Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = Li-ion storage kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6441 KB  
Article
Tetrabromocobalt Phthalocyanine-Functionalized Carbon Nanotubes as a High-Performance Anode for Lithium-Ion Batteries
by Keshavananda Prabhu Channabasavana Hundi Puttaningaiah
Nanomaterials 2025, 15(22), 1713; https://doi.org/10.3390/nano15221713 - 12 Nov 2025
Abstract
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by [...] Read more.
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by molecular functionalizing both single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) with tetrabromocobalt phthalocyanine (CoPc), resulting in CoPc/SWCNT and CoPc/MWCNT hybrid materials. Metal phthalocyanines (MPcs) are recognized for their tunable and redox-active properties. In CoPc, the redox-active metal centers and π-conjugated structure are uniformly attached to the CNT surface through strong π-π interactions. This synergistic combination significantly boosts the lithium-ion (Li-ion) storage capacity by offering numerous coordination sites for Li-ions and enhancing charge transfer kinetics. Electrochemical analysis shows that the CoPc-SWCNT active anode electrode material shows an impressive reversible capacity of 1216 mAh g−1 after 100 cycles at a current density of 0.1 A g−1, substantially surpassing the capacities of pristine CoPc (327 mAh g−1) and a CoPc/MWCNT hybrid (488 mAh g−1). Furthermore, the CoPc/SWCNT anode exhibited exceptional rate capability and outstanding long-term cyclability. These results underscore the effectiveness of non-covalent functionalization with SWCNTs in enhancing the electrical conductivity, structural stability, and active site utilization of CoPc, positioning CoPc/SWCNT hybrids as a highly promising anode material for high-performance Li-ion storage. Full article
Show Figures

Graphical abstract

15 pages, 2914 KB  
Article
Ternary Synergistic Electrolyte Enabling Stable Li-Ion Battery Operation Across −40 °C to 60 °C
by Yali Zhao, Yutao Liu, Jingju Liu, Daofa Ying, Xuanlin Gong, Linjin Xie, Xiaohan Guo, Caiyun Yao, Baohui Chen and Chuanping Wu
Materials 2025, 18(20), 4803; https://doi.org/10.3390/ma18204803 - 21 Oct 2025
Viewed by 394
Abstract
The operational failure of lithium-ion batteries under extreme temperatures (−40~60 °C) stems primarily from electrolyte limitations. While prior efforts improved either low-temperature or high-temperature performance independently, holistic electrolyte design with practical validation remains elusive. Herein, we develop an all-climate electrolyte (ACE) through synergistic [...] Read more.
The operational failure of lithium-ion batteries under extreme temperatures (−40~60 °C) stems primarily from electrolyte limitations. While prior efforts improved either low-temperature or high-temperature performance independently, holistic electrolyte design with practical validation remains elusive. Herein, we develop an all-climate electrolyte (ACE) through synergistic coordination of solvent, Li salt, and additive, achieving low viscosity (<10 mPa·s at −40 °C) and high ionic conductivity (7.0 mS cm−1 at −40 °C). Raman and NMR spectra reveal MA and EC co-occupying Li+ solvation sheath while EMC acts as a diluent, enabling rapid ion transport. Consequently, LiFePO4 (LFP)|graphite (Gr) cell delivers unprecedented cyclability: zero capacity decay over 500 cycles at 0 °C, stable operation across −40~60 °C, and 94.1% retention after 100 cycles at 45 °C in Ah-level pouch cells. XPS and SEM analysis demonstrate lithium difluorophosphate (LiDFP) and lithium bis(fluorosulfonyl)imide (LiFSI) collaboratively remodel SEI/CEI interphases, enriching them with LiF, Li3PO4, and Li2SO4. This inorganic-dominant architecture enhances interfacial Li+ kinetics and all-climate stability compared to the baseline electrolyte. Our tripartite electrolyte strategy provides a material-agnostic solution for all-climate energy storage. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

11 pages, 2686 KB  
Article
High-Efficiency Strategy for Reducing Decomposition Potential of Lithium Formate as Cathode Prelithiation Additive for Lithium-Ion Batteries
by Yaqin Guo, Ti Yin, Zeyu Liu, Qi Wu, Yuheng Wang, Kangyu Zou, Tianxiang Ning, Lei Tan and Lingjun Li
Nanomaterials 2025, 15(16), 1225; https://doi.org/10.3390/nano15161225 - 11 Aug 2025
Viewed by 714
Abstract
Lithium-ion batteries (LIBs) have attracted extensive attention as a distinguished electrochemical energy storage system due to their high energy density and long cycle life. However, the initial irreversible lithium loss during the first cycle caused by the formation of the solid electrolyte interphase [...] Read more.
Lithium-ion batteries (LIBs) have attracted extensive attention as a distinguished electrochemical energy storage system due to their high energy density and long cycle life. However, the initial irreversible lithium loss during the first cycle caused by the formation of the solid electrolyte interphase (SEI) leads to the prominent reduction in the energy density of LIBs. Notably, lithium formate (HCOOLi, LFM) is regarded as a promising cathode prelithiation reagent for effective lithium supplementation due to its high theoretical capacity of 515 mAh·g−1. Nevertheless, the stable Li-O bond of LFM brings out the high reaction barrier accompanied by the high decomposition potential, which impedes its practical applications. To address this issue, a feasible strategy for reducing the reaction barrier has been proposed, in which the decomposition potential of LFM from 4.84 V to 4.23 V resulted from the synergetic effects of improving the electron/ion transport kinetics and catalysis of transition metal oxides. The addition of LFM to full cells consisting of graphite anodes and LiNi0.834Co0.11Mn0.056O2 cathodes significantly enhanced the electrochemical performance, increasing the reversible discharge capacity from 156 to 169 mAh·g−1 at 0.1 C (2.65–4.25 V). Remarkably, the capacity retention after 100 cycles improved from 72.8% to 94.7%. Our strategy effectively enables LFM to serve as an efficient prelithiation additive for commercial cathode materials. Full article
Show Figures

Graphical abstract

15 pages, 1787 KB  
Article
Probing Solid-State Interface Kinetics via Alternating Current Electrophoretic Deposition: LiFePO4 Li-Metal Batteries
by Su Jeong Lee and Byoungnam Park
Appl. Sci. 2025, 15(13), 7120; https://doi.org/10.3390/app15137120 - 24 Jun 2025
Viewed by 773
Abstract
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4) [...] Read more.
This work presents a comprehensive investigation into the interfacial charge storage mechanisms and lithium-ion transport behavior of Li-metal all-solid-state batteries (ASSBs) employing LiFePO4 (LFP) cathodes fabricated via alternating current electrophoretic deposition (AC-EPD) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) as the solid-state electrolyte. We demonstrate that optimal sintering improves the LATP–LFP interfacial contact, leading to higher lithium diffusivity (~10−9 cm2∙s−1) and diffusion-controlled kinetics (b ≈ 0.5), which directly translate to better rate capability. Structural and electrochemical analyses—including X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and rate capability tests—demonstrate that the cell with LATP sintered at 900 °C delivers the highest Li-ion diffusivity (~10−9 cm2∙s−1), near-ideal diffusion-controlled behavior (b-values ~0.5), and superior rate capability. In contrast, excessive sintering at 1000 °C led to reduced diffusivity (~10−10 cm2∙s−1). The liquid electrolyte system showed higher b-values (~0.58), indicating the inclusion of surface capacitive behavior. The correlation between b-values, diffusivity, and morphology underscores the critical role of interface engineering and electrolyte processing in determining the performance of solid-state batteries. This study establishes AC-EPD as a viable and scalable method for fabricating additive-free LFP cathodes and offers new insights into the structure–property relationships governing the interfacial transport in ASSBs. Full article
Show Figures

Figure 1

21 pages, 8950 KB  
Article
N/S Co-Doped Carbon-Coated Micro-Expanded Graphite for High-Performance Lithium-Ion Battery Anodes
by Wenjie Wang, Xuan Zhang, Xianchao Wang, Chengwei Gao, Jinling Yin, Qing Wen and Guiling Wang
Materials 2025, 18(11), 2477; https://doi.org/10.3390/ma18112477 - 25 May 2025
Cited by 1 | Viewed by 1153
Abstract
Natural graphite (NG) is abundant and has a high capacity for lithium-ion storage, but its narrow interlayer spacing and poor cyclic stability limit its use in high-performance lithium-ion batteries (LIBs). To address this, a N/S co-doped micro-expanded graphite composite (BFAC@MEG) was prepared by [...] Read more.
Natural graphite (NG) is abundant and has a high capacity for lithium-ion storage, but its narrow interlayer spacing and poor cyclic stability limit its use in high-performance lithium-ion batteries (LIBs). To address this, a N/S co-doped micro-expanded graphite composite (BFAC@MEG) was prepared by coating micro-expanded graphite (MEG) with N/S-containing amorphous carbon derived from biochemical fulvic acid (BFAC). This enhanced the electrochemical kinetics of lithium ions, improving charge transfer rates and reducing diffusion resistance. GITT results showed a higher Li+ diffusion coefficient than MEG and spherical graphite (SG). BFAC@MEG exhibited excellent rate performance, robust storage capacity and remarkable cycling stability. It had a specific capacity of 333 mAh g−1 at 1 C, 205 mAh g−1 at 3 C, and retained 81.57% capacity after 500 cycles. Even at 5 C, BFAC@MEG exhibits a high reversible capacity of 98 mAh g−1 after 200 cycles. After cycling, SEM and XPS analyses revealed a low expansion rate of 15.96% cross-sectional expansion after 300 cycles at 3 C and a stable solid electrolyte interphase (SEI) film rich in LiF and Li2CO3. Full article
(This article belongs to the Special Issue Electrode Materials for Advanced Rechargeable Batteries)
Show Figures

Figure 1

16 pages, 4986 KB  
Article
Performance of 3D Network-Structured LiFePO4@Li3V2(PO4)3/Carbon Nanofibers via Coaxial Electrospinning as Self-Supporting Cathode for Lithium-Ion Batteries
by Ruixia Chu, Hongtao Zhang, Wanyou Huang, Fangyuan Qiu, Yan Wang, Zhenyu Li and Xiaoyue Jin
Materials 2025, 18(9), 1969; https://doi.org/10.3390/ma18091969 - 26 Apr 2025
Cited by 1 | Viewed by 981
Abstract
Lithium-ion batteries (LIBs) with high power, high capacity, and support for fast charging are increasingly favored by consumers. As a commercial electrode material for power batteries, LiFePO4 was limited from further wide application due to its low conductivity and lithium-ion diffusion rate. [...] Read more.
Lithium-ion batteries (LIBs) with high power, high capacity, and support for fast charging are increasingly favored by consumers. As a commercial electrode material for power batteries, LiFePO4 was limited from further wide application due to its low conductivity and lithium-ion diffusion rate. The development of advanced architectures integrating rational conductive networks with optimized ion transport pathways represents a critical frontier in optimizing the performance of cathode materials. In this paper, a novel self-supporting cathode material (designated as LFP@LVP-CES) was synthesized through an integrated coaxial electrospinning and controlled pyrolysis strategy. This methodology directly converts LiFePO4, Li3V2(PO4)3, and polyacrylonitrile (PAN)) into flexible, binder-free cathodes with a hierarchical structural organization. The 3D carbon nanofiber (CNF) matrix synergistically integrates LiFePO4 (Li/Fe/POx) and Li3V2(PO4)3 (Li/V/POx) nanoparticles, where CNFs act as a conductive scaffold to enhance electron transport, while the POx polyanionic frameworks stabilize Li+ diffusion pathways. Morphological characterizations (SEM and TEM) revealed a 3D cross-connected carbon nanofiber matrix (diameter: 250 ± 50 nm) uniformly embedded with active material particles. Electrochemical evaluations demonstrated that the LFP@LVP-CES cathode delivers an initial specific capacity of 165 mAh·g−1 at 0.1 C, maintaining 80 mAh·g−1 at 5 C. Notably, the material exhibited exceptional rate capability and cycling stability, demonstrating a 96% capacity recovery after high-rate cycling upon returning to 0.1 C, along with 97% capacity retention over 200 cycles at 1 C. Detailed kinetic analysis through EIS revealed significantly reduced Rct and increased Li+ diffusion. This superior electrochemical performance can be attributed to the synergistic effects between the 3D conductive network architecture and dual active materials. Compared with traditional coating processes and high-temperature calcination, the preparation of controllable electrospinning and low-temperature pyrolysis to some extent avoid the introduction of harmful substances and reduce raw material consumption and carbon emissions. This original integration strategy establishes a paradigm for designing freestanding electrode architectures through 3D structural design combined with a bimodal active material, providing critical insights for next-generation energy storage systems. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

10 pages, 6059 KB  
Article
Mg-Doped Li2FeTiO4 as a High-Performance Cathode Material Enabling Fast and Stable Li-ion Storage
by Pengqing Hou, Yingdong Qu, Rui Huang, Xinru Tian, Guanglong Li and Shaohua Luo
Inorganics 2025, 13(3), 76; https://doi.org/10.3390/inorganics13030076 - 6 Mar 2025
Viewed by 1025
Abstract
As a multi-electron system material, the excellent capacity and environmentally benign properties of Li2FeTiO4 cathodes make them attractive for lithium-ion batteries. Nevertheless, their electrochemical performance has been hampered by poor conductivity and limited ion transport. In this work, the synthesis [...] Read more.
As a multi-electron system material, the excellent capacity and environmentally benign properties of Li2FeTiO4 cathodes make them attractive for lithium-ion batteries. Nevertheless, their electrochemical performance has been hampered by poor conductivity and limited ion transport. In this work, the synthesis of Mg-doped Li2MgxFe1−xTiO4 (LiFT-Mgx, x = 0, 0.01, 0.03, 0.05) cathode materials was successfully achieved. We observed significant gains in interlayer spacing, ionic conductivity, and kinetics. Hence, the sample of the LiFT-Mg0.03 cathode demonstrated charming initial capacity (112.1 mAh g−1, 0.05 C), stability (85.0%, 30 cycles), and rate capability (96.5 mAh g−1, 85.9%). This research provided precious insights into lithium storage with exceptional long-term stability and has the potential to drive the development of next-generation energy storage technologies. Full article
(This article belongs to the Special Issue Novel Research on Electrochemical Energy Storage Materials)
Show Figures

Figure 1

10 pages, 2377 KB  
Article
Design and Optimization of Polyaniline/SWCNT Anodes for Improved Lithium-Ion Storage
by Keshavananda Prabhu Channabasavana Hundi Puttaningaiah
Polymers 2025, 17(4), 478; https://doi.org/10.3390/polym17040478 - 12 Feb 2025
Cited by 5 | Viewed by 1302
Abstract
The integration of polyaniline (PANI) with single-walled carbon nanotubes (SWCNTs) offers a promising technique to improve the electrochemical performance of lithium-ion battery (LIB) anodes. In this work, we report on the synthesis and advanced optimization of PANI/SWCNT composite anodes aimed toward further developing [...] Read more.
The integration of polyaniline (PANI) with single-walled carbon nanotubes (SWCNTs) offers a promising technique to improve the electrochemical performance of lithium-ion battery (LIB) anodes. In this work, we report on the synthesis and advanced optimization of PANI/SWCNT composite anodes aimed toward further developing lithium-ion (Li+) storage capacity. A proper characterization, including SEM and XRD, revealed the well-defined morphology and synergistic collaboration among PANI and SWCNTs. Electrochemical evaluations showed that the PANI anodes display predominant Li+ storage capacities, with a high specific capacity of 528 mA g−1 at 100 mA g−1, and the 10 wt% SWCNT-doped PANI (PANI/10 wt% SWCNT) composite demonstrated an exceptional cycling performance of 830 mA g−1 at 100 mA g−1 and excellent capacity retention (101% after 200 cycles). Cyclic voltammetry demonstrated reduced charge transfer resistance and improved ion diffusion kinetics. These improvements originate from the correlative properties of PANI’s redox activity and SWCNT’s conductivity, which enable effective Li+ transport and intercalation. This work features the capability of PANI/SWCNT composites as superior-performance anode materials for advanced LIBs, tending to key difficulties of energy density and cycling stability. The discoveries establish the importance of additional investigation of polymer–carbon nanocomposites in advanced energy storage systems. Full article
(This article belongs to the Special Issue Active Polymeric Materials for Electrochemical Applications)
Show Figures

Figure 1

29 pages, 20118 KB  
Review
Heteroatom Doping Strategy of Advanced Carbon for Alkali Metal-Ion Capacitors
by Ti Yin, Yaqin Guo, Xing Huang, Xinya Yang, Leixin Qin, Tianxiang Ning, Lei Tan, Lingjun Li and Kangyu Zou
Batteries 2025, 11(2), 69; https://doi.org/10.3390/batteries11020069 - 8 Feb 2025
Cited by 6 | Viewed by 2149
Abstract
Alkali metal-ion capacitors (AMICs) combine the advantages of the high specific energy of alkali metal-ion batteries (AMIBs) and the high power output of supercapacitors (SCs), which are considered highly promising and efficient energy storage devices. It is found that carbon has been the [...] Read more.
Alkali metal-ion capacitors (AMICs) combine the advantages of the high specific energy of alkali metal-ion batteries (AMIBs) and the high power output of supercapacitors (SCs), which are considered highly promising and efficient energy storage devices. It is found that carbon has been the most widely used electrode material of AMICs due to its advantages of low cost, a large specific surface area, and excellent electrical conductivity. However, the application of carbon is limited by its low specific capacity, finite kinetic performance, and few active sites. Doping heteroatoms in carbon materials is an effective strategy to adjust their microstructures and improve their electrochemical storage performance, which effectively helps to increase the pseudo-capacitance, enhance the wettability, and increase the ionic migration rate. Moreover, an appropriate heteroatom doping strategy can purposefully guide the design of advanced AMICs. Herein, a systematic review of advanced heteroatom (N, S, P, and B)-doped carbon, which has acted as a positrode and negatrode in AMICs (M = Li, Na, and K) in recent years, has been summarized. Moreover, emphasis is placed on the mechanism of single-element doping versus two-element doping for the enhancement in the performance of carbon positrodes and negatrodes, and an introduction to the use of doped carbon in dual-carbon alkali metal-ion capacitors (DC-AMICs) is discussed. Finally, an outlook is given to solve the problems arising when using doped carbon materials in practical applications and future development directions are presented. Full article
Show Figures

Graphical abstract

12 pages, 3366 KB  
Article
A Spontaneous Complexation–Exfoliation Strategy for a Flexible Anode Towards Superior Durable and Ultrafast Lithium-Ion Batteries
by Heying Chu, Jingchuan Zhang, Pengsen Zhao, Yong Li, Zhaoxia Liu and Hongzhou Zhang
Molecules 2025, 30(1), 133; https://doi.org/10.3390/molecules30010133 - 31 Dec 2024
Cited by 2 | Viewed by 959
Abstract
Transition metal oxides are considered promising anode materials for high performance flexible electrodes due to their abundant reserves and excellent specific capacity. However, their inherent low conductivity, large volume effect, and poor cycling performance limit their applications. Herein, we report a novel “spontaneous [...] Read more.
Transition metal oxides are considered promising anode materials for high performance flexible electrodes due to their abundant reserves and excellent specific capacity. However, their inherent low conductivity, large volume effect, and poor cycling performance limit their applications. Herein, we report a novel “spontaneous complexation and exfoliation” strategy for the fabrication of flexible MnO NCs@rGO thin-film electrodes, which overcomes the aforementioned drawbacks and pushes the mechanical flexibility and lithium-ion (Li+) storage performance to a higher level. The combination of large-area few-layer reduced graphene oxide (rGO) films and ultrafine MnO nanocrystals (MnO NCs) provides a high density of electrochemical active sites. Notably, the layer-by-layer embedded structure not only enables the MnO NCs@rGO electrodes to withstand various mechanical deformations but also produces a strong synergistic effect of enhanced reaction kinetics by providing an enlarged electrode/electrolyte contact area and reduced electron/ion transport resistance. The elaborately designed flexible MnO NCs@rGO anode provides a specific capacity of about 1220 mAh g−1 over 1000 cycles, remarkable high-rate capacity (50.0 A g−1), and exceptional cycling stability. Finally, the assembled flexible lithium-ion full cells achieve zero capacity loss during repeated large-angle bending, demonstrating immense potential as a high-performance flexible energy storage device. This work provides valuable insights into unique structural designs for durable and ultra-fast lithium ion batteries. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Rechargeable Batteries, 2nd Edition)
Show Figures

Figure 1

9 pages, 2324 KB  
Article
Electrochemical Properties of Ultrathin LiNi1/3Mn1/3Co1/3O2 (NMC111) Slurry-Cast Li-Ion Battery
by Byoung-Nam Park
Crystals 2024, 14(10), 882; https://doi.org/10.3390/cryst14100882 - 10 Oct 2024
Cited by 3 | Viewed by 2371
Abstract
In thin LiNi1/3Mn1/3Co1/3O2 (NMC111) electrodes, pseudocapacitive behavior is notably enhanced due to their increased surface-to-volume ratio, which intensifies the role of the electrode–electrolyte interface. This behavior is driven by fast, reversible redox reactions and ion intercalation [...] Read more.
In thin LiNi1/3Mn1/3Co1/3O2 (NMC111) electrodes, pseudocapacitive behavior is notably enhanced due to their increased surface-to-volume ratio, which intensifies the role of the electrode–electrolyte interface. This behavior is driven by fast, reversible redox reactions and ion intercalation occurring near the surface, where the shorter diffusion path allows for more efficient ionic transport. The reduced thickness of the electrodes shortens the Li-ion diffusion distance, improving the diffusion coefficient by a factor of 40 compared to thicker electrodes, where ion transport is hindered by longer diffusion paths. The increased surface area and shorter diffusion paths promote faster electrochemical kinetics, allowing for quicker ion intercalation and deintercalation processes. The thin-film configuration enhances pseudocapacitive charge storage, which is essential for applications requiring rapid charge and discharge cycles. As a result, the combination of improved Li-ion diffusion and enhanced surface activity contributes to superior electrochemical performance, offering higher power densities, faster energy delivery, and better rate capability. This improvement in performance makes thin NMC111 electrodes particularly advantageous for applications such as high-power energy storage systems, where fast kinetics and high power densities are critical. These findings highlight the importance of interface engineering and material morphology in optimizing the performance of Li-ion batteries and similar electrochemical energy storage devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

14 pages, 4507 KB  
Article
Controlling Oxidation of Kerf Loss Silicon Waste Enabling Stable Battery Anode
by Yan Jiang, Sitong He, Siqi Ma, Fengshuo Xi, Ilya M. Gavrilin, Zhongqiu Tong, Jijun Lu, Neng Wan, Wenhui Ma, Yunpeng Zhu, Pingkeng Wu and Shaoyuan Li
Processes 2024, 12(6), 1173; https://doi.org/10.3390/pr12061173 - 7 Jun 2024
Cited by 1 | Viewed by 1984
Abstract
The recovery of massive kerf loss silicon waste into silicon anodes is an attractive approach to efficiently utilizing resources and protect the environment. Tens-of-nanometers-scale-thickness Si waste particles enable the high feasibility of high-rate Li-ion storage, but continuous oxidation leads to a gradual loss [...] Read more.
The recovery of massive kerf loss silicon waste into silicon anodes is an attractive approach to efficiently utilizing resources and protect the environment. Tens-of-nanometers-scale-thickness Si waste particles enable the high feasibility of high-rate Li-ion storage, but continuous oxidation leads to a gradual loss of electrochemical activity. Understanding the relationship between this oxidation and Li-ion storage properties is key to efficiently recovering silicon wastes into silicon anodes. However, corresponding research is rare. Herein, a series of silicon waste samples with different oxidation states were synthesized and their Li-ion storage characters were investigated. By analyzing their Li-ion storage properties and kinetics, we found that oxidation has absolutely detrimental effects on Li-ion storage performance, which is different to previously reported results of nano-silicon materials. The 2.5 wt.% Si provides a substantial initial discharge capacity of 3519 mAh/g at 0.5 A/g. The capacity retention of 2.5 wt.% Si is almost 70% after 500 cycles at 1 A/g. However, the 35.8 wt.% Si presents a modest initial discharge capacity of merely 170 mAh/g. Additionally, oxidation leads the Li-ion storage kinetics to transform from Li-ion diffusion-controlled to charge transfer-controlled behaviors. For kerf loss silicon waste with an oxygen content over 35.8 wt.%, Li-ion storage capability is lost due to a high charge transfer resistance and a low Li-ion diffusion coefficient. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

29 pages, 5790 KB  
Review
Review and Recent Advances in Metal Compounds as Potential High-Performance Anodes for Sodium Ion Batteries
by Inji Choi, Sion Ha and Kyeong-Ho Kim
Energies 2024, 17(11), 2646; https://doi.org/10.3390/en17112646 - 30 May 2024
Cited by 3 | Viewed by 3675
Abstract
Along with great attention to eco-friendly power solutions, sodium ion batteries (SIBs) have stepped into the limelight for electrical vehicles (EVs) and grid-scale energy storage systems (ESSs). SIBs have been perceived as a bright substitute for lithium ion batteries (LIBs) due to abundance [...] Read more.
Along with great attention to eco-friendly power solutions, sodium ion batteries (SIBs) have stepped into the limelight for electrical vehicles (EVs) and grid-scale energy storage systems (ESSs). SIBs have been perceived as a bright substitute for lithium ion batteries (LIBs) due to abundance on Earth along with the cost-effectiveness of Na resources compared to Li counterparts. Nevertheless, there are still inherent challenges to commercialize SIBs due to the relatively larger ionic radius and sluggish kinetics of Na+ ions than those of Li+ ions. Particularly, exploring novel anode materials is necessary because the conventional graphite anode in LIBs is less active in Na cells and hard carbon anodes exhibit a poor rate capability. Various metal compounds have been examined for high-performance anode materials in SIBs and they exhibit different electrochemical performances depending on their compositions. In this review, we summarize and discuss the correlation between cation and anion compositions of metal compound anodes and their structural features, energy storage mechanisms, working potentials, and electrochemical performances. On top of that, we also present current research progress and numerous strategies for achieving high energy density, power, and excellent cycle stability in anode materials. Full article
(This article belongs to the Special Issue Advanced Battery Materials for Energy Storage)
Show Figures

Figure 1

17 pages, 5993 KB  
Article
“Acid + Oxidant” Treatment Enables Selective Extraction of Lithium from Spent NCM523 Positive Electrode
by Hui Wang, Zejia Wu, Mengmeng Wang, Ya-Jun Cheng, Jie Gao and Yonggao Xia
Batteries 2024, 10(6), 179; https://doi.org/10.3390/batteries10060179 - 24 May 2024
Cited by 7 | Viewed by 2681
Abstract
With the rapid development of new energy vehicles and energy storage industries, the demand for lithium-ion batteries has surged, and the number of spent LIBs has also increased. Therefore, a new method for lithium selective extraction from spent lithium-ion battery cathode materials is [...] Read more.
With the rapid development of new energy vehicles and energy storage industries, the demand for lithium-ion batteries has surged, and the number of spent LIBs has also increased. Therefore, a new method for lithium selective extraction from spent lithium-ion battery cathode materials is proposed, aiming at more efficient recovery of valuable metals. The acid + oxidant leaching system was proposed for spent ternary positive electrode materials, which can achieve the selective and efficient extraction of lithium. In this study, 0.1 mol L−1 H2SO4 and 0.2 mol L−1 (NH4)2S2O8 were used as leaching acid and oxidant. The leaching efficiencies of Li, Ni, Co, and Mn were 98.7, 30, 3.5, and 0.1%, respectively. The lithium solution was obtained by adjusting the pH of the solution. Thermodynamic and kinetic studies of the lithium leaching process revealed that the apparent activation energy of the lithium leaching process is 46 kJ mol−1 and the rate step is the chemical reaction process. The leaching residue can be used as a ternary precursor to prepare regenerated positive electrode materials by solid-phase sintering. Electrochemical tests of the regenerated material proved that the material has good electrochemical properties. The highest discharge capacity exceeds 150 mAh g−1 at 0.2 C, and the capacity retention rate after 100 cycles exceeds 90%. The proposed new method can extract lithium from the ternary material with high selectivity and high efficiency, reducing its loss in the lengthy process. Lithium replenishment of the delithiation material can also restore its activity and realize the comprehensive utilization of elements such as nickel, cobalt, and manganese. The method combines the lithium recovery process and the material preparation process, simplifying the process and saving costs, thus providing new ideas for future method development. Full article
Show Figures

Figure 1

25 pages, 9149 KB  
Review
Advances and Challenges in Electrolyte Development for Magnesium–Sulfur Batteries: A Comprehensive Review
by Lin Sheng, Junrun Feng, Manxi Gong, Lun Zhang, Jonathan Harding, Zhangxiang Hao and Feng Ryan Wang
Molecules 2024, 29(6), 1234; https://doi.org/10.3390/molecules29061234 - 11 Mar 2024
Cited by 9 | Viewed by 4006
Abstract
Magnesium–sulfur batteries are an emerging technology. With their elevated theoretical energy density, enhanced safety, and cost-efficiency, they have the ability to transform the energy storage market. This review investigates the obstacles and progress made in the field of electrolytes which are especially designed [...] Read more.
Magnesium–sulfur batteries are an emerging technology. With their elevated theoretical energy density, enhanced safety, and cost-efficiency, they have the ability to transform the energy storage market. This review investigates the obstacles and progress made in the field of electrolytes which are especially designed for magnesium–sulfur batteries. The primary focus of the review lies in identifying electrolytes that can facilitate the reversible electroplating and stripping of Mg2+ ions whilst maintaining compatibility with sulfur cathodes and other battery components. The review also addresses the critical issue of managing the shuttle effect on soluble magnesium polysulfide by looking at the innovative engineering methods used at the sulfur cathode’s interface and in the microstructure design, both of which can enhance the reaction kinetics and overall battery efficiency. This review emphasizes the significance of reaction mechanism analysis from the recent studies on magnesium–sulfur batteries. Through analysis of the insights proposed in the latest literature, this review identifies the gaps in the current research and suggests future directions which can enhance the electrochemical performance of Mg-S batteries. Our analysis highlights the importance of innovative electrolyte solutions and provides a deeper understanding of the reaction mechanisms in order to overcome the existing barriers and pave the way for the practical application of Mg-S battery technology. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Rechargeable Batteries)
Show Figures

Figure 1

Back to TopTop