Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,112)

Search Parameters:
Keywords = M/S ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1572 KB  
Article
Exploring the Impact of Cooling Environments on the Machinability of AM-AlSi10Mg: Optimizing Cooling Techniques and Predictive Modelling
by Zhenhua Dou, Kai Guo, Jie Sun and Xiaoming Huang
Machines 2025, 13(11), 984; https://doi.org/10.3390/machines13110984 (registering DOI) - 24 Oct 2025
Abstract
Additively manufactured (AM) aluminum (Al) alloys are very useful in sectors like automotive, manufacturing, and aerospace because they have unique mechanical properties, such as their light weight, etc. AlSi10Mg made by laser powder bed fusion (LPBF) is one of the most promising materials [...] Read more.
Additively manufactured (AM) aluminum (Al) alloys are very useful in sectors like automotive, manufacturing, and aerospace because they have unique mechanical properties, such as their light weight, etc. AlSi10Mg made by laser powder bed fusion (LPBF) is one of the most promising materials because it has a high strength-to-weight ratio, good thermal resistance, and good corrosion resistance. But machining AlSi10Mg parts is still hard because they have unique microstructural properties from the way they were produced. This research investigates the machining efficacy of the AM-AlSi10Mg alloy in distinct cutting conditions (dry, flood, chilled air, and minimal quantity lubrication with castor oil). The study assesses how different cooling conditions affect important performance metrics such as cutting temperature, surface roughness, and tool wear. Due to castor oil’s superior lubricating and film-forming properties, MQL (Minimal Quantity Lubrication) reduces heat generation between 80 °C and 98 °C for the distinct speed–feed combinations. The Multi-Objective Optimization by Ratio Analysis (MOORA) approach is used to determine the ideal cooling and machining conditions (MQL, Vc of 90 m/min, and fr of 0.05 mm/rev). The relative closeness values derived from the MOORA approach were used to predict machining results using machine learning (ML) models (MLP, GPR, and RF). The MLP showed the strongest relationship between the measured and predicted values, with R values of 0.9995 in training and 0.9993 in testing. Full article
(This article belongs to the Special Issue Neural Networks Applied in Manufacturing and Design)
21 pages, 2678 KB  
Article
Potassium-Hydroxide-Based Extraction of Nicotinamide Adenine Dinucleotides from Biological Samples Offers Accurate Assessment of Intracellular Redox Status
by Tamas Faludi, Daniel Krakko, Jessica Nolan, Robert Hanczko, Akshay Patel, Zach Oaks, Evan Ruggiero, Joshua Lewis, Xiaojing Wang, Ting-Ting Huang, Ibolya Molnar-Perl and Andras Perl
Int. J. Mol. Sci. 2025, 26(21), 10371; https://doi.org/10.3390/ijms262110371 (registering DOI) - 24 Oct 2025
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is a primary electron donor for both antioxidant enzymes, such as glutathione reductase, and pro-oxidant enzymes, such as NADPH oxidases that produce reactive oxygen species (ROS) and nitric oxide synthases that generate nitric oxide [...] Read more.
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) is a primary electron donor for both antioxidant enzymes, such as glutathione reductase, and pro-oxidant enzymes, such as NADPH oxidases that produce reactive oxygen species (ROS) and nitric oxide synthases that generate nitric oxide which act as signaling molecules. Monitoring NADPH levels, NADPH/NADP+ ratio, and especially distinguishing from NADH, provides vital information about cellular redox status, energy generation, survival, lineage specification, and death pathway selection. NADPH detection is key to understanding metabolic reprogramming in cancer, aging, and cardiovascular, hormonal, neurodegenerative, and autoimmune diseases. Liquid chromatography combined with mass spectrometry (LC-MS) is crucial for NADPH detection in redox signaling because it offers the high sensitivity, specificity, and comprehensive profiling needed to quantify this vital but labile redox cofactor in complex biological samples. Using hepatoma cell lines, liver tissues, and primary hepatocytes from mice lacking transaldolase or nicotinamide nucleotide transhydrogenase, or having lupus, this study demonstrates that accurate measurement of NADPH depends on its preservation in reduced form which can be optimally achieved by extraction of metabolites in alkaline solution, such as 0.1 M potassium hydroxide (KOH) in comparison to 80% methanol (MeOH) alone or 40:40:20 methanol/acetonitrile/formic acid solution. While KOH extraction coupled with hydrophilic interaction liquid chromatography (HILIC) and mass spectrometry most reliably detects NADPH, NADP, NADH, NAD, polyamines, and polyols, MeOH extraction is best suited for detection of glutathione and overall discrimination between complex metabolite extracts. This study therefore supports performing parallel KOH and MeOH extractions to enable comprehensive metabolomic analysis of redox signaling. Full article
(This article belongs to the Special Issue ROS Signalling and Cell Turnover)
Show Figures

Figure 1

39 pages, 3305 KB  
Article
A Robust and Efficient Workflow for Heart Valve Disease Detection from PCG Signals: Integrating WCNN, MFCC Optimization, and Signal Quality Evaluation
by Shin-Chi Lai, Yen-Ching Chang, Ying-Hsiu Hung, Szu-Ting Wang, Yao-Feng Liang, Li-Chuan Hsu, Ming-Hwa Sheu and Chuan-Yu Chang
Sensors 2025, 25(21), 6562; https://doi.org/10.3390/s25216562 (registering DOI) - 24 Oct 2025
Abstract
This study proposes a comprehensive and computationally efficient system for the recognition of heart valve diseases (HVDs) in phonocardiogram (PCG) signals, emphasizing an end-to-end workflow suitable for real-world deployment. The core of the system is a lightweight weighted convolutional neural network (WCNN) featuring [...] Read more.
This study proposes a comprehensive and computationally efficient system for the recognition of heart valve diseases (HVDs) in phonocardiogram (PCG) signals, emphasizing an end-to-end workflow suitable for real-world deployment. The core of the system is a lightweight weighted convolutional neural network (WCNN) featuring a key weighting calculation (KWC) layer, which enhances noise robustness by adaptively weighting feature map channels based on global average pooling. The proposed system incorporates optimized feature extraction using Mel-frequency cepstral coefficients (MFCCs) guided by GradCAM, and a band energy ratio (BER) metric to assess signal quality, showing that lower BER values are associated with higher misclassification rates due to noise. Experimental results demonstrated classification accuracies of 99.6% and 90.74% on the GitHub PCG and PhysioNet/CinC Challenge 2016 databases, respectively, where the models were trained and tested independently. The proposed model achieved superior accuracy using significantly fewer parameters (312,357) and lower computational cost (4.5 M FLOPs) compared with previously published research. Compared with the model proposed by Karhade et al., the proposed model use 74.9% fewer parameters and 99.3% fewer FLOPs. Furthermore, the proposed model was implemented on a Raspberry Pi, achieving real-time HVDs detection with a detection time of only 1.87 ms for a 1.4 s signal. Full article
(This article belongs to the Special Issue AI-Based Automated Recognition and Detection in Healthcare)
31 pages, 20520 KB  
Article
Genesis of the Baijianshan Skarn-Type Zn-Cu Polymetallic Deposit, Chinese Eastern Tianshan: Constraints from Geology, Geochronology and Geochemistry
by Fenwei Cheng, Shuai Zhang, Jianxin Wu, Baofeng Huang and Di Zhang
Minerals 2025, 15(11), 1107; https://doi.org/10.3390/min15111107 - 24 Oct 2025
Abstract
The Baijianshan deposit is the sole skarn Zn-Cu polymetallic deposit in the Xiaoshitouquan ore field, Xinjiang, China. Its ore genesis remains controversial, which hinders understanding of the relationship between skarn-type Zn-Cu and adjacent epithermal Ag-Cu-Pb-Zn mineralization and consequently impedes further regional exploration. LA-ICP-MS [...] Read more.
The Baijianshan deposit is the sole skarn Zn-Cu polymetallic deposit in the Xiaoshitouquan ore field, Xinjiang, China. Its ore genesis remains controversial, which hinders understanding of the relationship between skarn-type Zn-Cu and adjacent epithermal Ag-Cu-Pb-Zn mineralization and consequently impedes further regional exploration. LA-ICP-MS U-Pb dating on zircons from the granite and granite porphyry from the mining area yielded ages of 311 ± 1.7 Ma and 312 ± 1.6 Ma, respectively. The corresponding zircon εHf(t) values and TDM ages are 8.7–9.9 and 624–555 Ma for the granite, and 7.2–9.9 and 673–552 Ma for the granite porphyry. These granites are metaluminous, high-K calc-alkaline I-type granites, with high LREE/HREE ratios (4.92–9.03) and pronounced negative Eu anomalies. They are enriched in K, Th, U, Zr, and Hf, with significant depletions in Sr, P, and Ti. Combined geological and geochemical evidence indicate that these Late Carboniferous granites were derived from the juvenile crustal and formed in subduction-related back basin. Two-phase aqueous inclusions in the ore-bearing quartz and calcite have homogenization temperatures ranging from 117 to 207 °C and 112 to 160 °C, respectively, with the salinities in the ranges of 0.18~7.17 and 0.53~5.26 wt% NaCl eq. The S and Pb isotopic compositions of sulfides in the ores indicate that the ore-forming metals were sourced from the medium-acidic magmatite. The δ18OH2O and δDH2O values of hydrothermal fluids range from −6.97% to −5.84% and −106.8% to −99.6%, respectively, suggesting that the ore-forming fluids originated from the mixing of magmatic and meteoric water. Fluid mixing and corresponding conductive cooling were identified as the principal mechanism triggering the metallic mineral precipitation. The Baijianshan skarn Zn-Cu polymetallic deposit shares contemporaneous magmatic-mineralization ages and analogous material sources with the epithermal polymetallic deposits in the Xiaoshitouquan ore field, collectively constituting a unified skarn-epithermal metallogenic system. This hypothesis indicates that the deep parts of the epithermal deposits within the Yamansu volcanic rocks possess potential for exploring the porphyry-skarn-type deposits. Full article
Show Figures

Figure 1

15 pages, 4391 KB  
Article
Magnetically Saturated Pulsed Eddy Current for Inner-Liner Collapse in Bimetal Composite Pipelines: Physics, Identifiability, and Field Validation
by Shuyi Xie, Peng Xu, Liya Ma, Tao Liang, Xiaoxiao Ma, Jinheng Luo and Lifeng Li
Processes 2025, 13(11), 3409; https://doi.org/10.3390/pr13113409 - 24 Oct 2025
Abstract
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading [...] Read more.
Underground gas storage (UGS) is critical to national reserves and seasonal peak-shaving, and its safe operation is integral to energy security. In UGS surface process pipelines, heterogeneous bimetal composite pipes—carbon-steel substrates lined with stainless steel—are widely used but susceptible under coupled thermal–pressure–flow loading to geometry-induced instabilities (local buckling, adhesion, and collapse), which can restrict flow, concentrate stress, and precipitate rupture and unplanned shutdowns. Conventional ultrasonic testing and magnetic flux leakage have limited sensitivity to such instabilities, while standard eddy-current testing is impeded by the ferromagnetic substrate’s high permeability and electromagnetic shielding. This study introduces magnetically saturated pulsed eddy-current testing (MS-PECT). A quasi-static bias field drives the substrate toward magnetic saturation, reducing differential permeability and increasing effective penetration; combined with pulsed excitation and differential reception, the approach improves defect responsiveness and the signal-to-noise ratio. A prototype was developed and evaluated through mechanistic modeling, numerical simulation, laboratory pipe trials, and in-service demonstrations. Field deployment on composite pipelines at the Hutubi UGS (Xinjiang, China) enabled rapid identification and spatial localization of liner collapse under non-shutdown or minimally invasive conditions. MS-PECT provides a practical tool for composite-pipeline integrity management, reducing the risk of unplanned outages, enhancing peak-shaving reliability, and supporting resilient UGS operations. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

24 pages, 5015 KB  
Article
Including Open Balconies in Housing Retrofitting: A Parametric Analysis for Energy Efficiency
by Elena Garcia-Nevado, Judit Lopez-Besora and Gonzalo Besuievsky
Urban Sci. 2025, 9(11), 439; https://doi.org/10.3390/urbansci9110439 - 24 Oct 2025
Abstract
Balconies are widely recognized for enhancing urban livability, making them attractive elements to incorporate in building renovation projects. However, their impact on energy performance remains insufficiently studied, particularly in temperate climates, like the Mediterranean, where both heating and cooling demands must be considered. [...] Read more.
Balconies are widely recognized for enhancing urban livability, making them attractive elements to incorporate in building renovation projects. However, their impact on energy performance remains insufficiently studied, particularly in temperate climates, like the Mediterranean, where both heating and cooling demands must be considered. This article evaluates the energy impacts of integrating open balconies into housing retrofits on the space conditioning demand of dwellings through spatialized analysis at the urban block scale. Focusing on Barcelona’s Eixample district, a parametric Urban Building Energy Modeling (UBEM) was employed to assess how balcony design interacts with urban morphology (orientation, obstructions), building features (window-to-wall ratio, WWR), and balcony length. Results reveal a seasonal trade-off at the block scale: balconies increase heating demand (0.1–1.6 kWh/m2·yr) by reducing winter solar gain but decrease cooling demand (0.1–3.8 kWh/m2·yr) through summer shading. Net effects vary by unit position, with south-facing and moderately glazed dwellings benefiting the most. Deeper balconies (1.5–2 m) amplify both effects, while optimal depth depends on the window-to-wall ratio. Under future climates, retrofits combining insulation and balconies mitigate rising cooling demands more effectively than insulation alone, reducing block-level demand by up to 16%. Although balconies alone show modest energy savings at the block scale, they enhance localized thermal resilience. The study highlights the need for integrated retrofit strategies that balance thermal insulation with solar protection to address both current and future energy challenges while enhancing occupant well-being. Full article
Show Figures

Figure 1

8 pages, 355 KB  
Article
The Impact of Surface CD20 Expression and Soluble CD20 Levels on In Vivo Cell Fragility in Chronic Lymphocytic Leukemia
by Ozlem Candan, Imren Tatli, Abdullah Bakisli, Baris Kula, Edanur Korkut, Mehmet Emin Yildirim, Muhammet Ali Gurbuz, Asu Fergun Yilmaz, Isik Atagunduz, Ayse Tulin Tuglular and Tayfur Toptas
J. Clin. Med. 2025, 14(21), 7529; https://doi.org/10.3390/jcm14217529 - 24 Oct 2025
Abstract
Background: Patients with chronic lymphocytic leukemia (CLL) who were not receiving treatment were included in this experimental prospective correlation study. We aimed to elucidate the complex relationship between smudge cells, surface CD20, and soluble CD20 in CLL patients. Methods: We created blood smears [...] Read more.
Background: Patients with chronic lymphocytic leukemia (CLL) who were not receiving treatment were included in this experimental prospective correlation study. We aimed to elucidate the complex relationship between smudge cells, surface CD20, and soluble CD20 in CLL patients. Methods: We created blood smears from blood samples collected from our patients using a manual technique consistently performed by the same technician. The May–Grunwald Giemsa dye was used to stain all of the slides. The B-cell phenotypic was analyzed using the FacsCanto II flow cytometer (Becton Dickinson, CA, USA) at the time of diagnosis. Competitive Enzyme-Linked Immunoassay (ELISA) was used to quantitatively assess the amounts of soluble CD20/MS4A1. Results: The percentage of smudge cells and soluble CD20 antigen levels were shown to be significantly inversely correlated, suggesting a considerable link (correlation coefficient (r) = −0.51, p = 0.006). Similarly, a significant inverse relationship (r = −0.36, p = 0.04) was found by the Spearman correlation test between the smudge cell ratio and CD20 median fluorescence intensity (MFI) on cell surfaces. Soluble CD20/MS4A1 and surface CD20 MFI were shown to have a weakly positive association that was almost statistically significant (Spearman’s rho = 0.34, p = 0.064). With a sensitivity of 69% and specificity of 86%, we discovered that a cut-off value of 2.2 ng/dL for soluble CD20 predicted higher smudge cells (area under the curve (95% confidence interval (CI)): 0.75 (0.57 to 0.93), p = 0.021). Conclusions: We found a significant inverse association between smudge cells and both surface CD20 and soluble CD20/MS4A1 in our study examining the correlation between smudge cells, soluble CD20, and CD20/MS4A1 in CLL patients. Our findings indicate that soluble CD20 may contribute to understanding the pathophysiology of smudge cells and could be further investigated as a potential prognostic marker in CLL. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

24 pages, 2610 KB  
Article
The Effect of Pretreatment of Tetraselmis subcrodiformis (Wille) Butcher and Limnospira platensis (Gomont) Ciferri et Tiboni Biomass with Solidified Carbon Dioxide on the Efficiency of Anaerobic Digestion
by Marcin Dębowski, Izabela Świca, Marcin Zieliński and Joanna Kazimierowicz
Appl. Sci. 2025, 15(21), 11373; https://doi.org/10.3390/app152111373 - 23 Oct 2025
Abstract
The aim of this study was to determine the effects of low-temperature pretreatment of microalgae (Tetraselmis subcordiformis (Wille) Butcher) and cyanobacteria (Limnospira platensis (Gomont) Ciferri et Tiboni) using solidified carbon dioxide (SCO2) on the progression of methane fermentation. The [...] Read more.
The aim of this study was to determine the effects of low-temperature pretreatment of microalgae (Tetraselmis subcordiformis (Wille) Butcher) and cyanobacteria (Limnospira platensis (Gomont) Ciferri et Tiboni) using solidified carbon dioxide (SCO2) on the progression of methane fermentation. The experiment was carried out under batch conditions with six process variants that differed in the volumetric ratio of SCO2 to the biomass tested. Changes in organic matter solubility, anaerobic digestion kinetics and overall CH4 production performance were analysed. The results showed that pretreatment effectively increased the solubility of organic compounds, especially in the case of L. platensis biomass, where the highest increases in soluble sTOC (up to 21.6%) and sCOD (up to 14.3%) were observed. CH4 yield in the most efficient variant (SCO2:biomass = 1:2.5) increased to 354 ± 16 mL CH4/gVS for T. subcordiformis and 403 ± 18 mL CH4/gVS for L. platensis, respectively. Despite the apparently less favourable physicochemical parameters of the biomass for anaerobic digestion, L. platensis showed a higher susceptibility to digestion and better kinetic indicators for methane fermentation. The results indicate that the efficiency of anaerobic biodegradation of biomass depends not only on the chemical composition but also on the cellular structure and physicochemical interactions during pretreatment. The use of SCO2 as a disintegrant could be an effective, energy-saving method to increase the fermentation efficiency of photosynthetic microorganisms in biowaste management. Full article
Show Figures

Figure 1

15 pages, 1015 KB  
Article
Aristolochic Acid I Adsorption onto Activated Carbon: Kinetics, Equilibrium, and Thermodynamic Studies
by Maria-Alexandra Pricop, Adina Negrea, Mihaela Ciopec, Ioan Bogdan Pascu, Camelia Oprean, Alexandra Teodora Lukinich-Gruia, Iustina-Mirabela Cristea, Alexandra Ivan, Virgil Păunescu and Călin Adrian Tatu
Processes 2025, 13(11), 3397; https://doi.org/10.3390/pr13113397 - 23 Oct 2025
Abstract
The removal of phytotoxins from herbal preparations is important due to evidence linking exposure to aristolochic acid I (AAI), a toxin found in Aristolochiaceae species, with certain kidney diseases. This study evaluates the effectiveness of activated carbon (AC) in removing AAI from aqueous [...] Read more.
The removal of phytotoxins from herbal preparations is important due to evidence linking exposure to aristolochic acid I (AAI), a toxin found in Aristolochiaceae species, with certain kidney diseases. This study evaluates the effectiveness of activated carbon (AC) in removing AAI from aqueous solutions and determines the optimal conditions for the process, which are necessary for accurate kinetic, thermodynamic, and equilibrium analyses. After establishing the best conditions for the adsorption reaction (pH > 6; solid/liquid ratio (S:L) = 0.1 g adsorbent: 25 mL AAI solution; contact time 120 min; temperature = 298 K, AAI initial concentration (Ci) = 150 mg/L), a maximum adsorption capacity of 10.67 mg/g was obtained. Quantitative analysis of AAI was performed using UV-VIS spectrophotometry. Experiments on kinetics, thermodynamics, and adsorption isotherms were carried out. The findings showed that the process adheres to pseudo-second-order kinetics and is spontaneous and endothermic and takes place at the interface between the adsorbent and adsorbate. The equilibrium data fits the Sips isotherm model with a regression coefficient close to 1. The findings indicate that AC is an effective material for the removal of AAI by adsorption from an aqueous solution. Full article
22 pages, 9476 KB  
Article
Application of Kolmogorov–Sinai Metric Entropy to Determine the Exploitation Parameters of Epoxy–Glass Composites with Carbonisate
by Agata Wieczorska and Grzegorz Hajdukiewicz
Materials 2025, 18(21), 4858; https://doi.org/10.3390/ma18214858 - 23 Oct 2025
Abstract
This study investigates how the addition of a carbon-based filler obtained through the pyrolysis of medium-density fibreboard (MDF) waste affects the mechanical behaviour of epoxy–glass laminates. Two laminate series with different matrix-to-reinforcement ratios (60/40 and 65/35) were fabricated and modified with carbonised particles [...] Read more.
This study investigates how the addition of a carbon-based filler obtained through the pyrolysis of medium-density fibreboard (MDF) waste affects the mechanical behaviour of epoxy–glass laminates. Two laminate series with different matrix-to-reinforcement ratios (60/40 and 65/35) were fabricated and modified with carbonised particles of up to 500 μm in size, introduced at 5% and 7.5%. The strength of the samples made of the materials mentioned above was assessed in a static three-point bending test by analysing the values of stresses (σfM) and strains (εfM). For an in-depth analysis of the dynamics of the destruction process, the recorded deformation data were subjected to Kolmogorov–Sinai metric entropy (EKS). The test results showed that the addition of carbonisate in series A (60/40) increased the flexural strength by 32.56% for the sample with 5% addition and by 27.08% for the sample with 7.5% addition, compared to the reference material. In series B (65/35), characterised by a higher resin content, the opposite effect was observed—a decrease in strength of 9.89% (for 5% carbonisate) and 15.53% (for 7.5% carbonisate). The use of EKS calculations in combination with phase portrait reconstruction to analyse the results obtained allowed for the precise determination of the limit values of stresses and strains (σfMK_S and εfMK_S) at which irreversible structural changes occur in the material, initiating the destruction process. This method proved to be an effective tool for identifying early signs of composite degradation, which is crucial for assessing its long-term strength and designing safe structures. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 2575 KB  
Article
Extending the ICESAT-2 ATLAS Lidar Capabilities to Other Planets Within Our Solar System
by John J. Degnan
Photonics 2025, 12(11), 1048; https://doi.org/10.3390/photonics12111048 - 23 Oct 2025
Abstract
The ATLAS lidar on NASA’s Earth-orbiting ICESat-2 satellite has operated continuously since its launch in September 2018, with no sign of degradation. Compared to previous international single-beam spaceborne lidars, which operated at a few tens of Hz, the single-photon-sensitive, six-beam ATLAS pushbroom lidar [...] Read more.
The ATLAS lidar on NASA’s Earth-orbiting ICESat-2 satellite has operated continuously since its launch in September 2018, with no sign of degradation. Compared to previous international single-beam spaceborne lidars, which operated at a few tens of Hz, the single-photon-sensitive, six-beam ATLAS pushbroom lidar provides 60,000 surface measurements per second and has accumulated almost 3 trillion surface measurements during its six years of operation. It also features a 0.5 m2 telescope aperture and a single, 5 Watt, frequency-doubled Nd:YAG laser generating a 10 KHz train of 1.5-nanosecond pulses at a green wavelength of 532 nm. The current paper investigates how, with minor modifications to the ATLAS lidar, this capability might be extended to other planets within our solar system. Crucial to this capability is the need to minimize the solar background seen by the lidar while simultaneously providing, for long time intervals (multiple months), an uninterrupted, modestly powered, multimegabit per second interplanetary laser communications link to a terminal in Earth orbit. The proposed solution is a pair of Earth and planetary satellites in high, parallel, quasi-synchronized orbits perpendicular to their host planet’s orbital planes about the Sun. High orbits significantly reduce the time intervals over which the interplanetary communications link is blocked by their host planets. Initial establishment of the interplanetary communications link is simplified during two specific time intervals per orbit when the sunlit image of the two planets are not displaced from their actual positions (“zero point ahead angle”). In this instance, sunlit planetary images and the orbiting satellite laser beacon can be displayed on the same pixelated detector array, thereby accelerating the coalignment of the two communication terminals. Various tables in the text provide insight for each of the eight planets regarding the impact of solar distance on the worst-case Signal-to-Noise Ratio (SNR), the effect of satellite orbital height on the duration of the unblocked interplanetary communications link, and the resulting planetary surface continuity and resolution in both the along-track and cross-track directions. For planets beyond Saturn, the laser power and/or transmit/receive telescope apertures required to transmit multimegabit-per-second lidar data back to Earth are major challenges given current technology. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

24 pages, 3190 KB  
Article
Experimental Study on the Effects of Sideslip and Rudder Deflection Angles on the Aerodynamics of an Aircraft Vertical Tail at Low Speeds
by Arash Shams Taleghani, Saeid Yektaei, Vahid Esfahanian and Soheila Abdolahipour
Fluids 2025, 10(11), 277; https://doi.org/10.3390/fluids10110277 - 23 Oct 2025
Abstract
The vertical tail plays a crucial role in aircraft directional stability and lateral control, especially during low-speed operations such as takeoff and landing. This study examines the effect of aircraft mass on vertical tail geometry through a statistical analysis of 65 design parameters [...] Read more.
The vertical tail plays a crucial role in aircraft directional stability and lateral control, especially during low-speed operations such as takeoff and landing. This study examines the effect of aircraft mass on vertical tail geometry through a statistical analysis of 65 design parameters from civil jet aircraft. Aerodynamic performance of a sub-scale Boeing 777-200 vertical tail model was further investigated in a low-speed wind tunnel under rudder deflections and sideslip angles. Experiments were conducted at freestream speeds of 20 and 30 m/s, corresponding to Reynolds numbers of 5 × 105 and 7.5 × 105, with model blockage ratios below 2% in all configurations. Side force and drag coefficients were measured for rudder deflections from −30° to +30° and sideslip angles from −7.5° to +7.5°. Results show a nearly linear variation of side force with rudder deflection, while drag exhibits noticeable nonlinearity at higher deflections. At zero sideslip, increasing rudder deflection from 0° to 30° raised the side force coefficient from 0 to 0.65, with a maximum uncertainty of ±0.011, while drag coefficient uncertainty remained below ±0.0055. Furthermore, the application of positive or negative sideslip resulted in substantial variations in the side force coefficient, reaching values of up to ±1.1 depending on the direction. By integrating experimental data with statistical analysis of real aircraft geometries, this study provides reliable quantitative benchmarks and highlights the vertical tail’s aerodynamic importance. Full article
Show Figures

Figure 1

20 pages, 552 KB  
Article
Biologically Active Compounds of Plants of the Atraphaxis Genus: Chemical Composition and Immunomodulatory Evaluation
by Meruyert D. Dauletova, Almagul K. Umbetova, Nazym S. Yelibayeva, Gauhar Sh. Burasheva, Aisulu Zh. Kabdraisova, Zhanat Zh. Karzhaubekova, Yuliya A. Litvinenko, Zhanibek S. Assylkhanov and Dmitriy Yu. Korul’kin
Int. J. Mol. Sci. 2025, 26(21), 10301; https://doi.org/10.3390/ijms262110301 - 23 Oct 2025
Abstract
This study systematically investigated lipophilic and polar metabolites of Atraphaxis virgata (Polygonaceae) and assessed its immunomodulatory activity in vivo. Supercritical CO2 extraction of the aerial parts yielded a lipophilic fraction analyzed by means of gas chromatography–mass spectrometry (GC–MS), which identified 42 compounds, [...] Read more.
This study systematically investigated lipophilic and polar metabolites of Atraphaxis virgata (Polygonaceae) and assessed its immunomodulatory activity in vivo. Supercritical CO2 extraction of the aerial parts yielded a lipophilic fraction analyzed by means of gas chromatography–mass spectrometry (GC–MS), which identified 42 compounds, including fatty acid esters, sterols, hydrocarbons, and terpenoids. The residual plant meal was subjected to ultrasound-assisted extraction with 70% aqueous ethanol at 30–35 °C, using a solid-to-solvent ratio of 1:8 for 120 min. This polar extract was evaluated for amino acids, proteins, and carbohydrates, while solvent–solvent partitioning with chloroform, ethyl acetate, and water enabled isolation of phenolic- and flavonoid-enriched fractions. Six phenolic constituents, including four flavonol glycosides and two phenolic acids, were structurally confirmed. The extracts were rich in unsaturated fatty acids and water-soluble antioxidants, supporting their nutritional and pharmacological relevance. In vivo evaluation using a cyclophosphamide-induced myelosuppression model in Wistar rats demonstrated stimulation of erythropoiesis and leukopoiesis, confirming immunomodulatory potential. Collectively, this work provides the first comprehensive chemical and biological characterization of A. virgata and establishes a foundation for mechanistic studies and pharmacological validation. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

24 pages, 2099 KB  
Article
Phenolic Compounds with Antimicrobial Properties in Mushrooms Frequently Encountered in Temperate Deciduous Forests
by Aida Puia, Stanca-Lucia Pandrea, Jeanine Cruceru, Ion Cosmin Puia, Veronica Sanda Chedea, Călina Ciont, Oana Lelia Pop, Loredana Florina Leopold, Floricuța Ranga, Adriana Cristina Urcan, Alexandru Nicolescu, Otilia Bobis, Ioana Corina Bocsan, Sebastian Armean, Anca Dana Buzoianu and Raluca Maria Pop
Life 2025, 15(11), 1653; https://doi.org/10.3390/life15111653 - 23 Oct 2025
Abstract
Mushrooms have long been recognized as a rich source of bioactive compounds, including phenolics, that possess important antioxidant, antimicrobial, and antibacterial properties, including activity against drug-resistant bacteria. This study evaluated total phenolic profile and content, total flavonoids content, the antioxidant activities, antimicrobial and [...] Read more.
Mushrooms have long been recognized as a rich source of bioactive compounds, including phenolics, that possess important antioxidant, antimicrobial, and antibacterial properties, including activity against drug-resistant bacteria. This study evaluated total phenolic profile and content, total flavonoids content, the antioxidant activities, antimicrobial and antibacterial activities, of water extracts of edible mushrooms from Romanian deciduous forests, including Cantharellus cibarius, Russula virescens, Lactarius piperatus, and Boletus edulis. The extracts were characterized using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Antioxidant activity was determined using DPPH radical-scavenging activity and ABTS radical cation decolorization assay. Antimicrobial and antibacterial activities were tested using standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, and Streptococcus pneumoniae following diffusion testing and time-killing assay, respectively. The HPLC-MS results indicated that major compounds in all the mushrooms belonged to the subclass of hydroxybenzoic acids. Trans-cinnamic acid and hydroxybenzoic acids, particularly gallic acid, 2,3-dihydroxybenzoic acid, and gentisic acid, were the predominant compounds detected in BEE and CCE. Their concentrations were measured as follows: 24 μg/mL, 63 μg/mL, 56 μg/mL, and 14 μg/mL, respectively, for BEE, and 26 μg/mL, 42 μg/mL, 7 μg/mL, and 5 μg/mL, respectively, for CCE. Among phenolic compounds, 2-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, p-anisaldehyde, and gentisic acid were positively correlated with both DPPH (45% and 21% inhibition rate for BEE and CCE, respectively) and ABTS (64 and 31% inhibition rate for BEE and CCE, respectively) antioxidant activities. The FTIR analysis revealed the presence of lipids, proteins, and polysaccharides, extracted in different ratios in the water extract. All mushroom extracts showed a dose-dependent response with higher antimicrobial and antibacterial activities at the highest concentration (26.3 µg phenolics BEE, 12.7 µg pphenolics CCE, 28.3 µg phenolics LPE, and 14.5 µg phenolics RVE per well for antimicrobial activity and 175.2 µg phenolics/mL BEE, 84.4 µg phenolics/mL CCE, and 188.9 µg phenolics/mL LPE for antibacterial activity). These species demonstrate potential for the development of alternative antimicrobial formulations, particularly relevant in the context of antibiotic resistance. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

23 pages, 3312 KB  
Article
Automatic Picking Method for the First Arrival Time of Microseismic Signals Based on Fractal Theory and Feature Fusion
by Huicong Xu, Kai Li, Pengfei Shan, Xuefei Wu, Shuai Zhang, Zeyang Wang, Chenguang Liu, Zhongming Yan, Liang Wu and Huachuan Wang
Fractal Fract. 2025, 9(11), 679; https://doi.org/10.3390/fractalfract9110679 - 23 Oct 2025
Abstract
Microseismic signals induced by mining activities often have low signal-to-noise ratios, and traditional picking methods are easily affected by noise, making accurate identification of P-wave arrivals difficult. To address this problem, this study proposes an adaptive denoising algorithm based on wavelet-threshold-enhanced Complete Ensemble [...] Read more.
Microseismic signals induced by mining activities often have low signal-to-noise ratios, and traditional picking methods are easily affected by noise, making accurate identification of P-wave arrivals difficult. To address this problem, this study proposes an adaptive denoising algorithm based on wavelet-threshold-enhanced Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and develops an automatic P-wave arrival picking method incorporating fractal box dimension features, along with a corresponding accuracy evaluation framework. The raw microseismic signals are decomposed using the improved CEEMDAN method, with high-frequency intrinsic mode functions (IMFs) processed by wavelet-threshold denoising and low- and mid-frequency IMFs retained for reconstruction, effectively suppressing background noise and enhancing signal clarity. Fractal box dimension is applied to characterize waveform complexity over short and long-time windows, and by introducing fractal derivatives and short-long window differences, abrupt changes in local-to-global complexity at P-wave arrivals are revealed. Energy mutation features are extracted using the short-term/long-term average (STA/LTA) energy ratio, and noise segments are standardized via Z-score processing. A multi-feature weighted fusion scoring function is constructed to achieve robust identification of P-wave arrivals. Evaluation metrics, including picking error, mean absolute error, and success rate, are used to comprehensively assess the method’s performance in terms of temporal deviation, statistical consistency, and robustness. Case studies using microseismic data from a mining site show that the proposed method can accurately identify P-wave arrivals under different signal-to-noise conditions, with automatic picking results highly consistent with manual labels, mean errors within the sampling interval (2–4 ms), and a picking success rate exceeding 95%. The method provides a reliable tool for seismic source localization and dynamic hazard prediction in mining microseismic monitoring. Full article
Show Figures

Figure 1

Back to TopTop