study aims to identify novel gene biomarkers for CRC diagnosis and prognosis based on the GEO and TCGA datasets. Integration of TCGA and GEO datasets revealed 197 common differentially expressed genes (DEGs) between CRC tumor and normal samples. Functional enrichment analysis implicated these DEGs in biological processes and signaling pathways critical to CRC progression, including cell cycle regulation and nuclear division. Protein–protein interaction (PPI) network analysis identified 17 hub genes from DEGs, including TROAP, CDKN3, CDCA3, UBE2C, CEP55, KIF11, CDC20, CCNA2, MCM4, CKS2, POLE2, MAD2L1, CCNB1, PTTG1, TPX2, TOP2A, and DLGAP5. All 17 hub genes demonstrated high diagnostic value (AUC > 0.85), including CCNB1 (AUC = 0.944). Based on the Cox proportional hazards regression, an 8-gene prognostic signature (CLCA1, CCNB1, TPM2, MMP3, AOC3, CRYAB, CA4, GUCA2A) effectively stratified patients by survival risk, with a 5-year AUC of 0.71. In vitro, CCNB1 knockdown triggered cell cycle arrest, thereby suppressing the proliferation of colorectal cancer cells. This study validated CCNB1 as a dual-purpose biomarker for CRC diagnosis and favorable prognosis, highlighting its potential utility in clinical management. Full article
(This article belongs to the Special Issue Gastrointestinal Cancers: From Pathogenesis to Treatment)
Show Figures

Figure 1

25 pages, 2065 KB  
Article
Comprehensive Epigenome-Wide Profiling Reveals Distinctive DNA Methylation Signatures and Potential Prognostic Biomarkers in Mexican Pediatric B-ALL
by Alan Alberto Fong-López, Juan Carlos Núñez-Enríquez, Vilma Carolina Bekker-Méndez, Janet Flores-Lujano, Minerva Mata-Rocha, Elva Jiménez-Hernández, Mónica Patricia Ortíz-Maganda, Francisco Xavier Guerra-Castillo, Aurora Medina-Sanson, Jorge Alfonso Martín-Trejo, José Gabriel Peñaloza-González, Martha Margarita Velázquez-Aviña, José Refugio Torres-Nava, Rosa Martha Espinosa-Elizondo, María Luisa Pérez-Saldívar, Luz Victoria Flores-Villegas, Laura Elisa Merino-Pasaye, David Aldebaran Duarte-Rodríguez, Omar Alejandro Sepúlveda-Robles, Georgina Jiménez-Morales, Haydeé Rosas-Vargas, Jorge Meléndez-Zajgla, Eva Ramón-Gallegos, Juan Manuel Mejía-Aranguré and Silvia Jiménez-Moralesadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(21), 10261; https://doi.org/10.3390/ijms262110261 - 22 Oct 2025
Viewed by 1256
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. In Mexico, its higher incidence and lower survival suggest a role for epigenetic factors like DNA methylation (DNAme). We conducted an epigenome-wide association study (EWAS) to define the methylation landscape and identify the [...] Read more.
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. In Mexico, its higher incidence and lower survival suggest a role for epigenetic factors like DNA methylation (DNAme). We conducted an epigenome-wide association study (EWAS) to define the methylation landscape and identify the profiles associated with ALL and relapse. Bone marrow or peripheral blood samples from pediatric ALL patients at diagnosis and controls without ALL were analyzed using an Infinium MethylationEPIC v2.0 array. Differential methylation was assessed using the ChAMP package. We identified a significant hypermethylated profile in ALL patients compared to controls. Probes in MAD1L1 and RPTOR contained the most differentially methylated CpG sites. Key affected pathways included proliferation, neurotransmission, and neuronal signaling. Survival analysis revealed that hypomethylation of four specific CpGs—cg01052776 (RNH1), cg20747787, cg05001671, and cg01767116 (FBXL22)—was significantly associated with an increased risk of relapse, highlighting their potential as prognostic biomarkers. This study underscores the importance of epigenetic mechanisms in pediatric ALL. Full article
Show Figures

Graphical abstract

19 pages, 13272 KB  
Article
The MADS-Box Transcription Factor BoAGL8 Is Involved in Regulating Flowering in Broccoli
by Yuanyuan Li, Hanbing Yang, Peini Jia, Zairong Li, Yan Wang, Yajie Jiang, Xia He, Boyue Wen, Chensi Huo, Wei Zhang, Wenchen Chai, Shijiang Yan and Jing Zhang
Horticulturae 2025, 11(10), 1227; https://doi.org/10.3390/horticulturae11101227 - 11 Oct 2025
Viewed by 868
Abstract
Broccoli (Brassica oleracea L. var. italica) is a biennial or annual herbaceous plant belonging to the species Brassica oleracea in the genus Brassica of the Cruciferae family. The green flower curd serves as the primary edible organ, with its development and [...] Read more.
Broccoli (Brassica oleracea L. var. italica) is a biennial or annual herbaceous plant belonging to the species Brassica oleracea in the genus Brassica of the Cruciferae family. The green flower curd serves as the primary edible organ, with its development and preservation critically determining broccoli yield and quality. Given that these processes are regulated by flowering time, understanding the mechanisms underlying floral transition is essential for enhancing broccoli yield and quality. This study aimed to identify the MADS-box family in broccoli and to investigate the function of the BoAGL8 gene in floral induction. We identified a total of 176 MADS-box genes, of which 54 genes were up-regulated and 50 genes were down-regulated under low-temperature treatment. Notably, the expression of BoAGL8 was up-regulated by 6.70-fold under low-temperature induction, prompting us to select and clone this gene for further analysis. Tissue-specific expression profiling further revealed that BoAGL8 is expressed at relatively high level in both mature and young leaves. After 15 days of low-temperature treatment, BoAGL8 expression in shoot tip was significantly upregulated compared to untreated controls. Subcellular localization analysis showed that BoAGL8 protein was located to the nucleus. Ectopic over-expression of BoAGL8 in Arabidopsis exhibited accelerated bolting and flowering, reduced rosette leaf number, and increased seed yield per plant compared to wild-type plants. Furthermore, compared to wild-type controls, transgenic lines exhibited upregulated expression of AtFT, AtAP1 and AtSEP3, alongside downregulation of SVP expression. The above results indicate that BoAGL8 may play a key regulatory role in the process of floral organ development in broccoli, providing an important theoretical basis for future research on flowering time regulation and breeding in broccoli. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

23 pages, 21367 KB  
Article
Genome-Wide Identification of MADS-box Family Genes and Analysis of Their Expression Patterns in the Common Oat (Avena sativa L.)
by Man Zhang, Chun-Long Wang, Yuan Jiang, Bo Feng, Hai-Xiao Dong, Hao Chen, Xue-Ying Li, Xiao-Hui Shan, Juan Tian, Wei-Wei Xu, Ya-Ping Yuan, Chang-Zhong Ren and Lai-Chun Guo
Agronomy 2025, 15(10), 2286; https://doi.org/10.3390/agronomy15102286 - 26 Sep 2025
Viewed by 826
Abstract
The MADS-box gene family is a large family of transcription factors, and its members are widely distributed in the plant kingdom. Members of this family are well known to be crucial regulators of many biological processes and environmental responses. In this study, bioinformatics [...] Read more.
The MADS-box gene family is a large family of transcription factors, and its members are widely distributed in the plant kingdom. Members of this family are well known to be crucial regulators of many biological processes and environmental responses. In this study, bioinformatics methods were employed to analyze the MADS-box gene family members in the common oat, focusing on their phylogenetic relationships, gene structures, conserved motifs, evolutionary relationships, promoter analysis and responses to photoperiod and abiotic stress. A total of 175 MADS-box genes were detected in Avena sativa, which were categorized into Type I and Type II. Type II members exhibited more complex gene structures, while each subfamily showed similar gene structures and motifs. Evolutionary analysis identified 138 segmental duplication events and revealed strong syntenic conservation with Triticum aestivum (337 collinear gene pairs). Four categories of cis-elements were detected in the promoter regions of the AsMADS-box genes. qRT-PCR analysis revealed that the expression of six Type II AsMADS-box genes varied in response to ABA, GA, drought and salt. Furthermore, 23 AsMADS-box members were potentially associated with heading date when the common oat plants were exposed to different photoperiod conditions. The overexpression of chr4D_AsMADS95 in Arabidopsis thaliana led to early flowering under long-day and short-day photoperiod conditions, likely associated with a significant increase in the expression levels of flowering-related genes in transgenic plants. These findings will provide useful information for future studies on stress responses and increase our understanding of the network that regulates flowering in the common oat. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

25 pages, 16017 KB  
Article
Identification of Key Regulatory Genes Associated with Double-Petaled Phenotype in Lycoris longituba via Transcriptome Profiling
by Zhong Wang, Xiaoxiao Xu, Chuanqi Liu, Fengjiao Zhang, Xiaochun Shu and Ning Wang
Horticulturae 2025, 11(10), 1156; https://doi.org/10.3390/horticulturae11101156 - 26 Sep 2025
Viewed by 863
Abstract
Lycoris longituba produces a single flower bearing six tepals. The double-petaled phenotype of L. longituba has gained significant interest in China due to its ornamental and commercial value in tourism industries. This double-petal phenotype, characterized by stamen petalization, shows improved esthetic characteristics compared [...] Read more.
Lycoris longituba produces a single flower bearing six tepals. The double-petaled phenotype of L. longituba has gained significant interest in China due to its ornamental and commercial value in tourism industries. This double-petal phenotype, characterized by stamen petalization, shows improved esthetic characteristics compared with conventional single-petal form. However, the molecular mechanisms underlying this floral trait remain largely undefined. In this study, RNA-based comparative transcriptomic analysis was performed between single- and double-petaled flowers of L. longituba at the fully opened flower stage. Approximately 13,848 differentially expressed genes (DEGs) were identified (6528 upregulated and 7320 downregulated genes). Functional annotation through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed several DEGs potentially involved in double-petal development. Six candidate genes, including the hub genes LlbHLH49, LlNAC1, LlSEP, LlTIFY, and LlAGL11, were identified based on DEG functional annotation and weighted gene co-expression network analysis (WGCNA). Transcription factors responsive to phytohormonal signaling were found to play a pivotal role in modulating double-petal development. Specifically, 123 DEGs were involved in phytohormone biosynthesis and signal transduction pathways, including those associated with auxin, cytokinin, gibberellin, ethylene, brassinosteroid, and jasmonic acid. Moreover, 521 transcription factors (TFs) were identified, including members of the MYB, WRKY, AP2/ERF, and MADS-box families. These results improve the current understanding of the genetic regulation of the double tepal trait in L. longituba and offer a base for future molecular breeding strategies to enhance ornamental characteristics. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

15 pages, 1103 KB  
Article
Water Footprint and Evapotranspiration Partitioning in Drip-Irrigated Faba Bean: Effects of Irrigation Regime and Planting Pattern
by Saad E. Aldulaimy, Huthaifa J. Mohammed, Basem Aljoumani and Adil K. Salman
Agronomy 2025, 15(10), 2282; https://doi.org/10.3390/agronomy15102282 - 26 Sep 2025
Viewed by 904
Abstract
Efficient water management is critical for sustainable crop production in arid and semi-arid regions. This study investigated the effects of two irrigation regimes—25% and 50% Management Allowable Depletion (MAD) and two planting patterns (single-row and double-row) on evapotranspiration (ET) partitioning, water use efficiency [...] Read more.
Efficient water management is critical for sustainable crop production in arid and semi-arid regions. This study investigated the effects of two irrigation regimes—25% and 50% Management Allowable Depletion (MAD) and two planting patterns (single-row and double-row) on evapotranspiration (ET) partitioning, water use efficiency (WUE), and water footprint (WF) in drip-irrigated faba bean (Vicia faba L.). Field data were combined with a leaf area index (LAI)-based model to estimate the relative contributions of transpiration (T) and evaporation (E) to total ET. The highest grain yield (6171 kg ha−1) and the lowest blue (570 m3 ton−1) and green (68 m3 ton−1) water footprints were recorded under the 25% MAD with double-row planting. This treatment also achieved the highest proportion of transpiration in ET (70%), indicating a shift toward productive water use. In contrast, the lowest-performing treatment (50% MAD, single-row) had the highest total water footprint (792 m3 ton−1) and the lowest transpiration share (44%). Although high-density planting slightly reduced WUE based on transpiration, it improved overall water efficiency when total input (ETc) was considered (1.57 kg m−3 for total input WUE, 4.17 kg/m−3 for T-based WUE). These findings highlight the importance of integrating irrigation scheduling and planting pattern to improve both physiological and agronomic water productivity. The approach offers a practical strategy for sustainable faba bean production in water-scarce environments and supports climate-resilient irrigation planning aligned with Iraq’s National Water Strategy. Full article
Show Figures

Figure 1

32 pages, 722 KB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Cited by 1 | Viewed by 2027
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

23 pages, 6890 KB  
Article
MicroRNA Signatures in Lung Adenocarcinoma Metastases: Exploring the Oncogenic Targets of Tumor-Suppressive miR-195-5p and miR-195-3p
by Yuya Tomioka, Naohiko Seki, Keiko Mizuno, Takayuki Suetsugu, Kentaro Tsuruzono, Yoko Hagihara, Mayuko Kato, Chikashi Minemura, Hajime Yonezawa, Kentaro Tanaka and Hiromasa Inoue
Cancers 2025, 17(14), 2348; https://doi.org/10.3390/cancers17142348 - 15 Jul 2025
Cited by 1 | Viewed by 1025
Abstract
Background: To improve the prognosis of patients with lung adenocarcinoma (LUAD), revolutionary treatments for metastatic lesions are essential. Methods: To identify genes closely involved in LUAD-cell-derived metastasis, we used RNA sequencing to generate microRNA (miRNA) expression signatures of brain metastatic lesions. [...] Read more.
Background: To improve the prognosis of patients with lung adenocarcinoma (LUAD), revolutionary treatments for metastatic lesions are essential. Methods: To identify genes closely involved in LUAD-cell-derived metastasis, we used RNA sequencing to generate microRNA (miRNA) expression signatures of brain metastatic lesions. Once tumor-suppressive miRNAs are identified, it will be possible to explore the numerous tumor-promoting genes that are regulated by miRNAs. Results: By comparison with a previously created LUAD signature, we identified several miRNAs whose expression was significantly suppressed in brain metastases. We focused on both strands of pre-miR-195 (miR-195-5p and miR-195-3p), which were significantly downregulated in brain metastatic tissues, and confirmed by ectopic expression assays that both strands of pre-miR-195 attenuated the aggressive phenotypes (cell proliferation, migration, and invasion) of LUAD cells. These data suggest that both strands of pre-miR-195 have tumor-suppressive functions in LUAD cells. Next, we explored the target molecules that each miRNA strand regulates in LUAD cells. We identified 159 target genes regulated by miR-195-5p and miR-195-3p, of which 12 genes (ANLN, CDC6, CDCA2, CDK1, CEP55, CHEK1, CLSPN, GINS1, KIF23, MAD2L1, OIP5, and TIMELESS) affect cell cycle/cell division and the prognosis of LUAD patients. Finally, we focused on two genes, ANLN (miR-195-5p target) and MAD2L1 (miR-195-3p target), and demonstrated their oncogenic functions and the molecular pathways they regulate in LUAD cells. Conclusions: The miRNA signature derived from lung cancer brain metastasis will be a landmark in the field, and analysis of this miRNA signature will accelerate the identification of genes involved in lung cancer brain metastasis. Full article
Show Figures

Figure 1

24 pages, 3617 KB  
Article
Comparative Transcriptome Analysis in Tomato Fruit Reveals Genes, Pathways, and Processes Affected by the LEC1-LIKE4 Transcription Factor
by Venetia Koidou, Dimitrios Valasiadis, Nestor Petrou, Christina Emmanouilidou and Zoe Hilioti
Int. J. Mol. Sci. 2025, 26(14), 6728; https://doi.org/10.3390/ijms26146728 - 14 Jul 2025
Cited by 1 | Viewed by 1097
Abstract
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) [...] Read more.
Tomato (Solanum lycopersicum) is a globally important crop, and enhancing its fruit quality and phenotypic traits is a key objective in modern breeding. This study investigates the role of the LEAFY-COTYLEDON1-LIKE4 (L1L4), an NF-YB subunit of the nuclear factor Y (NF-Y) transcription factor, in tomato fruit development using RNA-sequencing data from zinc-finger nuclease (ZFN)-targeted disruption lines. Differential gene expression (DEG) analyses of two independent l1l4 mutant lines compared to the wild-type line revealed significant alterations in key metabolic pathways and regulatory networks that are implicated in fruit ripening. Specifically, L1L4 disruption impacted the genes and pathways related to the fruit’s color development (carotenoid and flavonoids), texture (cell wall modification), flavor (sugar and volatile organic compound metabolism), and ripening-related hormone signaling. The analyses also revealed multiple differentially expressed histones, histone modifiers, and transcription factors (ERFs, MYBs, bHLHs, WRKYs, C2H2s, NACs, GRAS, MADs, and bZIPs), indicating that L1L4 participates in a complex regulatory network. These findings provide valuable insights into the role of L1L4 in orchestrating tomato fruit development and highlight it as a potential target for genetically improving the fruit quality. Full article
(This article belongs to the Special Issue Genomics, Genetics, and the Future of Fruit Improvement)
Show Figures

Figure 1

20 pages, 16677 KB  
Article
Comparative Analysis of Differentially Expressed Genes and Metabolites in Waxy Maize Inbred Lines with Distinct Twin-Shoot Phenotypes
by Mengfan Qin, Guangyu Li, Kun Li, Jing Gao, Meng Li, Hao Liu, Yifeng Wang, Keke Kang, Da Zhang and Wu Li
Plants 2025, 14(13), 1951; https://doi.org/10.3390/plants14131951 - 25 Jun 2025
Viewed by 1060
Abstract
Polyembryonic maize, capable of producing multiple seedlings from a single kernel, holds great potential value in agricultural and industrial applications, but the seedling quality needs to be improved. In this study, seedlings of two waxy maize (Zea mays L. sinensis Kulesh) inbred [...] Read more.
Polyembryonic maize, capable of producing multiple seedlings from a single kernel, holds great potential value in agricultural and industrial applications, but the seedling quality needs to be improved. In this study, seedlings of two waxy maize (Zea mays L. sinensis Kulesh) inbred lines, D35 (a polyembryonic line with twin shoots) and N6110 (single-shoot), exhibited similar relative growth rates during 1 to 5 days post-germination. UPLC-MS/MS profiling of 3- to 5-day-old seedling roots and shoots revealed that H2JA, MeSAG, and IAA-Val-Me were the common differentially accumulated metabolites (DAMs) of the 3-day-old vs. 5-day-old seedlings of D35 and N6110 in the same tissues, and MeSAG, tZ9G, cZROG, and DHZROG were identified in D35 vs. N6110 across the same tissues and the same periods. RNA-seq analyses showed various processes involved in seedling development, including DNA replication initiation, rhythmic processes, the cell cycle, secondary metabolic processes, and hormone biosynthetic regulation. The differentially expressed genes (DEGs) between D35 and N6110 were significantly enriched in organic hydroxy compound biosynthetic, alcohol biosynthetic, organic hydroxy compound metabolic, abscisic acid biosynthetic, and apocarotenoid biosynthetic processes. The KEGG-enriched pathways of DAMs and DEGs identified that AUX1, AHP, A-ARR, JAR1, SIMKK, ERF1, and GID2 might be conserved genes regulating seedling growth. The integrated analyses revealed that 98 TFs were potentially associated with multiple hormones, and 24 of them were identified to be core genes, including 11 AP2/ERFs, 4 Dofs, 2 bZIPs, 2 MADS-box genes, 2 MYBs, 1 GATA, 1 LOB, and 1 RWP-RK member. This study promotes a valuable understanding of the complex hormone interactions governing twin-shoot seedling growth and offers potential targets for improving crop establishment via seedling quality. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops—2nd Edition)
Show Figures

Figure 1

16 pages, 2629 KB  
Article
Full-Length Transcriptome of Testis and Ovary Provides Insights into Alternative Splicing During Gonadal Development in Litopenaeus vannamei
by Youyan Wang, Yang Yu, Yue Wang and Fuhua Li
Int. J. Mol. Sci. 2025, 26(12), 5863; https://doi.org/10.3390/ijms26125863 - 19 Jun 2025
Cited by 2 | Viewed by 1392
Abstract
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling [...] Read more.
The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is an important aquaculture species, yet the molecular mechanisms underlying its sex differentiation and gonadal development remain poorly understood. A deeper understanding of these processes is critical for advancing broodstock quality and enabling unisex breeding strategies. While previous studies have focused on gene expression differences between females and males, structural differences in transcriptomic regulation between sexes have been largely overlooked. Here, we present a comprehensive full-length transcriptome analysis of L. vannamei testis and ovary, identifying 830 and 690 novel genes, respectively, and over 6000 new isoforms. Notably, we discovered extensive alternative splicing (AS) events, with the cartilage oligomeric matrix protein-like gene exhibiting over 300 AS isoforms in the ovary compared to only 2 in the testis, suggesting a potential role in ovarian development. Furthermore, sex-determining genes such as Fem-1a, Fem-1c, and Sxl were found to produce AS isoforms exclusively in ovarian tissue. We also identified three germ cell development-associated genes—MAD2-like, RAD51-like, and Su(dx)-like—that undergo distinct AS events in gonadal tissues, leading to sex-specific structural domain alterations. These findings highlight the complexity of AS-mediated post-transcriptional regulation in L. vannamei and provide novel insights into the molecular mechanisms governing sex differentiation and gonadal development. Full article
Show Figures

Figure 1

17 pages, 557 KB  
Article
Social Support and Disease Acceptance in Patients with Diabetic Foot Syndrome and Their Relationship with the Metabolic Control of the Disease
by Ewa Kobos, Olga Serafin, Ewa Kostrzewa-Zabłocka and Anna Stefanowicz-Bielska
J. Clin. Med. 2025, 14(10), 3412; https://doi.org/10.3390/jcm14103412 - 13 May 2025
Viewed by 1060
Abstract
Background: Diabetic foot syndrome (DFS) constitutes a serious clinical challenge in the treatment of diabetes. The aim of this study was to assess social support and acceptance of the disease in patients with diabetic foot syndrome and their relationship with the metabolic [...] Read more.
Background: Diabetic foot syndrome (DFS) constitutes a serious clinical challenge in the treatment of diabetes. The aim of this study was to assess social support and acceptance of the disease in patients with diabetic foot syndrome and their relationship with the metabolic control of diabetes. Methods: This was an observational, single-center study, conducted in 80 people hospitalized in the general and vascular surgery department. This study included adult patients with type 1 or type 2 diabetes, diagnosed with DFS. The mean age of the patients was 65.63 years, with the median age of 62 years. The youngest patient was 27, and the oldest was 94 years old. Men constituted 71.25% of the study group, women 28.75%. The following data were collected: the results of laboratory tests and measurements, the Acceptance of Illness Scale (AIS), and the Social Support Scale (S4-MAD) scores. Results: Abnormal values of non-high-density lipoprotein cholesterol (mean (M) = 120.76 mg/dL) and low-density lipoprotein cholesterol (M = 144.56) were shown in all the patients. Abnormal low-density lipoprotein values occurred in 98.75% of the patients (M = 148.21 mg/dL), and 83.75% of the participants had abnormal values of the systolic pressure (M = 145 mmHg) and total cholesterol. Glycated hemoglobin was abnormal in 61.25% of the subjects (M = 8.95%). The average score on the Acceptance of Illness Scale was 18.4 points in the study group. Out of the 100 possible points in the subscales of social support, the patients obtained an average of 46.5 points in the nutrition dimension, 40 for physical activity, 47.1 for glycemic self-control, 27.4 for foot care, and 68.9 for smoking. Conclusions: Patients with diabetic foot syndrome are characterized by poor acceptance of the disease and receive moderate social support. Patients receive the highest support in terms of cigarette smoking and glycemic self-control, with the lowest in foot care. The patient’s acceptance of the disease and the social support received are unrelated to the patient’s goals of disease control. Higher social support received by the DFS patients is associated with a greater acceptance of the disease. Full article
Show Figures

Figure 1

23 pages, 21973 KB  
Article
Transcriptome Analysis Reveals Association of E-Class AmMADS-Box Genes with Petal Malformation in Antirrhinum majus L.
by Dongmei Yang, Yiwen Chen, Yutong He, Jiayi Song, Ye Jiang, Meiyun Yang, Xingyan Zheng, Li Wang and Huizhen Hu
Int. J. Mol. Sci. 2025, 26(9), 4450; https://doi.org/10.3390/ijms26094450 - 7 May 2025
Cited by 1 | Viewed by 1240
Abstract
Snapdragon (Antirrhinum majus) serves as a model system for dissecting floral morphogenesis mechanisms. Petal malformation in A. majus impacts ornamental value, but its genetic basis remains poorly understood. We compared transcriptomes of the wild-type (Am11) and a petal-malformed mutant (AmDP2) to [...] Read more.
Snapdragon (Antirrhinum majus) serves as a model system for dissecting floral morphogenesis mechanisms. Petal malformation in A. majus impacts ornamental value, but its genetic basis remains poorly understood. We compared transcriptomes of the wild-type (Am11) and a petal-malformed mutant (AmDP2) to identify 2303 differentially expressed genes (DEGs), including E-class MIKC-type MADS-box genes SEP3 (AmMADS25/61/20/26) and SEP2 (AmMADS85). Weighted gene co-expression network (WGCNA), protein-protein interaction (PPI), qRT-PCR and virus-induced gene silencing (VIGS) analyses revealed interactions between SEP2/SEP3 and C/A/B-class MADS-box genes (AG, AP1, AP3), co-regulated MADS transcription factors (MTFs) AGL15 (AmMADS16), and auxin signaling genes (SAUR1, IAA13). qRT-PCR validated upregulation of SEP3 and downregulation of SEP2 in AmDP2. Our results suggest that E-class MADS-box genes are associated with petal malformation through coordinated interactions with hormonal pathways. These findings provide candidate targets for further functional studies in snapdragon. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 8554 KB  
Article
Low-Temperature and Light Pretreatment Interactively Promote Rapid Flowering, Early Ripening, and Yield Accumulation of Winter Wheat
by Yuanlong Wu, Runnan Shuai, Xiaoxu Zhan, Qiangui Wang, Si Tang, Tingting Gao, Yanyan Zhao, Qichang Yang and Zhonghua Bian
Int. J. Mol. Sci. 2025, 26(9), 4280; https://doi.org/10.3390/ijms26094280 - 30 Apr 2025
Cited by 1 | Viewed by 1264
Abstract
Exposing wheat (Triticum aestivum L.) seeds to a combination of light and low temperatures for 4–6 weeks, followed by transferring to speed breeding (SB) conditions, has been demonstrated to effectively reduce generation time in winter wheat. To reveal the underlying mechanisms of [...] Read more.
Exposing wheat (Triticum aestivum L.) seeds to a combination of light and low temperatures for 4–6 weeks, followed by transferring to speed breeding (SB) conditions, has been demonstrated to effectively reduce generation time in winter wheat. To reveal the underlying mechanisms of accelerated generation advancement in winter wheat, we investigated changes in transcriptome and the subsequent responses in plant growth, flowering of germinated seeds vernalized at 4 °C with white exposure (VL) or under dark conditions (VD) for 4 weeks before sowing, and subsequent growth under SB conditions. Germinated seeds without vernalization were directly sown under SB conditions and served as controls (Control). The results showed that, compared with Control and VD, VL significantly expedited vernalization, resulting in early flowering for around 6 days and accelerated ripening of progeny seeds for 13 days with a higher germination index and vigor index. The transcriptomic analysis revealed that the differently expressed genes (DEGs) involved in GA synthesis and its signal transduction both participated in the light-induced speed vernalization and the subsequent rapid growth and development of winter wheat. The MADS-box transcription factors, especially VRN-A1 and MADS55, might play a vital role in the light- and low-temperature-induced early flowering. Our results stress the importance of light in vernalization and lay the groundwork for further elucidating the mechanisms underlying the light-induced speed vernalization of winter wheat. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 1807 KB  
Article
Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs
by Yajun Li, Jiaxin Shi, Yingshan Yang, Donglin Ruan, Jie Wu, Danyang Lin, Zihao Liao, Xinrun Hong, Fuchen Zhou, Langqing Liu, Jie Yang, Ming Yang, Enqin Zheng, Zhenfang Wu, Gengyuan Cai and Zebin Zhang
Animals 2025, 15(8), 1094; https://doi.org/10.3390/ani15081094 - 10 Apr 2025
Viewed by 1129
Abstract
Congenital developmental abnormalities in piglets, such as intersex and aproctia, adversely affect survival rates, growth performance, and genetic breeding efficiency in pig populations. To elucidate their genetic basis, we performed a genome-wide association study (GWAS) on 1030 Large White pigs. We combined 50 [...] Read more.
Congenital developmental abnormalities in piglets, such as intersex and aproctia, adversely affect survival rates, growth performance, and genetic breeding efficiency in pig populations. To elucidate their genetic basis, we performed a genome-wide association study (GWAS) on 1030 Large White pigs. We combined 50 K SNP chip data with SWIM-based genotype imputation to enhance the resolution of genetic variation detection, followed by MLM analysis. Our results identified 53 significant SNPs, with 52 associated with intersex and 1 with aproctia. Key candidate genes included MAD1L1, ID4, EFNA5, and PPP1R16B for intersex and ARNT2 for aproctia. Functional enrichment analysis highlighted pathways related to gonadal development (e.g., progesterone-mediated oocyte maturation) and embryonic morphogenesis. Collectively, the identification of these SNPs and candidate genes advances our understanding of the genetic architecture of intersex and aproctia in piglets. These findings provide actionable insights for optimizing genetic breeding strategies and improving health management in Large White pig production, with potential implications for reducing economic losses caused by congenital disorders. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

Back to TopTop