Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = M-Hg bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1311 KB  
Article
Detection of Mercury Ions Using Graphene Nanoribbon-DNA Sensors Fabricated via Template Methods
by Jiaojiao Da, Haixia Shi, Vesna Antic, Milica Balaban, Bing Xie and Li Gao
Chemosensors 2025, 13(12), 431; https://doi.org/10.3390/chemosensors13120431 - 12 Dec 2025
Viewed by 565
Abstract
To enhance the sensitivity of graphene-DNA sensors for Hg2+ detection, a novel graphene nanoribbon-DNA sensor was fabricated using a template-assisted approach. Silicon nanowires served as templates to decorate the graphene device, followed by plasma etching to delineate graphene nanoribbons. After template removal, [...] Read more.
To enhance the sensitivity of graphene-DNA sensors for Hg2+ detection, a novel graphene nanoribbon-DNA sensor was fabricated using a template-assisted approach. Silicon nanowires served as templates to decorate the graphene device, followed by plasma etching to delineate graphene nanoribbons. After template removal, the resulting sensors based on silicon nanowire templates were successfully constructed. DNA sequences containing four guanine bases were conjugated with graphene sensors prepared using the templates. The carboxyl groups on the edges of the graphene nanoribbons were activated with EDC/NHS chemistry to facilitate covalent bonding with amino-modified DNA. The kinetic response and Hg2+ detection capability of the fabricated sensors were characterized using a semiconductor parameter analyzer. Results indicated that the silicon nanowire-templated graphene nanoribbon sensor exhibited high sensitivity, with a detection limit of 3.62 pM. This innovative approach further improved the sensitivity of graphene-DNA sensors for Hg2+ detection. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Figure 1

21 pages, 64275 KB  
Article
Characterization on Mode-I/II Interlaminar Strength and Fracture Toughness of Co-Cured Fiber–Metal Laminates
by Mingjie Wang, Hongyi Hao, Qinghao Liu, Xinyue Miao, Ziye Lai, Tianqi Yuan, Guohua Zhu and Zhen Wang
Polymers 2025, 17(21), 2937; https://doi.org/10.3390/polym17212937 - 2 Nov 2025
Viewed by 1154
Abstract
This study systematically evaluates the mode-I (opening) and mode-II (shearing) interlaminar strength and fracture toughness of four co-cured fiber–metal laminates (FMLs): AL–CF (aluminum–carbon fiber fabric), AL–GF (aluminum–glass fiber fabric), AL–HC (aluminum–carbon/glass hybrid fabric), and AL–HG (aluminum–glass/carbon hybrid fabric). Epoxy adhesive films were interleaved [...] Read more.
This study systematically evaluates the mode-I (opening) and mode-II (shearing) interlaminar strength and fracture toughness of four co-cured fiber–metal laminates (FMLs): AL–CF (aluminum–carbon fiber fabric), AL–GF (aluminum–glass fiber fabric), AL–HC (aluminum–carbon/glass hybrid fabric), and AL–HG (aluminum–glass/carbon hybrid fabric). Epoxy adhesive films were interleaved between metal and composite plies to enhance interfacial bonding. Mode-I interlaminar tensile strength (ILTS) and mode-II interlaminar shear strength (ILSS) were measured using curved beam and short beam tests, respectively, while mode-I and mode-II fracture toughness (GIc and GIIc) were obtained from double cantilever beam (DCB) and end-notched flexure (ENF) tests. Across laminates, interlaminar tensile strength (ILTS) values lie in a narrow band of 31.6–31.8 MPa and interlaminar shear strength (ILSS) values in 41.0–41.9 MPa. The mode-I initiation (GIc,init) and propagation (GIc, prop) toughnesses are 0.44–0.56 kJ/m2 and 0.54–0.64 kJ/m2, respectively, and the mode-II toughness (GIIc) is 0.65–0.79 kJ/m2. Scanning electron microscopy reveals that interlaminar failure localizes predominantly at the metal–adhesive interface, displaying river-line features under mode-I and hackle patterns under mode-II, whereas the adhesive–composite interface remains intact. Collectively, the results indicate that, under the present processing and test conditions, interlaminar strength and toughness are governed by the metal–adhesive interface rather than the composite reinforcement type, providing a consistent strength–toughness baseline for model calibration and interfacial design. Full article
Show Figures

Figure 1

81 pages, 50947 KB  
Review
Towards Completion of the “Periodic Table” of Di-2-Pyridyl Ketoxime
by Christina Stamou, Christina D. Polyzou, Zoi G. Lada, Konstantis F. Konidaris and Spyros P. Perlepes
Molecules 2025, 30(4), 791; https://doi.org/10.3390/molecules30040791 - 8 Feb 2025
Cited by 1 | Viewed by 1776
Abstract
The oxime group is important in organic and inorganic chemistry. In most cases, this group is part of an organic molecule possessing one or more donor sites capable of forming bonds to metal ions. One family of such compounds is the group of [...] Read more.
The oxime group is important in organic and inorganic chemistry. In most cases, this group is part of an organic molecule possessing one or more donor sites capable of forming bonds to metal ions. One family of such compounds is the group of 2-pyridyl (aldo)ketoximes. Metal complexes of 2-pyridyl oximes continue to attract the intense interest of many inorganic chemistry groups around the world for a variety of reasons, including their interesting structures, physical and biological properties, and applications. A unique member of 2-pyridyl ketoximes is di-2-pyridyl ketoxime (dpkoxH), which contains two 2-pyridyl groups and an oxime functionality that can be easily deprotonated giving the deprotonated ligand (dpkox). The extra 2-pyridyl site confers a remarkable flexibility resulting in metal complexes with exciting structural and reactivity features. Our and other research groups have prepared and characterized many metal complexes of dpkoxH and dpkox over the past 30 years or so. This work is an attempt to build a “periodic table” of dpkoxH, which is near completion. The filled spaces of this “periodic table” contain metal ions whose dpkoxH/dpkox complexes have been structurally characterized. This work reviews comprehensively the to-date published coordination chemistry of dpkoxH with emphasis on the syntheses, reactivity, relationship to metallacrown chemistry, structures, and properties of the metal complexes; selected unpublished results from our group are also reported. The sixteen coordination modes adopted by dpkoxH and dpkox have provided access to monomeric and dimeric complexes, trinuclear, tetranuclear, pentanuclear, hexanuclear, heptanuclear, enneanuclear, and decanuclear clusters, as well as to a small number of 1D coordination polymers. With few exceptions ({MIILnIII2} and {NiII2MnIII2}; M = Ni, Cu, Pd, and Ln = lanthanoid), most complexes are homometallic. The metals whose ions have yielded complexes with dpkoxH and dpkox are Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Re, Os, Ir, Au, Hg, lanthanoids (mainly Pr and Nd), and U. Most metal complexes are homovalent, but some mixed-valence Mn, Fe, and Co compounds have been studied. Metal ion-assisted/promoted transformations of dpkoxH, i.e., reactivity patterns of the coordinated ligand, are also critically discussed. Some perspectives concerning the coordination chemistry of dpkoxH and research work for the future are outlined. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

27 pages, 5988 KB  
Review
Mercury Monohalides as Ligands in Transition Metal Complexes
by Matteo Busato, Jesús Castro, Domenico Piccolo and Marco Bortoluzzi
Molecules 2025, 30(1), 145; https://doi.org/10.3390/molecules30010145 - 2 Jan 2025
Viewed by 2503
Abstract
The main categories of transition metal–mercury heterometallic compounds are briefly summarized. The attention is focused on complexes and clusters where the {Hg-Y} fragment, where Y represents a halide atom, interacts with transition metals. Most of the structurally characterized derivatives are organometallic compounds where [...] Read more.
The main categories of transition metal–mercury heterometallic compounds are briefly summarized. The attention is focused on complexes and clusters where the {Hg-Y} fragment, where Y represents a halide atom, interacts with transition metals. Most of the structurally characterized derivatives are organometallic compounds where the transition metals belong to the Groups 6, 8, 9 and 10. More than one {Hg-Y} group can be present in the same compound, interacting with the same or with different transition metals. The main synthetic strategies are discussed, and structural data of representative compounds are reported. According to the isolobality with hydrogen, {Hg-Y} can form from one to three M-{Hg-Y} bonds, but further interactions can be present, such as mercurophilic and Hg···halide contacts. The formal oxidation state of mercury is sometimes ambiguous and thus {Hg-Y} can be considered as a Lewis acid or base on varying the transition metal fragment. Density functional theory calculations on selected Group 6 and Group 9 model compounds are provided in order to shed light on this aspect. Full article
Show Figures

Graphical abstract

22 pages, 7524 KB  
Article
The Molecular Mechanism of Farnesoid X Receptor Alleviating Glucose Intolerance in Turbot (Scophthalmus maximus)
by Gaochan Qin, Mingzhu Pan, Dong Huang, Xinxin Li, Yue Liu, Xiaojun Yu, Kangsen Mai and Wenbing Zhang
Cells 2024, 13(23), 1949; https://doi.org/10.3390/cells13231949 - 23 Nov 2024
Cited by 2 | Viewed by 1440
Abstract
To explore the molecular targets for regulating glucose metabolism in carnivorous fish, the turbot (Scophthalmus maximus) was selected as the research object to study. Farnesoid X receptor (FXR; NR1H4), as a ligand-activated transcription factor, plays an important role in glucose metabolism [...] Read more.
To explore the molecular targets for regulating glucose metabolism in carnivorous fish, the turbot (Scophthalmus maximus) was selected as the research object to study. Farnesoid X receptor (FXR; NR1H4), as a ligand-activated transcription factor, plays an important role in glucose metabolism in mammals. However, the mechanisms controlling glucose metabolism mediated by FXR in fish are not understood. It was first found that the protein levels of FXR and its target gene, small heterodimer partner (SHP), were significantly decreased in the high-glucose group (50 mM, HG) compared with those in the normal glucose group (15 mM, CON) in primary hepatocytes of turbot. By further exploring the function of FXR in turbot, the full length of FXR in turbot was cloned, and its nuclear localization function was characterized by subcellular localization. The results revealed that the FXR had the highest expression in the liver, and its capability to activate SHP expression through heterodimer formation with retinoid X receptor (RXR) was proved, which proved RXR could bind to 15 binding sites of FXR by forming hydrogen bonds. Activation of FXR in both the CON and HG groups significantly increased the expression of glucokinase (gk) and pyruvate kinase (pk), while it decreased the expression of cytosolic phosphoenolpyruvate carboxykinase (cpepck), mitochondrial phosphoenolpyruvate carboxykinase (mpepck), glucose-6-phosphatase 1 (g6pase1) and glucose-6-phosphatase 2 (g6pase2), and caused no significant different in glycogen synthetase (gs). ELISA experiments further demonstrated that under the condition of high glucose with activated FXR, it could significantly decrease the activity of PEPCK and G6PASE in hepatocytes. In a dual-luciferase reporter assay, the FXR could significantly inhibit the activity of G6PASE2 and cPEPCK promoters by binding to the binding site ‘ATGACCT’. Knockdown of SHP after activation of FXR reduced the inhibitory effect on gluconeogenesis. In summary, FXR can bind to the mpepck and g6pase2 promoters to inhibit their expression, thereby directly inhibiting the gluconeogenesis pathway. FXR can also indirectly inhibit the gluconeogenesis pathway by activating shp. These findings suggest the possibility of FXR as a molecular target to regulate glucose homeostasis in turbot. Full article
Show Figures

Figure 1

13 pages, 4163 KB  
Article
An Innovative Approach for Elemental Mercury Adsorption Using X-ray Irradiation and Electrospun Nylon/Chitosan Nanofibers
by Baturalp Yalcinkaya, Martin Strejc, Fatma Yalcinkaya, Tomas Spirek, Petr Louda, Katarzyna Ewa Buczkowska and Milan Bousa
Polymers 2024, 16(12), 1721; https://doi.org/10.3390/polym16121721 - 17 Jun 2024
Cited by 4 | Viewed by 1877
Abstract
A novel approach was proposed, utilizing an electrical field and X-ray irradiation to oxidize elemental mercury (Hg0) and encapsulate it within a nanofibrous mat made of Polyamide 6/Chitosan. The X-rays contributed significantly to the conversion of Hg0 into Hg+ [...] Read more.
A novel approach was proposed, utilizing an electrical field and X-ray irradiation to oxidize elemental mercury (Hg0) and encapsulate it within a nanofibrous mat made of Polyamide 6/Chitosan. The X-rays contributed significantly to the conversion of Hg0 into Hg+ by producing electrons through the photoionization of gas molecules. The positive and negative pole electrodes generated an electric field that exerted a magnetic force, resulting in the redirection of oxidized elemental mercury towards the negative pole electrode, which was coupled with a Polyamide 6/Chitosan nanofiber mat. The evaluation of the Polyamide 6/Chitosan nanofibers exposed to oxidized mercury showed that the mercury, found in the steam of a specially designed filtration device, was captured in two different forms. Firstly, it was chemically bonded with concentrations ranging from 0.2 to 10 ng of Hg in total. Secondly, it was retained on the surface of the Polyamide 6/Chitosan nanofibers with a concentration of 10 microg/m3 of Hg per minute. Nevertheless, a concentration of 10 microg/m3 of mercury is considered significant, given that the emission levels of mercury from each coal power plant typically vary from approximately 4.72 to 44.07 microg/m3. Thus, this research presents a viable approach to reducing mercury emissions from coal-fired power plants, which could result in lower operational expenses and less secondary environmental effects. Full article
(This article belongs to the Special Issue New Advances in Polymer Electrospun Fibers)
Show Figures

Figure 1

16 pages, 4656 KB  
Article
Using Sandwiched Silicon/Reduced Graphene Oxide Composites with Dual Hybridization for Their Stable Lithium Storage Properties
by Yuying Yang, Rui Zhang, Qiang Zhang, Liu Feng, Guangwu Wen, Lu-Chang Qin and Dong Wang
Molecules 2024, 29(10), 2178; https://doi.org/10.3390/molecules29102178 - 7 May 2024
Cited by 4 | Viewed by 1694
Abstract
Using silicon/reduced graphene oxide (Si/rGO) composites as lithium-ion battery (LIB) anodes can effectively buffer the volumetric expansion and shrinkage of Si. Herein, we designed and prepared Si/rGO-b with a sandwiched structure, formed by a duple combination of ammonia-modified silicon (m-Si) nanoparticles (NP) with [...] Read more.
Using silicon/reduced graphene oxide (Si/rGO) composites as lithium-ion battery (LIB) anodes can effectively buffer the volumetric expansion and shrinkage of Si. Herein, we designed and prepared Si/rGO-b with a sandwiched structure, formed by a duple combination of ammonia-modified silicon (m-Si) nanoparticles (NP) with graphene oxide (GO). In the first composite process of m-Si and GO, a core–shell structure of primal Si/rGO-b (p-Si/rGO-b) was formed. The amino groups on the m-Si surface can not only hybridize with the GO surface to fix the Si particles, but also form covalent chemical bonds with the remaining carboxyl groups of rGO to enhance the stability of the composite. During the electrochemical reaction, the oxygen on the m-Si surface reacts with lithium ions (Li+) to form Li2O, which is a component of the solid–electrolyte interphase (SEI) and is beneficial to buffering the volume expansion of Si. Then, the p-Si/rGO-b recombines with GO again to finally form a sandwiched structure of Si/rGO-b. Covalent chemical bonds are formed between the rGO layers to tightly fix the p-Si/rGO-b, and the conductive network formed by the reintroduced rGO improves the conductivity of the Si/rGO-b composite. When used as an electrode, the Si/rGO-b composite exhibits excellent cycling performance (operated stably for more than 800 cycles at a high-capacity retention rate of 82.4%) and a superior rate capability (300 mA h/g at 5 A/g). After cycling, tiny cracks formed in some areas of the electrode surface, with an expansion rate of only 27.4%. The duple combination of rGO and the unique sandwiched structure presented here demonstrate great effectiveness in improving the electrochemical performance of alloy-type anodes. Full article
Show Figures

Graphical abstract

22 pages, 5620 KB  
Article
A Deep-Penetrating Geochemical Prospecting Experiment of Mahuagou Gold Deposit in the Core of the Huangling Anticline, Western Hubei, China
by Weihang Zhou, Li Lei, Yin Gong, Demin Liu, Shuyun Xie, Zhijun Chen, Qinglin Xia, Mengqi Wang, Salah Fadlallah Awadelseid and Oraphan Yaisamut
Appl. Sci. 2023, 13(22), 12279; https://doi.org/10.3390/app132212279 - 13 Nov 2023
Viewed by 2745
Abstract
The Mahuagou gold deposit is among the most important gold deposits in the core of the Huangling Anticline. However, the geochemical exploration on the surface of the mining area presents challenges due to the thin overburden. This paper focuses on the overburden soil [...] Read more.
The Mahuagou gold deposit is among the most important gold deposits in the core of the Huangling Anticline. However, the geochemical exploration on the surface of the mining area presents challenges due to the thin overburden. This paper focuses on the overburden soil of the Fengxiangshugou (FXS)-Mahuanggou (MHG) section as the research object. It utilizes chemical form analysis of gold, soil halogen survey, and heat-released mercury survey to determine the key deep-penetrating geochemical methods for the mining area. The results indicated that Si and Al components of samples exhibit minimal variation, suggesting that drift loads did not influence the overburden soil. Based on the systematic clustering, As, Sb, Mo, Bi, W, and Hg emerge as ore-body or ore-belt front elements of hydrothermal gold deposits. In the study area, the predominant chemical form of gold in soil is the strong organic bond. Compared to the total amount, strong organic bound gold and heat-released mercury show higher anomaly contrasts, making them crucial indicators of faults, intrusions, and hidden ore bodies. Consequently, chemical form analysis of gold and heat-released mercury surveys can enhance the anomaly contrast, proving beneficial for geochemical prospecting for weak anomalies in this area. Full article
(This article belongs to the Special Issue New Advances, Challenges, and Illustrations in Applied Geochemistry)
Show Figures

Figure 1

25 pages, 6803 KB  
Article
Thiourea Derivative Metal Complexes: Spectroscopic, Anti-Microbial Evaluation, ADMET, Toxicity, and Molecular Docking Studies
by Ahmed T. F. Al-Halbosy, Adnan A. Hamada, Ahmed S. Faihan, Abdulrahman M. Saleh, Tarek A. Yousef, Mortaga M. Abou-Krisha, Mona H. Alhalafi and Ahmed S. M. Al-Janabi
Inorganics 2023, 11(10), 390; https://doi.org/10.3390/inorganics11100390 - 30 Sep 2023
Cited by 15 | Viewed by 5063
Abstract
The treatment of N-Phenylmorpholine-4-carbothioamide (HPMCT) with bivalent metal ions in a 2:1 mol ratio without a base present affords [MCl2(κ1S-HPMCT)2] {M = Cu(1), Pd(2), Pt(3), and Hg(4)} in [...] Read more.
The treatment of N-Phenylmorpholine-4-carbothioamide (HPMCT) with bivalent metal ions in a 2:1 mol ratio without a base present affords [MCl2(κ1S-HPMCT)2] {M = Cu(1), Pd(2), Pt(3), and Hg(4)} in a good yield. Furthermore, the reaction of two equivalents of HPMCT and one equivalent of bivalent metal ions in the presence of Et3N has afforded [M(κ2S,N-PMCT)2] {M = Ni(5), Cu(6), Pd(7), Pt(8), Zn(9), Cd(10), and Hg(11)}. Infrared, 1H, 13C Nuclear Magnetic Resonance molar conductivity, and elemental analysis were used to characterize the synthesized complexes. The results suggest that HPMCT is bonded as monodentate via an S atom in Complexes (14), whereas linkage as a bidentate chelating ligand via S and N atoms gives two chelate rings. Moreover, the synthesized ligand and the complexes were screened for antibacterial activity, which displayed that the very best antibacterial activities for Complexes (1), (6), and (3). In addition, the cytotoxic activity of the HPMCT ligand, [PdCl2(HPMCT)2] (2), and [PtCl2(HPMCT)2] (3) were screened on breast cancer cell lines (MCF-7), and Complex (3) reveals the most promising activity with an IC50 value 12.72 ± 0.4 μM. Using the B3LYP method and 6-311++G(d,p) basis sets for the ligand and the SDD basis set for the central metal, the synthesized complexes utilizing the prepared ligand were optimized. Various quantum parameters such as hardness, electron affinity, dipole moment, vibrational frequencies, and ionization energy for the ligand and its complexes have been calculated. In general, a favorable agreement was found between the experimental results and the obtained theoretical results. Full article
Show Figures

Figure 1

14 pages, 1300 KB  
Article
Comparison of Intermolecular Halogen...Halogen Distances in Organic and Organometallic Crystals
by Olga V. Grineva
Int. J. Mol. Sci. 2023, 24(15), 11911; https://doi.org/10.3390/ijms241511911 - 25 Jul 2023
Cited by 1 | Viewed by 1502
Abstract
Statistical analysis of halogen...halogen intermolecular distances was performed for three sets of homomolecular crystals under normal conditions: C–Hal1...Hal2–C distances in crystals consisting of: (i) organic compounds (set Org); (ii) organometallic compounds (set Orgmet); and (iii) distances M1–Hal1...Hal2–M2 (set MHal) (in all cases Hal1 [...] Read more.
Statistical analysis of halogen...halogen intermolecular distances was performed for three sets of homomolecular crystals under normal conditions: C–Hal1...Hal2–C distances in crystals consisting of: (i) organic compounds (set Org); (ii) organometallic compounds (set Orgmet); and (iii) distances M1–Hal1...Hal2–M2 (set MHal) (in all cases Hal1 = Hal2, and in MHal M1 = M2, M is any metal). When analyzing C–Hal...Hal–C distances, a new method for estimating the values of van der Waals radii is proposed, based on the use of two subsets of distances: (i) the shortest distances from each substance less than a threshold; and (ii) all C–Hal...Hal–C distances less than the same threshold. As initial approximations for these thresholds for different Hal, the Ragg values previously introduced in investigations with the participation of the author were used (Ragg values make it possible to perform a statistical assessment of the presence of halogen aggregates in crystals). The following values are recommended in this work to be used as universal values for crystals of organic and organometallic compounds: RF = 1.57, RCl = 1.90, RBr = 1.99, and RI = 2.15 Å. They are in excellent agreement with the results of some other works but significantly (by 0.10–0.17 Å) greater than the commonly used values. For the Orgmet set, slightly lower values for RI (2.11–2.09 Å) were obtained, but number of the C–I...I–C distances available for analysis was significantly smaller than in the other subgroups, which may be the reason for the discrepancy with value for the Org set (2.15 Å). Statistical analysis of the M–Hal...Hal–M distances was performed for the first time. A Hal-aggregation coefficient for M–Hal bonds is proposed, which allows one to estimate the propensity of M–Hal groups with certain M and Hal to participate in Hal-aggregates formed by M–Hal...Hal–M contacts. In particular, it was found that, for the Hg–Hal groups (Hal = Cl, Br, I), there is a high probability that the crystals have Hg–Hal...Hal–Hg distances with length ≤ Ragg. Full article
Show Figures

Figure 1

15 pages, 954 KB  
Article
NMR Magnetic Shielding in Transition Metal Compounds Containing Cadmium, Platinum, and Mercury
by Andy D. Zapata-Escobar, Alejandro F. Maldonado, Jose L. Mendoza-Cortes and Gustavo A. Aucar
Magnetochemistry 2023, 9(7), 165; https://doi.org/10.3390/magnetochemistry9070165 - 27 Jun 2023
Cited by 6 | Viewed by 2336
Abstract
In this article, we delve into the intricate behavior of electronic mechanisms underlying NMR magnetic shieldings σ in molecules containing heavy atoms, such as cadmium, platinum, and mercury. Specifically, we explore PtXn2 (X = F, Cl, Br, I; [...] Read more.
In this article, we delve into the intricate behavior of electronic mechanisms underlying NMR magnetic shieldings σ in molecules containing heavy atoms, such as cadmium, platinum, and mercury. Specifically, we explore PtXn2 (X = F, Cl, Br, I; n = 4, 6) and XCl2Te2Y2H6 (X = Cd, Hg; Y = N, P) molecular systems. It is known that the leading electronic mechanisms responsible for the relativistic effects on σ are well characterized by the linear response with elimination of small components model (LRESC). In this study, we present the results obtained from the innovative LRESC-Loc model, which offers the same outcomes as the LRESC model but employs localized molecular orbitals (LMOs) instead of canonical MOs. These LMOs provide a chemist’s representation of atomic core, lone pairs, and bonds. The whole set of electronic mechanisms responsible of the relativistic effects can be expressed in terms of both non-ligand-dependent and ligand-dependent contributions. We elucidate the electronic origins of trends and behaviors exhibited by these diverse mechanisms in the aforementioned molecular systems. In PtX42 molecules, the predominant relativistic mechanism is the well-established one-body spin–orbit (σSO(1)) mechanism, while the paramagnetic mass–velocity (σMv) and Darwin (σDw) contributing mechanisms also demand consideration. However, in PtX62 molecules, the σ(Mv/Dw) contribution surpasses that of the SO(1) mechanism, thus influencing the overall ligand-dependent contributions. As for complexes containing Cd and Hg, the ligand-dependent contributions exhibit similar magnitudes when nitrogen is substituted with phosphorus. The only discrepancy arises from the σSO(1) contribution, which changes sign between the two molecules due to the contribution of bond orbitals between the metal and tellurium atoms. Full article
(This article belongs to the Special Issue Nuclear Magnetic Resonance Spectroscopy in Coordination Compounds)
Show Figures

Figure 1

25 pages, 6536 KB  
Article
Genipin Attenuates Diabetic Cognitive Impairment by Reducing Lipid Accumulation and Promoting Mitochondrial Fusion via FABP4/Mfn1 Signaling in Microglia
by Wanying Liu, Ke Li, Menglin Zheng, Ling He and Tong Chen
Antioxidants 2023, 12(1), 74; https://doi.org/10.3390/antiox12010074 - 29 Dec 2022
Cited by 17 | Viewed by 4342
Abstract
The present study was conducted to evaluate the effect of genipin (GEN) on the microglia of diabetic cognitive impairment and explore its potential mechanism. Diabetic mice were induced by STZ/HFD, while GEN was intragastrically and intraventricularly treated. The human microglia cell HMC3 was [...] Read more.
The present study was conducted to evaluate the effect of genipin (GEN) on the microglia of diabetic cognitive impairment and explore its potential mechanism. Diabetic mice were induced by STZ/HFD, while GEN was intragastrically and intraventricularly treated. The human microglia cell HMC3 was induced by LPS/HG/PA. As a result, GEN attenuated diabetic symptoms and diabetic cognitive impairment-related behavior in novel object recognition, Morris water maze and passive avoidance tests. GEN inhibited M1 microglia polarization, lipid accumulation, oxidative stress and promoted mitochondrial fusion via FABP4/Mfn1. FABP4 overexpression, Mfn1 overexpression, selective FABP4 inhibitor BMS, and Mfn1 SiRNA were employed for investigating the mechanism. The inhibitory effect of GEN on ROS may be associated with NOX2 signaling and the translocation of p47phox/p67phox to the cell membrane. With the ROS scavenger NAC, it was proved that ROS participated in GEN-mediated inflammation and lipid accumulation. GEN inhibited the phosphorylation and nucleus translocation of NF-κB. GEN inhibited the ubiquitination of Mfn1, which was mediated by the E3 ligase Hrd1. GEN also enhanced microglia phagocytosis. Molecular docking predicted that GEN may interact with FABP4 by hydrogen bond at the S53 and R78 residues. In conclusion, GEN attenuated diabetic cognitive impairment by inhibiting inflammation, lipid accumulation and promoting mitochondrial fusion via FABP4/Mfn1 signaling. Full article
Show Figures

Figure 1

10 pages, 2668 KB  
Article
The Functional Fe3O4@SiO2@AuNPs SERS Nanomaterials for Rapid Enrichment and Detection of Mercury Ions in Licorice
by Jieqiang Zhu, Baoling Wang, Ping Yang, Junmei Li, Guyu Xiao, Jiangyu Yao, Xingchu Gong, Jizhong Yan and Hui Zhang
Chemosensors 2022, 10(10), 403; https://doi.org/10.3390/chemosensors10100403 - 8 Oct 2022
Cited by 11 | Viewed by 3124
Abstract
There has been an increasing demand for rapid and sensitive techniques for the detection of heavy metal ions that are harmful to the human body in traditional Chinese medicine (TCM). However, the complex chemical composition of TCM makes the quantitative detection of heavy [...] Read more.
There has been an increasing demand for rapid and sensitive techniques for the detection of heavy metal ions that are harmful to the human body in traditional Chinese medicine (TCM). However, the complex chemical composition of TCM makes the quantitative detection of heavy metal ions difficult. In this study, the magnetic Fe3O4@SiO2@AuNPs nanoparticles combined with a probe molecule DMcT were used for the specific enrichment and detection of Hg2+ in the complex system of licorice. The core of Fe3O4 was bonded with SiO2 to increase its stability. A layer of AuNPs was deposited to produce a “core–shell” Raman substrate with high surface-enhanced Raman spectroscopy (SERS) activity, which was surface modified by DMcT probe molecules with sulfhydryl groups. In the presence of Hg2+, Hg2+ binds to N on the amino group of DMcT to form N-Hg2+-N complexes, which induces Fe3O4@SiO2@AuNPs-DMcT clustering to enhance SERS signal. The Raman probe molecule DMcT showed an excellent linear relationship (R2 = 0.9709) between the SERS signal at 1416 cm−1 and the Hg2+ concentration (0.5~100 ng/mL). This method achieved a good recovery (89.10~111.00%) for the practical application of detection of Hg2+ in licorice extracts. The results demonstrated that the functional Fe3O4@SiO2@AuNPs-DMcT performed effective enrichment and showed high sensitivity and accurate detection of heavy metal ions from the analytes. Full article
Show Figures

Figure 1

20 pages, 5342 KB  
Article
Microwave-Assisted Deep Eutectic Solvent Extraction, Structural Characteristics, and Biological Functions of Polysaccharides from Sweet Tea (Lithocarpus litseifolius) Leaves
by Ding-Tao Wu, Meng-Xi Fu, Huan Guo, Yi-Chen Hu, Xiao-Qin Zheng, Ren-You Gan and Liang Zou
Antioxidants 2022, 11(8), 1578; https://doi.org/10.3390/antiox11081578 - 15 Aug 2022
Cited by 53 | Viewed by 4192
Abstract
The leaf of sweet tea (Lithocarpus litseifolius) is widely used as an edible and medicinal plant in China, which is rich in bioactive polysaccharides. In order to explore and promote the application of sweet tea polysaccharides in the functional food industry, [...] Read more.
The leaf of sweet tea (Lithocarpus litseifolius) is widely used as an edible and medicinal plant in China, which is rich in bioactive polysaccharides. In order to explore and promote the application of sweet tea polysaccharides in the functional food industry, the microwave-assisted deep eutectic solvent extraction (MDAE) of polysaccharides from sweet tea leaves was optimized, and the structural properties and biological functions of sweet tea polysaccharides prepared by MDAE (P-DM) were investigated and compared with that of hot water extraction (P-W). The maximum yield (4.16% ± 0.09%, w/w) of P-DM was obtained under the optimal extraction conditions (extraction time of 11.0 min, extraction power of 576.0 W, water content in deep eutectic solvent of 21.0%, and liquid–solid ratio of 29.0 mL/g). Additionally, P-DM and P-W possessed similar constituent monosaccharides and glycosidic bonds, and the homogalacturonan (HG) and arabinogalactan (AG) might exist in both P-DM and P-W. Notably, the lower molecular weight, higher content of total uronic acids, and higher content of conjugated polyphenols were observed in P-DW compared to P-W, which might contribute to its much stronger in vitro antioxidant, anti-diabetic, antiglycation, and prebiotic effects. Besides, both P-DW and P-W exhibited remarkable in vitro immunostimulatory effects. The findings from the present study indicate that the MDAE has good potential to be used for efficient extraction of bioactive polysaccharides from sweet tea leaves and P-DM can be developed as functional food ingredients in the food industry. Full article
Show Figures

Figure 1

10 pages, 3700 KB  
Article
High Quality TaS2 Nanosheet SPR Biosensors Improved Sensitivity and the Experimental Demonstration for the Detection of Hg2+
by Yue Jia, Yunlong Liao and Houzhi Cai
Nanomaterials 2022, 12(12), 2075; https://doi.org/10.3390/nano12122075 - 16 Jun 2022
Cited by 15 | Viewed by 2670
Abstract
TaS2 as transition metal dichalcogenide (TMD) two-dimensional (2D) material has sufficient unstructured bonds and large inter-layer spacing, which highly supports transporting and absorbing mercury ions. The structural characterizations and simulation data show that an SPR sensor with high sensitivity can be obtained [...] Read more.
TaS2 as transition metal dichalcogenide (TMD) two-dimensional (2D) material has sufficient unstructured bonds and large inter-layer spacing, which highly supports transporting and absorbing mercury ions. The structural characterizations and simulation data show that an SPR sensor with high sensitivity can be obtained with a TaS2 material-modified sensitive layer. In this paper, the role of TaS2 nanoparticles in an SPR sensor was explored by simulation and experiment, and the TaS2 layer in an SPR sensor was characterized by SEM, elemental mapping, XPS, and other methods. The application range of structured TaS2 nanoparticles is explored, these TaS2 based sensors were applied to detect Hg2+ ions at a detection limit approaching 1 pM, and an innovative idea for designing highly sensitive detection techniques is provided. Full article
Show Figures

Figure 1

Back to TopTop